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SUR LES PLANS OSCULATEURS AUX SURFACES 

I N T R O D U C T I O N 

I l es t "bien connu que pour chaque courte dans un espace 
eucl id ien R n , n> 2 , a s sez r e g u l i e r e , i l e x i s t e au moins un 
hyperplan tangent ( c ' e s t - à - d i r e ayant un contact d 'ordre au 
moins 1) et pour n > 3 i l e x i s t e un hyperplan oscillateur 
( c ' e s t - à - d i r e ayant un contact d 'ordre au moins 2 ) . Aussi i l 
e s t bien connu que pour chaque v a r i é t é à deux dimensions dans 
RQ, n > 3 , a s sez r e g u l i e r e , i l e x i s t e au moins un hyperplan 
tangent ( c ' e s t - à - d i r e ayant un contact d 'ordre au moins 1 ) , 
On peut poser l e problème d 'ex i s tence des hyperplans oscula-
teurs aux v a r i é t é s à deux dimensions. Nous a l lons démontrer, 
que de t e l s hyperplans n ' ex i s t en t en général que dans l e s e s -
paces ayant au moins 5 dimensions. 

1. DEUX DÉFINITIONS 

S o i t une v a r i é t é ZI de q dimensions ( q > 1 ) dans l ' e s p a c e 
R q ( n ^ 2 ) et un plan FI à k dimensions ( 1 < k < n ) . Suppo-
sons que E et FI ont l e point P° en commun, que |PP°I dé-
signe l a distance (eucl idienne) de P et de P° et que 
d i s t .[P, TT] désigne l a distance de P a TT- e l l e e s t égale à 
I PP'I où P' e s t l a pro jec t ion orthogonale de P sur F I . En-
f i n s o i t y = f;(P) une fonct ion r é e l l e du point P d e f i n i e 
pour tout l e s P£ E 
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K.Tatarkiewicz 

Rys.1 

D é f i n i t i o n 1. S i pour chaque e > 0 i l e x i s t e 
un q ( e ) > 0 t e l que s i 0 < | P P ° | < £ , P e S e n t r a i n e lf(P)|<e, 
a l o r s nous éc r i rons 

l im f ( P ) = 0 . 
Z23P—P" 

D é f i n i t i o n 2 . S ' i l e x i s t e un nombre r t e l que 

l i m d i s t [ p , n j = 
> — o i r ' E3P-Ä" |PP' 

(1 .1) 

nous d i rons que l e p lan i l e s t r - t a n g e n t à l a v a r i é t é S a u 
p o i n t P° . 

A 
S i H, e C , a l o r s un t e l nombre r e x i s t e e t on a r > 0 . 

S i FI e s t r - t a n g e n t (où r e s t un e n t i e r ) à ZI au po in t P°, 
a l o r s i l a l e con tac t d ' o r d r e r + 1 à Z au po in t P° . I l 
e s t b i e n connu que s i T7 e s t 1 - t a n g e n t à ZL ( c ' e s t - à - d i r e e s t 
t angent à ZI ) , a l o r s on peu t i n t r o d u i r e p l u s i e u r s a u t r e s dé-
f i n i t i o n s équ iva len te s à l a d é f i n i t i o n 2 . Par exemple, s i P' 
e s t l a p r o j e c t i o n or thogonale de P sur TT, a l o r s l a formule 

E.3P— P° IP°P'I 

équivaut à (1 .1) pour r = 1. 
S i 11 e s t 2 - t angen t à L on peut d i r e q u ' i l e s t un p l an 

o s c u l a t e u r à ZI 
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Sur les plans oscillateurs aux surfaces 3 

2. PLANS r-TANGENT AUX COURBES 

Soit T une courte donnée paramétriquement à l'aide des 
équations 

i = 1,...,n (2.1) x ± = X;L(t) 

ou x^ e C et 

z 
£'= 1 

-,2 
> 0 (2.2) 

pour t e < t^,t 2> . 
Soit 1 < k < n -1. Supposons que l'ordre de la matrice 

wronskienne 

R 

x'(t°) ... x^(t°) 

: ( k ) ( t 0 ) . . . x ^ ( t 0 ) 

= k (2.3) 

pour un t°e (t^,t2). Considérons le plan TT^ donné para-
métriquement par les équations 

* t°) 
^ = x i (t°) + r - ^ T — v i = 1,2,...,n (2.4) 

où (u^,...,uQ)e R^. Vu (2.3) ce plan est à k dimensions. 
En développant les fonctions (2.1) en formules de Taylor 

d'ordre k 

k x P } ( t ° ) 
x.(t) = x..(t0) + £ ; - i - ^ (t - t°)° + r i f k(t), (2.5) 

où il existe des 8^6 (0,1) tels que 

x i k + 1 > ( 0 i t + ( 1 " 0 ) t°) 
= (k + 1)! (t - t°) 

k+1 
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on peut montrer d'une façon "bien connue que FI^ est k-tangent 
à ZI (et en général FI^ n ' e s t pas- (k+1)-tangent à ZI ) . 

On peut poser l a question es t - ce qu'un r é s u l t a t analogue 
e x i s t e - t - i l pour des var ié tés 22 ayant plus d'une dimension? 

3 . PLAÏIS 2-TANGENT AUX SURFACES 

Soi t 12 une surface donnée paramétriquement par les équa-
tions 

x i = x i ^ u i ' u 2 ^ i = 1 , 2 , . . . , n (3 .1 ) 

ou x^ e Ĉ  pour ( u ^ , ^ ) appartenant à un domaine D. 
Supposons que 

R 
ôx. 
W 7 (U1'U2> G 

= 2, 
i = 1 , 2 , . . . , n 
¿=1,2 

(3 .2 ) 

pour ( u ^ j ^ J e D . C'est alors une surface ayant deux dimen-
sions (var iété à deux dimensions). 

Pour chaque ent ier r t e l que 0 < r < n, i l ex is te alors 
des plans Ff r de r dimensions 1-tangent ( c ' e s t - à - d i r e tan-
gent) à ZI dans chaque de ses points P (en général i l s ne 
sont pas déf inis univoquement par les points P) . S i n = 3 i l 
n'y a pas d'autres plans T~lr 1-tangent à ZI que pour r = 1 
(droi tes) et r = 2 (plans) . Supposons donc que n > 3 et que 
pour un couple (u®,^) e D on a 

2 
dx. „ „ d x . ^ „ d x . „ „ 

(3 .3 ) 

a 2 x . 
= min[5,n] 

i = 1 , 2 , . . . , n 
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Sur les plans osculateurs aux surfaces 5 

(nous verrons que cette condition jouera un rôle analogue au 
rôle que joue la condition (2.3) dans le cas k = 1). 

Soit n>5 et désignons par TT̂  le plan donné par les 
équations paramétriques 

ô x d x d '"x 
x i = x ï - + + î (U°,U2°)V3+ 

(3.4) 
d2x. 32x, 

+ ô ï ï ^ + 2 ̂  (u°,u^)v5, i = 1,2,....n 

pour R^ et où nous avons posé x? = 
Vu (3.3) c'est un plan à 5 dimensions. 

Par un mouvement introduisons un nouveau système de coor-
données Û (alors les nouvelles variables x^ seront des 
fonctions linéaires des anciennes variatle.s x^) de telle 
façon que P° = (0,...,0)^, c'est-à-dire que 

4 = 0, i = 1,2,...,n 

et que FT̂  a comme équations (non paramétriques) 

x ± = 0, i = 6,...,n. 

Par la même transformation nous obtenons en- nouvelles 
coordonnées comme équations paramétriques de la surface ZL 

xjL = X^U^Ug). 

La transformation des x^ et x^ étant un mouvement (et 
n > 5 ) nous auro ns 

R 

- 2_ 9 x. 

a2x. ôx. 3x. „ , 
^ K ' ^ ) 7 ^ 1 ° ' ^ 

,2— d x. 

Su" 

i=1,2,...,n 

(3.5) 
= 5. 
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6 K,Tatarkiewicz 

Possons pour i = 1 , 2 , . . . , n 

3 x . dx. 

a 2 x 2 d2x. 

Considérons l e s développements en formules de T a y l o r 

5 c i ( u / l f u 2 ) = f ± ( u 1 , u 2 ) + r ^ u ^ u g ) , ( 3 . 6 ) 

ou 

r ^ U ^ U g ) 

3 
(3.7) 

û x = B u A + ( 1 - f l ) u J 

e t 9 & (0 , 1 ) . 
Posons 

9 (u ĵ jUg) = y ( u 1 - u ° ) + ( U g - U g ) . 

S o i t un 0 suf f i samment p e t i t . Vu ( 3 . 7 ) i l e x i s t e une 
cons tante (dépendante de 9^) m>O f t e l l e que s i 

a l o r s 

0 < 9 ( u ^ u g ) < 9 1 f 

| W u 2 > | < m [ Ç C ^ , ^ ) ] ' 

(3.8) 

(3.9) 

Vu notre cho ix du systeme II des coordonnées, nous aurons 

f i ( u 1 f u 2 ) - 0 i = 6 , . . . , n , 
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Sur l e s plans osci l lateurs aux s u r f a c e s 7 

donc l e s d é v e l o p p e m e n t s ( 3 . 6 ) p r e n d r o n s l a f o r m e 

f ^ u ^ u g ) + r ^ u ^ . u g ) i = 1 , 2 , . . . , 5 

x ^ u , , , ^ ) = p o u r 

r i ( u 1 , v i 2 ) i = 6 , . . . , n . 

Vu ( 3 . 9 ) n o u s a u r o n s 

n 

IL 
_ _ 2 r -, 6 r -, 

r ^ u ^ u g ) < m 2 ( n - 6 ) < m2n 

e t 

n 2 

i Ç V v V = 

5 r -[ 2 n r -r 2 

= ¿Z [ f i^- !»^) + ^(U.jjUg) + ^(U^Ug) 

2 o o o 2 

= A ^ (u^ - u ° ) + 2 A 1 2 ( u 1 - u / J ) ( u 2 - U g ) + A 2 2 ( - a 2 - u 2 ) + w ( u / ( , u 2 ) , 

ou 

i'1 1 (3.10) 

i-/ i 3 

e t 

( u 1 f u 2 ) — - ( u ° , u £ ) [ ? ( U l ( U 2 ) ] ; 
l i m r = 0 . ( 3 . 1 1 ) 

D é s i g n o n s P = (x^ ( u ^ ^ ) , . . . » x n ( u ' ] » u 2 ) ) û « Évidemment 

P e SZ, . Nous r a p p e l o n s a u x l e c t e u r s q u ' o n a P ° . = ( 0 , . . . , 0 ) ^ . 

Vu ( 3 . 5 ) on a A ^ i 0 ^ ^ 2 2 ' i n ® S a l i ' t ® d e S c h w a r z nous 

donne ~ ^ 1 2 ^ M a- '- s c a s ^ ^ 2 2 = A 1 2 6 X 0 1 1 1 
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8 K.Tatarkievricz 

aussi par la supposition (3.5). Il s'ensuit que la forme 

2 2 A^z^ + 2A^2 z^zg + A 2 2Z 2 

est définie positive. Vu (3.11) il existe donc deux constan-
tes: M > 0, N > 0, telles que 

M [píu,,,^)]2^ ¿ x ^ u ^ ) ^ = I PP' ,o,
2 

pour tous les points P e 2Z pour lesquels on a | PP° | < N. 
Il s'ensuit que pour tous les points Pe ZI vérifiant la 

condition 

0 < |PP°| < N (3.12) 

l'inégalité 

dist[P n 5] V t D i S . v f < V a 
0 < TppOi 2 - — T - : M P ^ . U g X - j p l E P I 

, E P 1 £ [ w v ] 

est vérifiée. 
Donc por chaque e > 0 il existe un 

! 

tel, que si le point P vérifie les conditions (3.12) et 

lH>°| < 7 (£), 

alors 
a i s t I ! ^ l < £ 

IEP°I 

et la condition (1.1) avec r = 2 est verifiée. Nous avons 
démontré que est 2-tangent à E au point P°. 

Il est facile de voir que la supposition (3.3) entraine-
entre autres - le fait que le plan TT^ 2-tangent à ZI au 
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Sur les plans oscillateurs aux surfaces 9 

point P° est unique (sans c e t t e supposition i l pourrait être 
une i n f i n i t é de t e l s plans) . 

Nos calculs peuvent être repétés pour l es plans de le 
dimensions où 5 < k < n . Mais dans ce cas l à , l e s plans FI^ 2 -
tangents ne seraient pas déf inis univoquement. 

Notre déf in i t ion de k-tangence étant invariante aux mouve-
ments du système des coordonnées et la condition (3 .3 ) pour 
n > 5 impliquant l a condition ( 3 . 2 ) , nous avons démontré l e 
théorème suivant. 

T h é o r è m e . Soi t 21, l a surface à deux dimensions 
(3 .1 ) où G*, plongée dans l ' espace EQ où n > 5 . Suppo-
sons que l a condition (3-3) s o i t v e r i f i é e . Alors pour chaque 
point P° € ZI et chaque 5 < k < n i l ex is te au moins un plan 
n k de k dimensions (pour k = 5 i l est unique et donné 
par l es équations ( 3 . 4 ) ) qui est 2-tangent à ^Hau point P°. 

4 . LA NON-EXISTENCE DBS ELANS 2-TANGENT 

Notre théorème ne répond pas à l a question es t - ce que pour 
k — 3 , 4 (où n > k ) i l ex is te toujours au moins un plan Fl^ a 
k dimensions 2-tangent à E au point P°. Nous montrerons 
à l ' a i d e d'un simple raisonnement, qu'un t e l plan FI^ k = 3 
ou 4 peut ne pas e x i s t e r . 

Soit un point P° d'une surface ZL et pour f i x e r l e s 
idées supposons que k = 3 et n> k. Un F q u i s e r a i t 2-tan-
gent à L au point P° devrait passer par l e point P° et 
ê t re tangent, donc devrait avoir comme équation 

a*. dx. O i / 0 0 \ 1 / O Os 
x i = x i + 75ïq ( V ^ N + JTâ^ + c i v 3 

En plus l e choix des constantes 
d'une t e l l e manière que 

c i devrait e tre f a i t 

E 
i = 1 , 2 , . . . , n 

= 3 
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10 K.Tatarkiewicz 

et que la condition (1.1) soit verifiée pour r = 2. Cependant 
en général un tel choix n'est pas possible. Le lecteur voudra 
bien construire des fonctions x^ appropriées (elles peuvent 
même être des polynômes de second degré). 

5. UNE GÉNÉRALISATION 

Soit k(q,r) le plus petit nombre tel que pour k>k(q,r) 
pour chaque point de chaque variété à q dimensions et 
assez régulière il existe un plan FÎ  de k dimensions r-tan-
gent à E , Il est facile à voir que 

k(q,2) = q + ^ V 1 ) = \ 3 ) 

et 
k(2,3) = 2 + 3 + 4 = 9 -

Le lecteur voudra "bien étudier la formule (assez compli-
quée) exprimant k(q,r) dans le cas général. 

6. UNE VOIE GÉOMÉTRIQUE 

Pour fixer les idees considérons la courbe T donnée dans 
Rj par les équations (2.1) pour n = 3 et vérifiant la con-
dition (2.2). Désignons par f(t0,z0 + h) (où h^O) le plan 
qui passe par le point xi? = ) et qui contient les di-
rections x^(tQ) et Xj^o + h)« 

Par définition on appelle plan A-osculateur à T au point 
x? le plan 

nct0> = iifg n(to,to + h) 

s'il existe et est déterminé univoquement (il existe-évidemment 
-d'autres définitions équivalentes de cette notion). 
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Sur les plans oscillateurs aux surfaces 11 

Un raisonnement "bien connu démontre que si T est assez 
régulière, alors l e plan T~Kt ) A-osculateur existe et con-
t ient les directions x^ ( tQ ) et x¿j ( t0 ) , donc - vu ( 2 . 4 ) - i l 
est 2-tangent à T. 

Cette méthode peut être appliquée aussi aux surfaces 
de deux dimensions données par les équations (3.1) vér i f iant 
la condition (3.2) . 

Soit ĥ  4 0 / hg. Désignons par nk (u°,u^;h^,h2 ) ce plan 
à k dimensions, auquel appartient le point P° - ( x ° , . . . , x ° ) 
où x? = X i (u° ,u£ ) et qui contient 5 directions définies par 
les vecteurs 

(u°,u°) , 1,2, (6.1) 
A 

^ (U° + h1 fu|), M- = 1,2 

et 

^ + h 2 ) . (6.2) 

Cette déf ini t ion de '~\^u1 ,u2' dépend malheurese-
ment de la paramétrisation (3.1) de la surface ZZ , (et du 
choix de la dérivation par rapport a u2 et non par rapport 
à û  dans (6 .2 ) ) , mais on peut donner uñe déf ini t ion 
semblable indépendante de la forme de (3.1) (et du choix de la 
dérivée dans (6 .2 ) ) . Dans ce but on peut se "baser-par exempLe 
- sur la notion des directions principales de 21, . Si k < 5 
un t e l plan n^iu^u^'.h^jhp) n'existe pas en général. Pour 
k > 5 i l existe toujours, mais i l peut être déterminé non 
univoquement. S ' i l existe, i l contient alors aussi les tro is 
directions 

_1 
h6 

où 5 = 1 , À = 1 ou 6- 1, À= 2 ou 6 = 2 , A = 2 . 
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12 K.Tatarkiewicz 

S i l a l imi te 

e x i s t e , a lors on peut appeler 1 f ^ » ^ ^ ) plan A-osculateur à 
ZI au point P°. Un t e l plan ( s ' i l ex i s te ) contient l e s 
vecteurs . (6.1 ) (car l e s plans [ "^(u^ ju^ jh^hg) les contiennent) 
et - vu (6 .3) - l es direct ions 

a 2 x . 

donc - s i k = 5 - c ' e s t l e plan (3 .4 ) qui est 2-tangent a 2D . 
Les résutats négati fs du n°4 sont plus d i f f i c i l e s à 

obtenir à l ' a i d e de c e t t e méthode 

7. UNE AUTRE VOIE GÉOMÉTRIQUE 

I l ' y a aussi d'autres méthodes géométriques qui peuvent 
ê t re employées i c i . So i t !" l a courbe (2 .1 ) pour n = 3 et 
v é r i f i a n t l e s conditions (2 .2 ) et ( 2 . 3 ) . So i t h ^ 0 et désignons 
par F!(P°,P) l e plan qui contient l e s points l e s points P° = 
= ( x 1 ( t ° ) f . . . , x n ( t ° ) ) , P = ( x 1 ( t 0 + h ) , . . . , x n ( t ° + h)) et l a 
tangente à f au point P°. 

Posons 

Î1(P°) = 11m R P ° , P ) . 
P — po 

S i c e t t e l imi te e x i s t e , on appelle n(P°) l e planB-oscu-
lateur à T au point P°. I l est a lors determiné univoquement. 

On peut facilement é c r i r e les équations de f1(P0 ,P) et en 
passant à l a l imite obtenir l ' équat ion de n ( P ° ) (on peut 
l ' o b t e n i r l e plus facilement en partant d'équation non-para-
métrique de n (P° ,P) - son premier membre a alors l a forme 
d'un determinant). On en voit que (sous nos suppositions de 
régular i té ) l e plan FÏ(P0) est l e plan A-osculateur donc 
q u ' i l est 2-tangent a T. 
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Sur l e s plans oscil lateurs aux sur faces 13 

Le même procédé peut être appliqué aux var ié té s (3.1) à 
deux dimensions, v é r i f i a n t l e s conditions (3.2) et (3 .3 ) . 

So i t h^ i 0 i h2. Posons x? = x i ( u ° , u | ) , P° = 

= ( ^ i K ' ^ j ) ' = ( x i ( u ° + ^ = ( X i ( u ° , u ° + h 2)) , 
P3 = ( x ^ u 0 + + h 2 ) ) . Désignons par n k ( P ° ; P 1 . P 2 , ! ^ ) l e 
plan ( s ' i l ex i s t e ) à k dimensions auquel appartiennent l e s 
points P ° , P \ P 2 , P ^ et l e s direct ions tangentes à au point 
P° , c ' e s t - à - d i r e l e s direct ions de combinaisons l i n é a i r e s des 
vecteurs ( 6 . 1 ) . En général un t e l plan n k ( P ° ; P ^ P 2 ^ ) 
n ' ex i s t e pas s i k < 5 , supposons donc que 5 < k < n . 

S i l a l imite 

n k ( p 0 ) = ,/, ^ l i m ^ n » n k ( p ° 5 p 1 ' p 2 » p 3 ) 

ex i s t e , a lor s nous al lons appeler l e plan de k dimensions 
n k ( P ° ) un plan B-osculateur. I l est a lor s déterminé univo-
quement. 

Supposons que ^ ( P 0 ) ex i s t e . Nous a l lons trouver ses 
équations. 

Supposons que l e s équations du plan n ^ i P 0 j P 2 , ! ^ ) soient 

¿ l a { s ) ( h ^ , h ? ) ( x . - x ° ) = 0, s = 1 , 2 , . . . , n - k i-l 1 , <; i x 

où l e s c o e f f i c i e n t s a ^ ^ i h ^ j h g ) doivent v é r i f i e r l e s condi-
t ions suivantes 

a i S ) ( h 1 ' h 2 } = n-k, (7.2) 
J s = 1 , 2 , . . . , n - k 

i = 1 , 2 , . . . , n 

n /„\ ôx, s = 1 , 2 , . . . , n - k 
E a ^ i h y V - ^ ( u ^ u ° ) = 0 (7.3) 

* À =1,2 . 

(car n ^ Î P 0 ; ? ^ , ! ^ , ? ^ ) doit contenir l e s direct ions tangentes 
appropriées) . Et enfin (vu l a supposition P^ê FI^P 0 ; ?^»P 2 , !^) 
pour i = 1 t 2 , 3 ) 
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14 K.Tatarkiewicz 

¿aj_s)(h1,h2)[xi(u° + h1,u^)-x°J = 0, s = 1,2,..., n-k, (7.4) 

£ a ^ 8 ^ ^ [ x ^ u ® , ! ^ +h 2)-x?] =0, s = 1,2,...,n-k, (7.5) 

¿a[s)(h1,h2)fxi(u° + h/]fu|+h2)-x?l= 0, s=1,2 n-k. 
i-1 

(7.6) 

En général les 5(n-k) equations (7.3),(7.4), (7.5) et 
(7.6) à n(n-k) inconnues a|s^(h^,h2) n'ont des solutions 
que si n>5» ce que nous avons supposé. 

En employant les formules de Taylor nous aurons 

x±(u +h 1 tu 2) - x? = 

ôx. „ h? ô2x, (1) 
= h1 âû^ + 1 T " ^ Z * 'i ^ ' 

(7.7) 

xi(u°,u^ + h2) - x? = 

ôx, „ n h 2 a2x. „ n (2) 
(7.8) 

d x 9 x 
x.(u° + h vu2 0

+h 2)-x° = (u°,u|) + h2 (u°,uf) + 

(7.9) 

+ 2 
? ? 2 d x. a x. 

h1 ^ » V + 2 h1 h2 cïïï^ + 

2 
+ h 2 ( u 1 ' u 2 ) 
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Sur les plans osculateurs aux surfaces 15 

S u b s t i t u o n s ces formules dans ( 7 . 4 ) , (7 .5) e t ( 7 . 6 ) . Vu 
( 7 . 3 ) , ap rès l e s a v o i r m u l t i p l i é pa r 2 , nous aurons 

? ¿U (s) ô 2 x . (1) 
h 1 I L a i ( u 1 + 0 i = ( 7 ' 1 0 ) 

(s) (2) 
a i ( h ^ h g ) — ^ ( u ° f u | + 0 i h 2 ) = 0, (7 .11) 

( s ) 
fa a i 

S o i t 

ô
2 x . a 2 x . 

h 1 ( u 1 ' u 2 ) + 2 h 1 h 2 d ^ f ï ^ S ' V + 
ôu" 

(7.12) 

2 d 2 x i 
+ bg ¿ - g - ( u 1 t u 2 ) 

o ( 5 ) 
uA=uM + 0 i hM 

= 0 . 

¿ a { S ) ( X i - = 0 
i = i 

(7.13) 

l ' é q u a t i o n de F I ^ P 0 ) . Ce p l a n é t a n t l a l i m i t e des p lans 
l l k ( P 0 ; P ' 1 , P 2 , P 5 ) pour 1 ^ — 0 , h 2 — 0 l e s c o e f f i c i e n t s 
doivent v é r i f i e r l e s c o n d i t i o n s qu 'on o b t i e n t en pas san t à l a 
l i m i t e avec h^ —>0, hg—-0 dans l e s équat ions ( 7 . 3 ) , ( 7 . 4 ) , 
(7 .5) e t ( 7 . 6 ) , donc dans ( 7 . 1 0 ) , (7 .11) e t ( 7 . 1 2 ) . 

De (7 .3) on o b t i e n t immédiatement 

n ( s ) a x . s = 1 f 2 , . . . , n - k 

< = ' * 1 ^ À =1,2 . 

2 2 
En d i v i s a n t (7 .10) e t (7 .11) par h^ e t bg r e s p e c t i v e -

ment e t en p a s s a n t à l a l i m i t e avec h v — 0 on o b t i e n t l e s 
c o n d i t i o n s 
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16 K.Tatarkiewicz 

n ( s ) d2x. s = 1 , 2 , . . . , n - k 
I > i — 2 1 (u° t u°) = 0 , (7 .15) 

La l imite doit e x i s t e r pour h^-—0, hg—-0, donc aussi 
pour h/| = hg—*-0. En posant h = h^ = h^ dans (7.12), divisant 
par pasant à l a l i m i t e avec h—»0 et enfin en exécutant 
l a substraction de (7 .15) pour > - 1 et pour A.= 2 , on obtient 

n ( s ) 
¿u ¿ L = s = 1 , 2 , . . . , n - k . (7 .16) 

1=1 1 d. 

Nous avons supposé que l e plan I~\(P°) ex i s te . I l s ' ensu i t 
que l a condition 

(s) 
Lai = n - f c (7 .17) 

s = 1 , 2 , . . . , n - k 
i = 1 , 2 , . . . , n 

- analogue à l a condition (7 .2 ) - s o i t v e r i f i é e . Remarquons 
qu'en général l e s c o e f f i c i e n t s ne sont déterminés uni-
voquement que s i k = 5. 

Nous avons démontré que l e plan B-osculateur a comme 
équation (7 .13) où l e s c o e f f i c i e n t s a j 8 ^ v é r i f i e n t les condi-
t ions ( 7 . 1 7 ) , (7.14-)» (7 .15) et ( 7 . 1 6 ) . S i k = 5 , alors ces 
équations sont équivalentes à (3.4-), donc l e plan B-osculateur 
est 2-tangent à ZI au point P° . 

Les r é s u l t a t s négati fs du n° 4 sont plus d i f f i c i l e s à 
retrouver aussi par c e t t e méthode. 

8 . D'AUTRES MÉTHODES GÉOMÉTRIQUES 

I l ex is te encore d'autres déf ini t ions "bien connues des 
plans osculateurs aux courbes |~c R^ (en principe e l l e s con-
duisent aux notions équivalentes pour des courbes F assez r é -
gu l iè res ) . Le lec teur voudra bien introduire d'une façon -
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Sur les plans oscillateurs aux surfaces 17 

plus ou moins semblable - d'autres notions que celles qui sont 
considérées dans les nos 6 et 7, les plans de k dimensions, 
osculateurs à une variété ZI (par exemple à l'aide des plans 
a k dimensions, passant par k+ 1 points de ZI convenable-
ment choisis). 

9. DEUX PROBLÈMES 

De même que pour les plans osculateurs aux courbes on peut 
essayer d'étudier les relations entre les notions introduites 
ici. On peut aussi étudier la façon dont ces notions dépandent 
de la paramétrisation de la variété ZI. 

Par exemple soit Z2 donné dans R^ par les équations pa-
ramétriques 

x 1 = u1f
 x 2 = u2* X3 = U1U2» x 4 = Vf*îT' » x6=VlU1U2l 

où (u/j,U2)c Rg. Le plan A-osculateur de 5 dimensions existe 
ici au point (0,0,0,0,0,0). C'est le plan • x^ = 0, Il est 
facile à voir, qu'il n'est pas 2-tangent à S dans le même 
point. On peut voir aussi, qu'après un changement de la para-
métrisation de ZI, , le plan A-osculateur peut ne pas exister 
ici. 

Pour formuler le second problème, rappelons,qu'on appelle 
point stationnaire d'une courbe un point dans lequel la droite 
tangente est 2-tangente. On montre (à l'aide des formules 
(2.5)) que si tous les points de la courbe (2.1) pour 
t 6 <t^,t2> où t/j < t2 sont des points stationnaires,alors 
pour ces mêmes te <t^,t2> la courbe (2.1) est un morceau 
de droite. 

De même on peut demander quelles sont les propriétés d'une 
variété ZI (par exemple de deux dimensions, donnée par les 
formules (3.1) et vérifiant la condition (3.2)),telle que pour 
tous ses points correspondant à (u^,u2)e D (où D est un 
domaine de R2) tous les Fl̂  (avec k = 2 ou 3 ou bien 4) 
tangent à 2L sont 2-tangent a ZI. Est-ce un morceau de plan? 
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18 K.Tatarkiewicz 

Ce problème peut être généralisé pour der plans TT̂  de k 
dimensions r-tangent aux surfaces à q dimensions où k<k(q,r) 
(voir n°5). 
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