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SUR LES PLANS OSCULATEURS AUX SURFACES

INTRODUCTION

I1 est bien connu que pour chaque courbe dans un espace
euclidien R, n>2, assez reguliére, il existe au moins un
hyperplan tangent (c?est-a-dire ayant un contact d?ordre au
moins 1) et pour n>3% il existe un hyperplan osculateur
(c?test-a-dire ayant un contact d?ordre au moins 2), Aussi il
est bien connu que pour chaque variété a deux dimensions dans
Rn’ n> 3%, assez reguliére, il existe au moins un  hyperplan
tangent (c?est-a-dire ayant un contact d?ordre au moins 1),
On peut poser le probléme d?existence des hyperplans oscula-
teurs aux variétés a deux dimensions. Nous allons démontrer,
que de‘tels hyperplans n?’existent en général que dans les es-
pacés ayant au moins 5 dimensions.

1. DEUX DEFINITIONS

Soit une variété 3 de q dimensions (q >1) dans 1’espace
Rn (n>2) et un plan T1 a Xk dimensions (1<k<n). Sup'po-
sons que 2 et I'l ont le point P° en commun, que |PP°| dé-
signe 1la distance (euclidienne) de P et de P° et que
dist [P,TT] désigne la distance de P a T[]~ elle est égale a
|PP! ou P' est la projection orthogonale de P sur J1. En-
fin soit y = £(P) une fonction réelle du point P definie
pour tout les Pe 3
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2 K.Tatarkiewicz

Rys.1

Déefinition 1. Si pour chague ¢>0 il existe
un n()>0 tel que si O <I|PP°|<s, Pe X entralne I£(P)ke,
alors nous écrirons

lim £(P) = 0.
Z3p-—-p°

Définition 2, 8%il existe un nombre r tel que

1ip SSv[RT] o (1.1)
Z3p-p° lPPol

nous dirons que le plan Tl est r-tangent & la variété 2 au
point r°.

8i X e C,], alors un tel nombre r existe et ona r>0,
Si Tl est r-tangent (o0 r est un entier) & X au point P°,
alors il a le contact d’ordre r + 1 & 2 au point P°, Il
est bien connu que si T est 1-tangent a X (c’est-a-dire est
tangent a 2 ), alors on peut introduire plusieurs autres dé-
finitions équivalentes a la définition 2, Par exemple, si P'
est la projection orthogonale de P sur Tl, alors la formule

im IPf:l
s.5p —p° | POP

équivaut a (1.1) pour r = 1.
5i T1 est 2-tangent 2 . on peut dire qu’il est un plan
osculateur a .
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Sur les plans osculateurs aux surfaces 3
2. PLANS r~TANGENT AUX COURBES

Soit [ une courbe donnee paramétriquement a 1'aide des

équations

x; = x4(%) i=1...4n (2.1)

ou X; € el et
n 2
> [x'i(t)} >0 (2,2)
(=1

pour t e < tq,t2> .
Soit 1< k<n -1, Supposons que l'ordre de la matrice
wronskienne

x(£%) o.. % (£°)
R tecesecercrevenecne =k (2.3)
(k)(tO)

(k) .0
x'(s Yeouxy
pour un t%¢ (tqst5)e Considérons le plan T, donné para-
métriquement par les équations

(3) (g0
kx> (EY)
o i s _
xi = Xi(t ) + Jzﬂ; —_J—!__ U.J-, 1= 1,2,...,11 (2.4)
ou (ugpeeesu ) €Re. Vu (2.3) ce plan est & k dimensions,
En developpant les fonctions (2.1) en formules de Taylor
dtordre k
K (J)( 0)
- o (t-t)+r (t), (2.5)
xi(t)—X(t)+Z 1,6(8) .

ou il existe des 8¢ (0,1) tels que

(k+1) o
X, 8.t + (1 - 8)% k+1
vy () =— ((kl+ 7 ) (6 -%
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4 K,Tatarkiewicz

on peut montrer d'une fagon bien connue que TTk est k~tangent
& X (et en général Tl n’est pas (k+1)-tangent a ).

On peut poser la question est-ce gu’un résultat analogue
existe-t-il pour des variétés £ ayant plus &’une dimension?

3, PLANS 2-TANGENT AUX SURFACES

Soit 2 une surface donnée paramétriquement par les équa-
tions

Xi = Xi(u1,u2), 1= 1,2,...,11 (301)
ou x;e€ c? pour (uq,uz) appartenant & un domaine D,
Supposons que

ax

R [ R (uq,ug)} =2, (3.2)
3 1=1,2,4004n

3=1,2

pour (u1,u2)e D. C’est alors une surface ayant deux dimen-
sions (variété a deux dimensions).

Pour chaque entier r +tel que O<r<n, il existe alors
des plans TTr de r dimensions 1-tangent (c?est-a-dire tan-
gent) a 3 dans chague de ses points P (en général ils ne
sont pas définis univoquement par les points P), Si n=3 il
n'y a pas d’autres plans Tjr 1-tangent a 2 que pour r = 1
(droites) et r = 2 (plans),., Supposons don¢ que n>3 et gque
pour un couple (ug,ug)e D on a

2
ix. 0x; 07x,
R [a_uill- (u?],ug) (u/l,u' ) '6_21 (u?l,ug)

Bu,
2 ™ (3.3)
2 2
s} X 0 X.
Foga, (3r5) -aug (ufyu3) T nin(5,n]
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Sur les plans osculateurs aux surfaces 5

(nous verrons que cette condition jouera un réle analogue au
réle que joue la condition (2.3) dans le cas k = 1).

Soit n>5 et désignons paf TTS le plan dommé par 1les

équations paramétriques
o]

ox ax. 07x.

_ 40 i ¢,0 ,,0 1 i

=%t gy, (u yup)vy 7u, (ugyu3)vy + 5

2,u§)v5+
(3.4)

du

a x
+ ——-355 (uq, 2)v + %-au2 (u® ,u2)v5, i=12,0..4n

pour (vq,...,v5)€ Ry ef ou nous avons posé xg = xi(ug,ug).
Vu (3.3) c?est un plan a 5 dimensions, ‘

Par un mouvement inbtroduisons un nouveau systéme de coor-
données U (alors les nouvelles variables X; seront des
fonctions linéaires des anciennes variables xi) de telle
fagon que P° = (0y...40)5, c'est-a-dire que

2 = 0, i=1,2y,..,n0

et que 175 a comme équations (non paramétriques)

X. = 0, i=6,...,n.

Par la méme transformation nous obtenons en' nouvelles
,, ’ . , .
coordonnees comme equations parametriques de la surface 2

= }_ci(u,l,uz).

X5

La transformation des x. et X. é&tant un mouvement (et

i i
n >5) nous aurons
0x. 0X. 62
i ;.0 0 i
R l:m (Uz|9u-2) ﬁg (u/],ug) Bu,]l (u ,u2)
i o i 0 0 B
Fu g, (410u2) o2 (ugr15) = 2

i=1,2,.-.,n
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Possons pour i = 1,2,...40

axi

0%,
£ (ugyup) d}ﬁ (3, u3) (ug = uf) +W(u9|,u§)(u2-ug) *

2 2
7%, 2 07x.
r3 o ) s i (R0 (g ) - D)
2
0 X, 2
+ 3 =2t () (e - )

)

Considérons les developpements en formules de Taylor

ii(u»],u-z) = fi(u/]?ug) + ri(uqouz), (3.6)
ol
ri(u,l,ua) =
(3.7)
= 1l -u0) =2+ (u, -ul) 2 3}‘:.(ﬁ i,)
BT M A 2= % L *ittete/f 0!
Up=0u,+(1-68)u;

et 8¢ (0, 1),
Posons

2 2
¢ (uq0u5) =\/<u1-u%’) + (p-w) .

Soit un ¢,> O suffisamment petit. Vu (3.7) i1 existe une
constante (dépendante de 91) m>0, telle que si

0 <?(u1vu2)<9/|s (3.8)
alors
5
Vu notre choix du systeme U des coordonnées, nous aurons

fi(u’l'u2) =0 i=64...yn,
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Sur les plans osculateurs aux surfaces

donc les developpements (3.6) prendrons la forme

192500095

fi(uqvuz) + ri(uqsuz) i
% (ugyu,) = pour

ri(u,l,u,a) 1 = 6yeneyhe

Vu (3.9) nous aurons
" 2 6 6

é[ri(uq,uz)J < o (n-6) [9(‘1’1’“2)] < wn @(uq,ug)]
et
é; ii(uq’uz)a =
= i [fi(u,l,uz) + 1:']._(u,1,u.2):|2 + g[ri(uq,uz)}2 =

i=1

02 0 o] O2
= Agq(ug-ug) 285 (ug = ug) (y = 0) +hp5 (up - 05) + Wy, %),

0y

ou
) - _
Aij =Z E)us (u?l,ug) us ( ug
' (3.10)
5 e il4
=2_ 7o (W) g (W),
(=1 1 J
et
_wluguy)
= 0. (3.11)
(u ,u2) (u 'a3) [9(“1'u2ﬁ
Désignons P = (%,(u;yW,)y..0,% (u,l,uz)) fvidemment

PeY, . Nous rappelons aux lecteurs gu’on a P° (Oye.eyO)ge
Vu (3.5) ona A 11 #0 # Ayse L'inégalité de Schwarz nous
donne A,|,|A22 - A,|2 > 0, Mais le cas ’I’IA22 = A12 est exclu
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8 K,Tatarkiewicz

aussi par la supposition (3.5). Il s?ensuit que la forme

> 2
ApqZq + 2R 52025 + Aypzs

est deéfinie positive. Vu (3.11) il existe donc deux constan-
test NM>0, N>O0, telles que

n

[Q(u .uz)] Z[J‘ci(uq,uz)]z - 1ee0)”

i=1

pour tous les points Pe X pour lesqueis on a |PP°|< N,
I1 s?'ensuit que pour tous les points Pe X vérifiant la
condition

0 < |PP°| < W (3.12)

1?inégalité

. d:Lst[Pé ﬂ§] \/‘E; I:I‘ (uqsug)] V ?(u1 u,)< mXEIPPol
5 9
| Pp°| Z‘, [xl(u,],uz)]

est vérifiée.
Donc por chagque ¢>0 il existe un

M
Vmn

z
tel, que si le point P vérifie les conditions (3.12) et

n(e) =¢

IPP°| < n(e),

dist [P, T
<€

| ppO]

alors

et la condition (1.1) avec' r = 2 est verifiée. Nous avons
demontré que ﬂ5 est 2-tangent & 2. au point P°,

I1 est facile de voir que la supposition (3,.3) entraine-
entre autres -~ le fait que le plan ﬂ5 2-tangent & 2_ au
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Sur les plans osculateurs aux surfaces 9

point P° est unique (sans cette supposition il pourralt étre
une iafinité de tels plans).

Nos calculs peuvent 8tre repétés pour les plans TTk de k
dimensions od 5<k<n, Mais dans ce cas 1la, les plans T'Ik 2-
tangents ne seraient pas définis univoguement,

Notre définition de k-tangence étant invariante aux mouve-
ments du systeme des coordonnées et la condition (3.3) pour
n>5 impliquant la condition (3.2), nous avons demontré le
théoreme suivant.

Théoréme, Soit 3 1la surface a deux dimensions
(3.1) ou x; € 03, plongée dans 1?espace R, ol n>5. Suppo-
sons que la condition (3.3) soit verifiée., Alors pour chaque
_point PPe X et chagque 5«<k<n il existe au moins un plan
M, de k dimensions (pour k = 5 il est unique et donné
par les équations (3.4)) qui est 2-tangent & >_au point PP°.

4, LA NON-EXISTENCE DES PLANS 2-TANGENT

Notre théoréme ne repond pas & la question est-ce que pour
k = 3,4 (ou n>k) il existe toujours au moins un plan M, a
k dimensions 2-tangent a 2. au point P°, Nous montrerons
& 1l%aide d?un simple raisonnement, qu’un tel plan TTk k =3
ou 4 peut ne pas exister.

Soit un point P° dtune surface 3. et pour fixer les
idées supposons que k=3 et n>k, Un T'I3 quli serait 2-tan-
gent & 2. au point P° devrait passer par le point P° et
8tre tangent, donc devrait avoir comme équation

x_x°+axi u® )v+ (u2,ul)v + ;v
i S SRV (uqsuy au2 1192/ 5°
En plus le choix des constantes c; devrait &tre fait
dfune telle maniere que
ox ax
R|—1 (uo' o) i (u°, o) c J =3
[au 1) Fu, el % 121,2, ... ,n
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et que la condition (1.1) soit verifiée pour r =2. Cependant
en général un tel choix n’est pas possible. Le lecteur voudra
bien construire des fonctions X5 appropriées (elles peuvent
méme &tre des polyndmes de second degré).

5. UNE GENERALISATION

Soit k(q,r) le plus petit nombre tel que pour k> k(qg,r)
pour chaque point de chaque variéte > a q dimensions et
assez réguliere il existe un plan ﬂk de k dimensions r-~tan-
gent & X ., Il est facile & voir que

k(q,2) = q + q(q + 1) _alg : 3)

et
k(2,3) =2 + 3 + 4 =09,

Le lecteur voudra bien étudier la formule (assez compli-
quée) exprimant k(q,r) dans le cas général.

6. UNE VOIE GEOMETRIQUE

Pour fixer les idees considérons la courbe I donnée dans
R, par les édquations (2.1) pour n = 3 et vérifiant la con-
dition (2.2). Désignons par TT(to,zO + h) (ol h#0) le plan
qui passe par le point x° = X; (t ) et qui contient les di-
rections x'(t') et x (t + h)

Par deflnltlon on appelle plan A-osculateur al au point

o}
X5 le plan

T(t,) = 1im T(t,,t, + h)

s?il existe et est déterminé univoquement (il existe-évidemment
-d%autres définitions dquivalentes de cette notion).
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Sur les plans osculateurs aux surfaces 11

Un raisonnement bien connu démontre que si [  est assez
réguliere, alors le plan TT(to) A-osculateur existe et con-
tient les directions xi(to) et xﬁ(to), donc -vu (2.4) - il
est 2-tangent a I

Cette méthode peut 8tre appliquée aussi aux surfaces
de deux dimensions données par les équations (3.1) vérifiant
la condition (3.2).

Soit h, # O # hy. Désignons par 1Tk(u2,u§;h1,h2) ¢e plan
a x dimensions, auquel appartient le point PO = (xg,...,xg)
ou xg = xi(ug,ug) et qui contient 5 directioans définies par
les vecteurs

0 X,
0 .0
—a—u—;'-' (u,],u2), A= '1’2, (6.4)
0x.
i 0 o)
EET (u,I + hq,u2), M= 1,2
et
0x.
o .
Eai-(ug,uz +1,). (6.2)

Cette définition de M, (uf,uls h,,h,) dépend malheurese-
ment de la paramétrisation (3.41) de la surface 2_ , {et du
choix de la dérivation par rapport a y et non par rapport
a u, dans (6.2)), mais on peut donner urie définition
semblable indépendante de la forme de (3%.1) (et du choix de la
dérivée dans (6.2)). Dans ce but on peut se baser - par exemle
'~ sur la notion des directions principales de 2- . 8i k<5
un tel plan ITk(ug,ug;hq,hg) n'existe pas en général. Pour
k>5 il existe toujours, mais il peut étre déterminé non
univoquement, S?'il existe, il contient alors aussi les trois
directions

0x, 0x,
1 i 0 o i, o o
Tis {‘—ou,1 (ug + Gaghgpupy +0p505) = 57 (u’l’u2)J » (6.3)
ou 6=1 A=1 ou 6=1, A=2 ou 6=2, A= 2,
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12 K.Tatarkiewicz
Si la limite

0 .0y _ . 0,0,

M (g, W) = 00 T (uf,uw3sh,,h,)

existe, alors on peut appeler Tjk(ug,ug) plan A-osculateur a
> au point P°., Un tel plan (s'il existe) contient 1les
vecteurs. (6.1) (car les plans Tjk(ug,ug;hq,hg) les contiennent)
et - vu (6.3) - les directions

2
07 x.
i o .0
30, 00, (M2
donc - 81 k=5 - c¢*est le plan (3.4) qui est 2-tangent a 2.
Les résutats négatifs du n®°4 sont plus difficiles a
obtenir a 1'aide de cette méthode.

7. UNE AUTRE VOIE GEOMETRIQUE

Il?'y a aussi d'autres méthodes géometriques qui peuvent
8tre employées ici, Soit I la courbe (2.1) pour n =3 et
vérifiant les conditions (2.2) et {2.3). Soit h#O0 et désignons
par TI(P°,P) le plan qui contient les points les points P° =
= (xq(to),...,xn(to)), P = (xq(t°+-h),...,xn(t° + h)) et la
tangente a I au point P°,

Posons

TIE®) = 1im TU®°,P).
p—po

Si cette limite existe, on appelle ﬂ(Po) le plan B-oscu-~
lateur a [ au point PO. I1 est alors determiné univoquement.

On peut facilement écrire les équations de TIWP°,P) et en
passant & la limite obtenir 1’&quation de TI(P°) (on peut
1ltobtenir le plus facilement en partant d'équation non-para-
métrique de TKPO,P) - son premier membre a alors 1la forme
d'un determinant). On en voit que (sous nos suppositions de
régularité) 1le plan THP°) est le plan A-osculateur donc

qu?il est 2-tangent a .
- 150 =



Sur les plans osculateurs aux surfaces 13

Le méme procédé peut &tre appliqué aux varietés (3.1) a
deux dimensions, vérifiant les conditions (3.2) et (3.3).

Soit h, # O ;£ h,.  Posons Xg: x.(uo,uzo), P -

= é(i(u’ol’ug»’ L x (@ +n ,u2)>, P = (xl(u,‘,u2 + h2)) R
P3= (xi(uO +h,],u§+ I\12 ) Désignons par ﬂk(P ;Pq,PZ,Pz) le
plan (s?il existe) a k dimensions auquel appartiennent les
points PO,J?/‘,PE,P3 et les directions tangentes & 2. aupoint
P°, c?est-a-dire les directions de combinaisons linéaires des
vecteurs (6.1). En général un tel plan ﬂk(Po;P",P2,P5)
n’existe pas si k<5, supposons donc que 5<k<n,
Si la limite
/l
M, (2%) = 1, (8°;2, %7, P> .

(%) =, paim o Ty ( ) (7.1)
existe, alors nous allons appeler le plan de k dimensions
I"Ik(Po) un plan B-osculateur. Il est alors déterminé univo-

quement,
Supposons que ﬂk(Po) existe, Nous allons trouver ses

équations.
Supposons que les équations du plan Hk(PO;P/',PZ,PB) soient

g,ags)(h,,_,hz)(xi -xg) =0, 5=1,2,e..,0=k

ou les coefficients a§_s)(h,l,h2) doivent vérifier les condi-
tions suivantes

R[a(s)(h h )] = nk (7.2)
i 77727 sq,2,.. 0,0k ’
i=1,2,...,n
n 0x. s=1,2 n-k
(s) . i /.0 0y _ 1S90y
P ai (h'zloh2) ?—u—ﬂ. (u/"uz) - O (703)

A=1,2.

(car TI, (P P1 P2 PB) doit contenir les directions ’cangentes
approprlees). Et enfin (vu la suppos:.tlon Ple ]'Ik\PO-P = PB)
pour i=1,2,3)
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14 K,Tatarkiewicz

1 1

iags)'(h,\,hz)[xi(ug + h,l,ug) - x‘?] =0, 8=1,2y...,0k, (7.4)
{=/

4

Zags)(hq,hz)[xi(ug,ug +-h2)-xg]=o, §=1,2y0.0y0-k, (7.5)
(
1

n

(=1

a s) o) o o}

; a: (h,l,ha)[xi(u,] +ha,us+ h2) -xi]= 0, 8=2142y4..,0-% (7.6)
En général les 5(n-k) équations (7.3),(7.4), (7.5) et

(7.6) a n(n-k) inconnues ais (hthg) n?*ont des solutions

que si n>5, ce que nous avons Supposé. '

En employant les formules de Taylor nous aurons

) 0. o _
xi(u -rhq,ue) - x; =

(7.7)
2 2
8%, (1)
= hq aul (ug,ug) +-3;- ———% (@ + 81 h,ug),
u
1
xl(ug,ug + hy) - x; =
2 2
. hS 0%x. (2)
= byt (u,00) +—2 —2 (u,ul + 6. h,) (7.8)
29w, ‘Y 2 2 \Uqalp i Bals .
U Bu2
dx. 0x.
x; (07 + Bygup+ Bp) =Xy = by g (ugyu3) + by 7, (Bpv) +
(7.9)
2 2
7%, a°x.
11..2 i i
+-§[%1 aui (uq,u2) + 2h1h2'aa;355 (uq,u2) +
2
9°x.
2
+ hy 5_2} (uq’u2)} o (
112 uA=uA+Qi hao
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Sur les plans osculateurs aux surfaces 15

Substituons ces formules dans (7.4), (7.5) et (7.6). Vu
(7.3), aprés les avoir multiplié par 2, nous aurons

2 ¢ () | 0%, 0 SO N
h’] ; ai (h/l,ha) au%l (u,] +Gi h’l’u2) = 0, (7.10)
0 (s) azx. (
hg IZ‘ a;  (hqphy) ugl <u2.u§ +8; 'hy) =0, (7.11)
a (s) 2Xi 62Xi
2 8 (hyshy) By —;?— (u;5u,) + 2h,h, iy (uyyuy) +
(7.12)
2
7%,
2
i o () (3) =0
2 u#=u2+9i hy,
Soit
1, (s) o
[Z=;_/ai (Xl - Xi) =0 (7.13)

1?équation de ljk(Po). Ce plan étant 1la 1limite des plans
TTk(Po;Pq,PZ,PB) pour h;—0, h,— 0 les coefficients a§s)
doivent veérifier les conditions qu’on obtient en passant a la
limite avec h,—0, hy—=0 dans les équations (7.3),(7.4),
(7.5) et (7.6), donc dans (7.10), (7.11) et (7.12).

De (7.3) on obtient immédiatement

n (s) ox. 8=1,2,...,0~K )
2. a, L (uS,ul) =0 A4
i=] 1 aul 1".12 ! }\:1,2. (7 )

En divisant (7.10) et (7.11) par h% et hg respective~

ment et en passant a la limite avec h,— O on obtient les
conditions
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16 Ko.Tatarkiewicz

2 5=1,2ye00 0=k
iafs) —d—}gc* (ug,u3) = O, - (7.15)
=7 - guy 1 A=1,2,

La limite doit exister pour h,]——O, h2—-—O, donc aussi
pour h, = hy—=O. En posant h=h,=h, dans (7.12), divisant
par h2, pasant & la limite avec h—=0 et enfin en éxécutant
la substraction de (7.15) pour A -1 et pour A=2, on obtient

3 (s) ain 0 .0 .
gai Ta i (uf,u3) =0, s=1,2,...,nk. (7.46)

Nous avons supposé que le plan ﬂk(Po) existe., I1 s?ensuit
que la condition

R[aiS)] = n-k ('7.1'7.)

- analogue & la condition (7.2) - soit verifiéde. Remarquons
qu’en général les coefficients ags)' ne sont determinés uni-
voquement que si k=5,

Nous avons demontre que le plan B-osculateur a comme
équation {7.13) ou les coefficients ag_s) vérifient les condi-
tions (7.17), (7.14), (7.15) et (7.16). Si k=5, alors ces
équations sont équivalentes a (3.4), donc le plan B-osculateur
est 2-tangent & 2. au point P°.

Les résultats négatifs du n® 4 sont plus difficiles 4
retrouver aussi par cette méthode.

8, D!AUTRES METHODES GEOMETRIQUES

I1 existe encore d’autres définitions bien connues des
plans osculateurs aux courbes [c RB' (en principe elles con-
duisent aux notions équivalentes pour des courbes [  assez ré-
gulieres). Le lecteur voudra bien introduire d’une fagon -
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plus ou moins semblable - d’autres notions que celles qui sont
considérées dans les n°° 6 et 7, les plans de k dimensions,
osculateurs & une variété 2. (par exemple a l’aide des plans
A

a k dimensions, passant par k+ 1 points de 2. convenable-
ment choisis).

9. DEUX PROBLEMES

De méme que pour les plans osculateurs aux courbes on peut
essayer d?étudier les relations entre les notions introduites
ici. On peut aussi étudier la fagon dont ces notions dépandent
de la paramétrisation de la variété 2..

Par exemple soit 2_ donné dans R, par les équations pa-
ramétriques

Xq=lUqy Xp=Upy Xz=UWlsy X3=\/|Uy|, X5=\/|us|, Xg=V/|u

ou (u45u5)c Ry Le plan A-osculateur de 5 dimensions existe
iei au point (0,0,0,0,0,0). C’est le plan Xg = 0, Il est
facile a voir, qu'il n’est pas 2-tangent a 3 dans le méme
point, bn peut voir aussi, qu’apres un changement de la para-
métrisation de 2_ s le plan A-osculateur peut ne pas exister
ici,

Pour formuler le second probléme, rappelons,qu’on appelle
point stationnaire d?une courbe un point dans lequel la droite
tangente est 2-tangente. On montre (a 1’aide des formules
(2.5)) que si tous les points de 1la courbe (2,1) pour
t € <t,,b> ou ty<t, sont des points stationnaires,aldrs
pour ces mémes €~<t1,t2> la courbe (2,1) est un morcean
de droite, '

De médme on peut demander quelles sont les mropriétés dlune
variété 2= (par exemple de deux dimensions, donnée par les
formules (3.1) et vérifiant la condition (3.2)),telle que pour
tous ses points correspondant a (uq,u2)€ D (o D est un
domaine de R2) tous les Ijk (avec k=2 ou 3 ou bien &)
tangent & 2. sont 2~tangent a 2:. Est-ce un morceau de plan?
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Ce probleéme peut 8tre généralisé pour der plans T, dek
dimensions r-tangent aux surfaces a q dimensions ou k<k(q,r)
(voir n°5).
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