
DEMONSTRATE MATHEMATICA 
V o l . I N o 3 1969 

Zbign ieu ) 2 e k a n o t u s k i 

ON CERTAIN GENERALIZATION OF THE CONCEPT OF A 
SELF-DUAL TENSOR, A HARMONIC TENSOR AND A 

KILLING TENSOR IN A V. 

PREFACE 

It is possible to prove that many properties of the p^vec-

tor fields as well as many geometrical, topological or diffe-

rential facts which can be described by these fields are not 

only characteristic feature of p-vectors but that they con-

stitute a common feature of a broader class of tensor fields. 

The author of this paper deals with a certain sector of 

this problem, namely with proving that many properties of 

dual and self-dual p-vector fields, many properties of the 

harmonic p-vector fields or Killing p-vector fields cover a 

brjoader class of the tensor fields. 

The solution of this problem reguired first of all the 

generalization into broader class of the tensor fields the 

concept of dual and self-dual.p-vector and bi-tensor fields, 

the concept of the harmonic p-vector fields and Killing p-vec-

tor fields and finally the examination of certain properties 

of special tensor fields, thus generalized respectively. 

Formally - in a sense - transferring of some concept of 

p-vector or bi-tensor fields into more generalized class of 

tensor' fields, enabled the author to obtain also a member of 

new results for the p-vector fields and bi-tensor fields. 

It has also occurred that at the harmonic tensor field, 

generalized in this manner (definition 1) it was possible to 
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2 Z.Zekanowski 

give non trivial examples on the existence of the generalized 
harmonic tensor fields in the Riemaimian space (expanded me-P 
trie tensor q. . and expanded curvature tensor p J--] • • • iptJ-j • • • jp 
Ji. . j . in the Einstein space i r . . i p 3 r . . 3 p * 2p 

Solution concerning the generalized self-dual p-vector 
and bi-tensor field also enabled the' author to introduoe 
the concept of a generalized Einstein space V2p and 
concept of generalized conformal Euclidean space Vgp as well 
as to gave a number of necessary and sufficient conditions 
that the 2p-dimensional Riemannian space V2p should be the 
generalized Einstein space or the generalized conformal - Eu-
clidean space. 

§1. INTRODUCTION 

Let V„ be an n-dimensional Riemannian space with non 
n i1 singular fundamental tensor g ^ and reciprocal to it Q 

Consider a p-vector f'1"'lp at a fixed point of the 
examines spaoe V . The soalar 

where (2) 

V y ' i - j p " p ! 9 h p V " 9 ^ ] 

is a square of the norm of the p-vector f' 1 - -'^ [13]» 
P 

The tensor 0. . . . - defined above will be called 

here inaffer the expanded metric tensor. 
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On certain generalisation.. 3 

If ||f||2-=+1 then the p-vector fll""lP is called a 
unit p-vector, if || f || = 0, the p-vector f 1 " ' p is called 
singular p-vector. 

Denote by £ ll'""'n and by £ . . the contravariant 
1 * ' ' n 

and covariant Riooi's symbols - respectively. Prom the dé-
finit on we have 

e l , ' l " = r df 
l1 'n 

+1 if i^...in is the even .permutation 
of the sequence of 1,2, ... n. 

-1 if i^...in is the odd permutation (2) 
of the sequence of 1,2 ... n, 

0 in the remaining cases. 

Prom the definition of determinant and (2) it follows 

„1 „ _ C
l1 ln Jf-in 0 _ 'l-'n * n! g - e e q. = ... q = e t. . 

= X £ 1 n t . : = n! X if... in 

Hence 

x = g = det(( g J 

and consequently we get 

6: : = qfe: ; (3) 
'l-'n J ll 'n 

As is known, the Ricci symbole ê'1'"''" and t li- • - ln satisfy the identities [l8j. 

E' '>'>•' ¡, : = p! ( n - p) ! cfjP4i « > ll lpJp+1 in r v r / Jp+1jn 
where is the generalized Kronecker symbol. 

J'1 • • -Jk 
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4 Z.Zekanowski 

From (3) and (4) it follows 

¡1-Vp+l-'n 1/ \ i j-'p*1'"ln 
e p p " £{ j. : - g p ' ( n ~ p ) - ; (5) ll-Vp+r-Jn 3 r x 7 Jp+1 -in 

Consider n-vector 3 t1' '-Ln defined, in a fixed coordi-
nate system (x1), by the equations 

i«-1- i I*» 
(6) 

j V ' n df 1 e
ll" ln 

* 
VIST 

where the asterisk denotes that equality taken place in a 
fixed coordinate system. 

Prom the definition of n-vector J1''""1" as well as from 
(5) it follows 

0 Oi i ; j = e p ! ( n - p ! ( f . p . (?) ll - lpJp*1"Jn r v r / Jp+1 In 

where 

€ £ 91 g | ~1 - sgng 

J[. .. i 

" the so-
called Ricci's n-vector [3], is a real n-vector and from {7) 
it follows that it is a unit n-vector. 

J
L t 

1'"'n makes it possible to establish 
a one correspondence between p-vectors and (n-p) vectors,taken 
at the same point of a V n, using the formula 

* f V l 'n if I t V i ln r't-'p 
1 p! \ f 
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On certain generalisation. 5 

Be means of the n-vector J1*'"'1" we can also establish a 
one to one correspondence between p-vectors and (n-p)-vectors, 
taken at the same point of the V n, using the following formu-
la [5]. 

o r V t - ' n df P 1 V l "ln f't 1P , . 
f - p r V i p f ( 8 ) 

where 9 - ( - 1 ) M n - p ) , if g > 0 and ? = i(-1 )* P ~ p) 

if g < 0 , i = yir. 
Indeed, applying the formula (8) to the (n-p) vector 

' we get [13]. 

°(°f)'1 'P = i'1 'ÍP (9) 

The (n-p')-vector °fLP+1'-'ln defined by the equations (8) 

is called the dual of fl,'''lP 
The one to one mapping T;jfj — - |°f | of the set of all p-

vectors f onto the set of all (n-p)-vectors °f determined 
by the formula (8) has, besides its elegance and simplicity, 
some defect. As it is easy to observe if g 0 and p(n-p)= 
= 2k+1 or if g < 0 and p(n-p) = 2k, the formula (8) esta-
blishes a one to one correspondence between real p-vectors 
and (n-p)-vectors, whose components are imaginare, and vice 
versa. 

When the dimensionof the space is even i.e. n = 2p it is 
possible to consider p-vectors which satisfy the relations 

- 'l-'r, ¿1 -¡n 
° f 1 p = e f p d o ) 

where Q is some scalar. It results from (9), that 0 = +1 
The p-vectors satisfing the relations (10) are called the 

salf-dual p-vectors [13]. 
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6 Z.Zekanowski 

In general the self-dual p-vectors are the p-vectors with 

complex components, however if g > 0 and p = 2k, or if', g < 0 

and p = 2k+1 there exists the real self-dual p-vectors. 

Let a. . . . be a tensor satisfing the identities 

V < p ] j i J p = v , C 1 1 ) 

as well as 

Qii V'l jp V V r 'p (12) 

The tensors of the form a. . . . which satisfy 
1 * *" p"1 * * *"p 

the relations (11) and (12) will be called bi-tensors [6], 

When, n 4 and 2 « p ^ n-2 the bi-tensor 

. . . 2 

o Vr" l»Vl"' J" df 9 n lp*1 ln lt lpJl Jp n V f Jn 
= ( W 0i< 'P a  3 ' r b 

i t a ( . l - l ^ ' " ' 1 , if g > 0 and ç = il-l)^'"""1 if 
g < 0 is called the dual of the bi-tensor a. J s Tnl 

1 * * * p 1 * * *"p L J 

Prom (13) it follows 

0 f 0
 l p J l - Jp l1 l p J l i p 

( a] = a (14) 

If n = 2P-1) the bi->tensors atl ' ' 'lp Jl ' ' 'Jp satisfing the 

identities 

° a ' W - 0 a " * (15) 

where 0 = +1 are called the self-dual bi-tensors. 

^^W.Wrona in the paper [13] gives more general definition of the 
self-dual bi-tensor but for bi-tensors of special constructions. 
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On certain generalisation. 7 

In the Riemannian space V n the covariant derivative of the 

field of the unit n-vector J 11' ' 'ln is, as is known, identi-

cally equal to zero i.e. 

Vj D1'""4" fx) = 0 (16) 
Hew, let us take- into consideration a field of self-dual 

p-vectors f. (x) and a field of the self-dual bl-ten-
V ' - S 1 

sors a. • J . (x) of class C -respectively. 
1 i , " V i " p 

The from (10), (15) and (16) there follow the identities 

°f: . = 8f s ; (17) 

v y j lf' P.J 

as well as 

o 
a. . . . = 0 a. . . . (is) 

V i V " H l
PJv 

where the covariant derivative is denoted by semicolon. 

Introduction of the concept of a dual bi tensor as well as 
the concept of a self-dual bi-tensor constituted a natural 
transfer of the concept of dualism and self-dualism of multi-
vectors on the bi-tensor. The identities (17) and (18) point 
to the possibility of transformation of those concept on a 
broader class of the tensors. 

Let us pay attention to the fact, that in the definitions 
of mappings Ts {f} —-(°f] and T 1: {a} — {°a} given by the 
formulas (8) and (13) intervened in essntial manner all indi-
ces of the mapped tensors (multivectors and bitensors). 

In the sections to follow we shall introduction a one to 
one mapping of the set of certain tensors onto the set of 
other tensors in such a way that not all the indices but only 
a fixed group of indices of the tensors will be used in the 
definition. 
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8 Z.Zekanowski 

To conclude our considerations of this section we shall 
quote some more fundamental concept of the Rimannian geometry, 
which.often shall be dealt with in the next sections of this 
paper. 

Let us denote the curvature tensor of the space V n by 
Rijke an<^ s c a l a r curvature of this space by 

n ( n - 1 ) 
where R . i s the Ricci - tensor. 

The tensor 

p | 

V y i JP M 2 R I V , [ i , i A v ( 1 9 ) 

is called the expanded curvature tensor of the V n, and the 
scalar [ 4 ] , [13]. 

I df 1 £ /l-'p rJfJ'p 

* = ~ W ¥ f V v r V f ( 2 0 ) 

is called the scalar curvature of non - singular p-vector 
f l1" ' "'p _ respectively. 

In a like maimer, let us denote the deviation tensor of 
the V n by [13] 

Uiiki - R i j k l
 + 

then the tensor 

P 
U: 

df J)! 
I1- 'p Jfip 2 u[v2Dii2 %>r 9ip]ip] 

C21) 
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On certain generalisation... 9 

is called the expanded deviation tensor of the Vn, and the 
scalar [13] 

p 1 ,, A - ' , ,h 1, 
w = 'WW u¡, v, f f (22) 

is called the deviation of non-singular p-vector respectively. 

§2. THE r/p - TENSOR IN A V n 

Let f. . , , (x) be an arbitrary tensor field in 
1 * *" p 1 * * * r" y i 

nnian ¡ 
relations 
the Riemannian space V n, where 2 < p 4 n, r > 1 satisfying 

f[,r..g,,...trM - f i r . i p V . . , r M C23) 

The tensor fields f. . , (x) satisfying the re-
1** p r* * r 

lations (23) will be called the r/p-tensor field. 
An example of such a field is the r-th covariant deri-

vative of the p-vector field f^ . (x), p > 2 i.e. the x ̂ .». x 
field ' r 

f, , .,. M 1" p ' lt > ••• > lr 

It is easy to note that an arbitrary linear combination 
of a r/p - tensor field is again a r/p - tensor field. 

On the other hand the r/p - tensor f. . n , , r i^ ... ipl-j • • «Ip has 

(£)nr - linearly independent components. Thus, a set of all 
the r/p - tensors at the fixed point of V n creates the^jn-
- dimensional linear space. 
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10 Z.Zekanowski 

T h e o r e m 1. The r/p tensor f. . , -, . . 
* • t p *J • • • 1™ 

dentically equal to zero if and only if for each r/p-tensor 

i r . . i l r . . l r there is the identity 
L... L L...L 

f ' " ' h, , , , = 0 (24) 

P r o o f . The necessity of the condition (24) is evi-
dent. To prove its sufficiency it is enough to show that if 
the assumption of the theorem is satisfied, then all the com-
ponents of the tensor f. . n are equal to zero.Let 

^ • • • p 1 • • * r 
us assume that the relations (24) are satisfied for each r/p-
tensor h. . , -i where f. . , , . „ . Q i^.. «ipl-j • • »l^t • • • 1pl-] • • «Ij, is^a certain 

r/p-tensor. 
Denote an arbitrary, but a fixed sequence of indices, by 

i.,.. .i„l„.. .1„ and consider the r/p-tensor defined as follows ol opor or r 

^ oP j 

all the other components of the tensor h., . , ,line-
o1• • • ¿p i1 ' ' • or ' P ' r 

arly independent of h are equal to zero. 
Thus we have 

if... ¡„I,... I. 
f. . . . h 4' o P , , ,r = 0 
i* ipir ¿r 

from which we obtain 

P. . . . = 0 
ii ipil ir 
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On certain generalisation. 11 

Due to arbitrariness of the choice of the sequence of in-
dices i,...iL..,l and corresponding to it choice of the 

ol opol or ° 
tensor h. . , , we conclude that 

1 * * * p 1" * r 

f. . . . = 0 
I," lpll lr 

which ends the proof. 
For an arbitrary r/p-tensor f. . there are 

1 * * p 1 * * * r 
the evident identities (from the definition of alternation 
operations) 

fr+1)f[ir..ipl]l2...lr = V V , . - l r " W - W l - l r ~ " + 

Multiplying the last identities by an arbitrary r/p-ten-
sor h. j i i and sumining for i-,.,1 1-...L, we get 1*** p 1*** r i p i r 
(using its asymetry to the sequence of indices ) 

i,... i.lil,... l_ 
f P h -

ni2...ipill2...lr ~ 
(25) 

_ jU...ipUl 2--l r _ p+1 [ir i p%..l r 

P T \ V U ' lr P 
Prom (25) and from theorem 1 it results that, if the r/p-

tensor fj . , -, satisfies the identities 
11' " V l ' * r 

V v U * lr = lr 

it is equal to zero. Particularly we have 

- 87 -



12 Z.Zekanowski 

C o r o l l a r y 1. The p-vector f i e l d f ; ; , p > 1, 
r 1 ' ' ' ' P of the class L is a covariant constant f i e l d , i f 

< U M i x ) = 0 

Let f: : | | be an arbitrary r/fc-tensor.The r/(n-p)-l1 • • •lp l1 • • •lr 
tensor 

° f M i . i ' 1 f 
V f V l ^ r p! J V f S , V V f lr U 6 ) 

where 9 = ( - l ) * p ( n ~ p ) , i f g>0 and where 9 = ( -1)* P ~ p)-i i f g < 0 
(i = V-f), is called a dual of the tensor f: ¡ 1 1 

P 
Prom (26) i t results immediately that 

Y ' f ) = f. • (27) 

Let us assume now that the r/p-tensor f ; ; 1 1 sa-
1 • • -lp l1- • -lr 

t i s f i e s the conditions 

g \ . . V i , . - ' r = 0 C 2 8 ) 

Prom (28) and (26) i t follows that 

'••i— i-H-... L 
3 p ' ' f = 0 j ij ¡ 1 1 1 u 

I r 

Multiplying the last identity by n-vector \ ^ k Çî  i 

and summing f o r the indices i2...ip we obtain by wirtue of (7) 
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On certain generalization. 13 

Thuse: from (28) there results (29). We shall now prove 

that from (29 there results (28). 

Indeed, the identity (28) is equivalent to the following 

identity 

c P ! ( n - p ) ! cr;- ^ f w . , i V , r - 0 

or by virtue of (7) to 

A . , - ; ' < » > 

Prom (30) and from (26) we get 

g' l jk k ! r lp fn i u i = 0 

Multiplying the last identity by n-vector J kP+1" '-?P 

and summing for kp+1...kn we get (29). 

In this manner we have showed that 

S \ = 0 4 " V - V J ^ r " 0 " 1 ) 

If f; : (x) is a p-vector field of the class C1 on the 

manifold V n, then the (p-l)-vector field [3] 

( P + 1 ) f [ i r V i ] M 

is called the rotation of the p-vector field f- • (x) »which 
1 • • p ' 

is written as 
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14 Z.Zekanowski 

and the (p-1)-vector field 

is called the divergency of the p-vector field f- ^ (x) 
which is written as P 

D I » V , i p W * s " f i i 2 . . v , M (33, 

A p-vector field f; [ (x) of the class C1 is called a i • • • p 
harmonic field [6], if its rotation and divergency are equal 
to zero. 

Putting r = 1 and f; ; i = f; ; i into (31),by virtue t • * p 1 • • • lpi 1 
of (32) and (33) we get. 

C o r o l l a r y 2. The rotation of the p-vector field 
f^ i (x) of the C1 class is identically equal to zero if 
and only if the divergency of dual (n-p)-vector field 
Or T: : is identically equal to zero. lp+1 • : • ln 

Hence, from the definition of the harmonic p-vector field 
there results: 

C o r o l l a r y 3. If a p-vector field f: ; (x) is 
i • p 

a harmonic p-vector field then the dual field to it is a har-
monic (n-p)-vector field too. 

Prom (26) it follows immediately that, if r/p-tensor 
f, ; i i is the product of the p-vector f; : and a iv . . ip . . .ir *

 li • • lp 
certain tensor d; ; i.e. if 1 • r 

lr = V-ip V-'r 
Or then the dual tensor T; ; i i takes the form Ip + 1 • • • ln I1 • • -lr 

07 
f == °f (1 
'lp+1-inLi-lT lp+1 " ln I1' Lr 
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On certain generalization. 15 

The p-vector field f : ; ( x ) of the class C 1 in a V 11 • • •1 p 11 

is called a recurrent field [11] if on the given manifold the-
re is a vector field V j ( x ) satisfying the identities 

fi ¿ ¡ M = fi i M V j ( x ) l 1 •• lp>J l i " l p J 

Prom the definition of the recurrent p-vector field and 
from the above it follows: It the p-vector field f ; ; ( x ) 
is a recurrent field then the dual field f ; ; ( x ) is Ip+1 • • • ln also a recurrent field. 

Let us assume now that the space examined by us is a 2p-
dimensional Riemannian space. 

The r/p-tensors f; ; i i of a V0_ will be called l1 • " p 1 • • r 2P 
self-dual r/p-tensor, if they satisfy the relations 

°f; i i l = 6 fi i i l 

where 0 is a scalar. 
Prom (27) it follows that if (34) occurs, then 8=±1 Ana-

logically, as in the case of p-vectors (15), the r/p-tensor 
f: ; i | satisfying the identities-(34) when 8 =+1 , is I1 • • • lp I1 • • •'•r 
called the self-dual r/p-tensor of the 1-st kind and when 8=-;1, 
the self-dual r/p-tensor of the 2-nd kind respectively. 

Similarly to §1 we conclude from (6), (26) and (34) that 
the self-dual r/p-tensors in general are the tensors with 
complex components. However, if and p = 2k ,or if CJ <0 and 
p=2k+1 , there are also self-dual r/p-tensors with real com-
ponents. 

We shall continue to deal with the examination of the pro-
perties of the real self-dual r/p-tensors only, and con-
sequently 'we assume that the dimension of the space under 
further examination is n = 4k , if g > 0 or n = 4k + 2 , if g < 0 . 
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16 Z.Zekanowski 

Prom the definition (34) and from (17) it follows that the 

r-th covatiant derivative of the self-dual p-vector field of 

class Cr is the self-dual r/p-tensor field. 
L e t .i M a n d fi., i (*) b e t he f i e l d s » o f class C1, 

of the self - dual p-vector of the 1-st kind and of the 2-nd 

kind respectively. Moveover, let us assume for example, that 

fi i fx) = 0 
2 1'" p1 t''"1 r 21'" p1 

and consider the field of p-vectors 

^ i 0 0 = fi i W + fi i M < » ' lt lp I'r-'p 2'r-lp 

The p-vector field (35) in general will not be a p-vector 

field of the self - dual p-vectors. Differentiating (315) r-

times and taking into account the assumption, we obtain: 

F; J . (X) = f j t . t (X) 
"1 1P/ 11' • •' r 1 'r-'p • I1' — lr 

Thus: The covariant derivative of the r-th order of the 

field of non self-dual p-vectors may be a field of self-dual 

r/p-tensors (upon meeting certain conditions). 

It is easy to note, like as in the case of p-vectors,that 
each r/p-tensor f; : . i in a V- may be expressed I1 • • • lp I1 • • • lr ^P 
in one to one form as a sum of two self-dual r/p-tensors of 

the 1-st kind and of the 2-nd kind according to the formula: 

V " i p l i - l r = H V V i-lr + fi1 ¿p1! lr) 

+ 1 ft _ \ _ (36) 
2 lTi1..ipi1...ir V V i - U ~ 

~ fir..iplr-lr
 + 
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On certain generalization. 17 

where f= ̂  (f + 0,f) = °f is the self-dual r/p-tensor of the 1-st 

kind, and is the self-dual r/p-tensor of the 

2-nd kind respectively. 
Prom the definition of self-dual r/p-tensor it follows 

immediately that an arbitrary combination of self-dual r/p-
-tensors of the 1-st kind (or the 2-nd king) is also selfdual 
r/p-tensors of the 1-st kind (or the 2-nd kind respectively). 

Prom the above and (36) as well as from the fact that a 
set of all r/p-tensors at a fixed point of a V n cre-
ates an (p)nr - dimensional linear space it follows that: 

I. A set all self-dual r/p-tensors of the 1-st kind (ana-
logically of, the 2-nd kind) at a point x £ creates 
j (2pp)(2p)r - dimensional linear space. 

II. A linear space of r/p-tensors is a direct sum of the 
linear sub-space of the self-dual r/p-tensors of the 1-st kind 
and of the 2-nd kind. 

Now, let f.- : i | be an arbitrary self-dual r/p-I1• • -lp L1 • • •lr 
tensor, i.e. 

f = A JL V I jp f 

V ip'f lr 0 p! J ii-- ip V i p ' l -<r ( 3 7 ) 

where 9 = ±1 ^ ^ 
Multiplying (37) by an arbitrary tensor d 1 r and 

summing for L̂ .. -1r we get the p-vector 

f = f '' Jr 
V - i p v y , 'r a 

which is, as it follows from (37), a self-dual p-vector. 
Thus we have 
C o r o l l a r y 4. Multiplying an arbitrary self-dual 

r/p-tensor of the 1-st kind (or 2-nd kind) f; ; i i by 
t
 li- • -lp H • • •lr 

an arbitrary tensor Q 1 ' r and summing for l.,...lr we obtain 
a self-dual p-vector F; : of the 1-st kind (2-nd kind re-ii.. .ip 
spectively). 
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18 Z.Zekanowski 

In the paper [15] i.a. there have been proved the following 
theorems. 

I. The p-vector f; ; is a self-dual p-vector of the tf.-ip 
1-st kind (of 2-nd kind) if and only if, for each self-dual 
p-vector -h^ j of 2-nd kind (of 1-st kind respectively) if 
p is even, and for each self-dual p-vector h; • of the 11. . . ip 
1-st kind (of the 2-nd kind respectively) if p is odd, there 
is the identity: 

f. , h j' - 0 
1" p 

II. The p-vector f; : is a self-dual p-vector of the l V l p 
1-st kind (or of the 2-nd kind) if and only if,for each self-
dual p-vector h; ¡ o f the 2-nd kind (of the 1-st kind res-H•• • 'p 
pectively) if p is even, and for each self-dual p-vector 
h- j.. of the 1-st kind (of the 2-nd kind respectively) if p 
is odd, there are the identities 

f ' ^ h , , j ] - o 

Prom corollary 4 and from the above theorems there follow: 
T h e o r e m 2. The r/p-tensor f: ¡1 1 is a sel-I1- • • lp m- • • lr 

dual r/p-tensor of the 1-st kind (of the 2-nd kind) if and 
only if, for each self-dual s/p-terisor ^ ¡^ . ,Lp I,... ls o f ^ ^ 

2-nd kind (of the 1-st kind respectively) if p is even, and 
for each self-dual s/p-tensor h: ; , , of the 1-st kind 

(of the 2-nd kind respectively) if p is odd, there are the 
identities 

'1 'P 
f, , 1 t h \ „ = 0 li 'p 1 " r Kr-K5 
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On certain generalization. 19 

P r o o f . Let us assume that f; ; . > is a self-ir . . ipiv. .ir 
dual r/p-tensor, e.g. of the 1-st kind and h: ; t i is 
a self-dual s/p-tensor of the 2-nd kind respectively and p= 
= 2k. 

Multiplying the r/p-tensor f-. : . i by an arbitrary ^ I1 • • • lp I1 • • • lr 
tensor 0 1 " r as well as the s/p-tensor h; : • i by an 
arbitrary tensor 0 and summing for L1...Lr and I., . . . I 
respectively, we get, by virtue of corollary 4-, the self-dual 
p-vectors 

f = f 'l lr 
Tir..ip V - V l - l r a - of the 1-st kind 

h. : = h: : , b " - of the 2-nd kind respectively I1 lp 'i-'p < ' s 

By virtue of the above quoted theorem I* from the paper 
[15]» the self-dual p-vectors f; • and h, ; satisfy 1• • •1p 1 • • • lp 
the identity 

M «.-«„Ji-j. 1.-L 
f, ¡ , 1 h ' a bj j = ° T-'pT- lr • j1- Js 

Since this identity (*) occurs for each pair of tensors d.ll"''r 

and and b Ll"'ls„, thus from (*) there follow the identities 

I ' p )' r 

Inversely, let us assume that the identities (**) are 
satisfied for each self-dual s/p-tensor h; ¡1 . for '•1 • • lp li • • • 
example of the 2-nd kind, if p=2k - where f; ; , 1 is 1 ' • p 1 * ' r a certain r/p-tensor. 
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From the i d e n t i t i e s (**) there follows 

(»**) I f - ' r JV-Jc 
f; m . « h ' ' b j j = 0 •r i p ' i ' r J f - J s 

where a ' 1 " ' ^ and. b t l " ' ' s are arbi trary tensors . 

Since f-. ; i | a1 ' " ' lr i s a p-vector, h ; ¡ 1 1 fc)ll"'ls 
l1 • • -lp l1 • • -lr l1 • • "lp l1- ••Ls 

i s a sel f -dual p/vector of the 2-nd kind. Hence, by virtue of 
the above theorem I we conclude from (* * *) that the p-

f
—

 r [ ( 

J i = tj I I 1 a 1 ' ' ' r i s a sel f -dual p-vec-

tor of the 1-s t kind, i . e . 
( * * * * ) 't 'r or ' i - ' r 

'i I I I fl = M i I I Q l f lp 1" r ' r -'p'l • lr 

The l a s t ident i t i e s are. s a t i s f i e d for each tansor a^1'"'''" 
by virtue of our assumption. Hence, from ( * * * * ) we obtain 

f = °f 
l 1 - l p l 1 lr - i p l 1 " lr 

which means that the r/p-tensor f ; .1 1 i s a s e l f -t1 . . . lpL-| . . . ir 

dual r/p-tensor of the 1-s t kind. 
The further part of the proof i s analogical . 

. T h e o r e m 3. The r/p-tensor f; ¡ 1 1 i s a 
i1. . .ipH .. .ir 

sel f -dual r/p-tensor of the 1-s t kind (of the 2-nd kind) i f 
and only i f for each sel f -dual s/p-tensor h; ¡ 1 > of 1 • * • p 1 • • * s 
the 2-nd kind (of the 1 -s t kind respect ively) i f p i s even, 
and for each sel f -dual s/p-tensor h; ; 1 1 of the 1-s t 
kind (of the 2-nd kind respect ively) i f p i s odd, there are 
the i d e n t i t i e s 1 

f \ . h i i k » = 0 l r • r 2 " p K1--KS 
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Note that the theorems 2 and 3 hold true also if r 
or s are equal to zero. It is obvious that in this canse 
the r/p or s/p-tensors are p-vectors. 

Now we shall prove 
T h e o r e m 4. The r/p-tensor f; ; i i is a i,. . . ip i, . . . ir 

self-dual r/p-tensor of the 1-st kind (of the 2-nd kind) if 
and only if for each self-dual r/p-tensor h; ; i ( of I1• • •'p m • • •Lr 
the'2-nd kind (of the 1-st kind respectively), if p is even, 
and for each self-dual r/p-tensor h; : i i of the 1-st 1* " p 1 * lr 
kind (of the 2-nd kind respectively, if p is odd there is 
the identity: 

L ... ¡„ I,... L 
f, M , h ' " ' = 0 I,... I l,...lr (38) 

P r o o- f. Let f: : . . be, for example, a self-l1 ' ' ' lp l1 • • r , dual r/p-tensor of the 1-st kind and rl: ; i i a self-'1 • ' • lp-L1 • • • lr 
dual r/p-tensor of the 2-nd kind respectively. 

Additionaly let us • assume that p = 2k then at the 
assumption that s = r, from theorem 2 there follows (38). 

Let us assume inversely that there is identity (38) for 
each self-dual tensor h; : i i of the 2-nd kind, where 1 • • • 'pM" r 
f: : i | is a certain r/p-tensor. 

Prom (38) and by virtue of (36) we have 

( f . , V , ' r M v V , ' P l ' 0 

and consequently by virtue of the first part of the theorem 
we get 

fi ¡i i h " 0 (39) 
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By v i r t u e of the f i r s t pa r t of the theorem we a l so have 

- 'f • 'p l r - lr 

2 V V 1 lr h = 0 M 

where h: ; 1 . i s a a r b i t r a r y s e l f - d u a l r / p - t e n s o r of l1 • • • lp M • • • Lr t h e 1 - s t k ind . Thus from (39) and (40) i t f o l l ows t h a t 

2'i • 'p't - ' r 

where h; ¡ 1 1 i s a b s o l u t e l y a r b i t r a r y r / p - t e n s o r . By 

v i r t u e of theorem 1 we ge t 

f i i - i p ' l lr = 0 

t h a t i s 

f = f 
V 'p l1- lr 1 i , - ¡p i , l r 

thus f; : 1 | i s t h e s e l f - d u a l r / p - t e n s o r of t h e 1 - s t l1 • • • lp I1' ' ' r 
k ind . In a l l the remaining cases the proof runs a n a l o g i c a l l y . 

I n paper [17] i t has been showed i . a . t h a t f o r each p a i r 
of s e l f - d u a l p - v e c t o r s f : : and h : ; of the same kind, 

i r . . i p ' r - ' p 
where p i s even and of d i f f e r e n t kind where p i s odd t h e r e 
a re t he i d e n t i t i e s 

r • i) 1 ' j fi'v lD , 
f h i i = r 9 f h i i U 1 ) 

2"' p Zp 3 l 1 - ' p 

Prom c o r o l l a r y 4- and i d e n t i t y (41) t h e r e fo l l ows t 
T h e o r e m 5. I f f; ¡1 1 and h : ; 1 1 

(1 • • • 1
PM • • - l

r
 I1- • -lp I1 • • • s 

a re r e s p e c t i v e l y the s e l f - d u a l r / p and s / p - t e n s o r s of t he same 
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kind when p i s even and of d i f f e r e n t k ind , when p i s odd, 
t h e r e a re the i d e n t i t i e s 

rlf-ipO , i) = 1 ' V 1 u 
f I, ' r V j p k V k S ? r ll l r n i , V l - k S 

Prom i d e n t i t y (25) and from theorems 2 and 4 t h e r e 
f o l l o w s : 

T h e o r e m 6. For each p a i r of s e l f - d u a l r / p - t e n -
f: i I I and h: ; I I of d i f f e r e n t k ind , i f '1 • ' •' p 1 • • r I1 • • • lpL1 • • • Lr 

p i s even, and of the same k ind , i f p i s o d d , r e s p e c t i v e l y , 
t he re a re the i d e n t i t i e s 

¡2 - V l2- lp , i 
T i n i 2 . . . i p j l2 . . . l r -

_ _ P + 1 i ' i - V ' j ] ^ - l r , 
" p * n [ i 2 - i p i j ] l 2 - l r 

Similarly from i d e n t i t y (25) and theorem 5 t h e r e f o l l o w s : 
T h e o r e m 7 . For each p a i r of s e l f - d u a l r / p - t enso r s 

f ; , i i and h; ; i i of the same k ind , i f l1 • • • lp l1- • • lr l r • - lp li- • -S-
p i s even and of d i f f e r e n t k ind , i f p i s odd r e s p e c t i v e l y , 

t h e r e a re the i d e n t i t i e s : 

i r . . i p i l 2 . . . l r j 
T ' n i 2 . . . i p j . l 2 . . l r ~ 

_ £ + 1 J V " V i ] l 2 " l5 . 
" p * n [ i 2 - . i p i j ] l 2 ...lf 

We s h a l l prove f o r example theorem 6 , t he proof of theorem 
7 runs s i m i l a r l y . 

Let us assume t h a t n = 2k and t h a t f ; ; i , and r '1 • • •lp I1 * - • Lr 
h; ; i i are the self^-dual r / p - v e c t o r s of the 1 - s t 
kind and of the 2-nd kind r e s p e c t i v e l y . 
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By v i r t u e of theorem 4 i d e n t i t y (25) i s reduced t o 

J r - V 1 1 ! - ' r . 
T n i 2 . . . i p i l l 2 . . . l r 

4 r • n . i ( 4 1 ) 
p+1 [«,•• 'p i ] » 2 - l r , 

" T n [ i i - i p l ] ' « - t r 

On the o the r hand from theorem 3, i f S = f f we have the 
r e l a t i o n s 

i ^ V i - ' r , 
n i 2 . . . i p . k r . . k r 

_ ¿ 2 . . . i p i l 1 . . l r j ( 4 2 ) 

f h i r . . i r k r . k r 

Multiplying (42) by g1'1 g'k l and summing f o r LjL1.. k v . .kr 

we get 

L . . . i p ¡ . l f . . . l r j 

T i n i 2 . . . « p j . I r . . l r " 

= " i , . . . i p j i l f - . . i p ( 4 3 ) 

1 V y j t 2 i r 

From (41) and (43) t h e r e fo l lows theorem 6. 

§3. The r / p x p - t e n s o r s i n a Vn 

Now, l e t us take i n t o c o s i d e r a t i o n any t e n s o r - f i e l d 

.ipj^ .j i1 . . .t (*) where and r > 1 , i n a Vn, 

s a t i s f y i n g the cond i t i ons 

dr- • T • . I = a • • • I I 

['l ' p ] J i Jp »1 l r ^ ' P J , J p
l , lr 
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as well as 

ai1...ipl|...lpJ1.-Jr = ai1...lpir..ipJ1-ir <«) 
The tensor-field a.- ; : ¡1 1 satisfying the i-I1- • -lp Jr • -Jp I1 • • -lr 

dentities (44) and (45) shall be called briefly the r/pxp-
tensor fields. 

The covariant derivative of the r-th order of the expan-
ded curvature tensor JL ; ; : in a V_ is an example li • • • lp Ji • • -Jp « 
of the r/pxp-tensor-fields. 

The r/pxp-tensor - fields constitute - as it may be noted 
easily a particular example of more general class of tensor-
fields, created by the s/p-tensor - fields a^ j ̂  ^ (x) 
where S = p + r. Por this reason .all the properties of the s/p-
tensor - fields, where S=p + r, examined in §2 are automatically 
the properties of the r/pxp-tensor, fields. 

Prom theorem 1 and the identity (25)» (if we Jiote that 
it is unimportant in (25) which of the indices la , where ot = 
= 1,2,...r are alternated with the group of indices L1. - -Lp), 
there follows. 

The r/pxp-tensor fl; ; ; • . 1 satisfying the i-l1-• 'pJi • • -Jp li • • -Lr 
dentities 

ai1-'pji-ipjni...ir = ai1-..ipjt...jpijil...ir 

is a tensor equal to zero. 
Hence, there follows: 
C o r o l l a r y 5. The covariant derivative of the 

bi-tensor field Q^ | j j (x) , of class C1, is equal to 
zero, if 1 p 1 • p 

V y > j p ^ 0 0 = ° 
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Prom corollary 5 it follows particulary thati 
The Riemannian space Vn is a symmetric space, in sens 
Cartan [ 7 ] if its curvature tensor satisfies the relations 

Rijk[l;m] = 0 

It is obvious that due to their specific construction;an-
ti-symmetry with regard to all indices of each group of in-
dices {iaj |jaJ (cf. (44)) and symmetry with regard to these 
whole groups of indices (cf. (45)) the r/t>xp-tensor-fields 
Q; : ; ; 1 1 possess more properties than the r/p-

1'' • lpJ1 • • •Jp 1• • •lr 
• tensor-fields which are of much more general character. 

Let us note, first of all, that the propersties (44) and 
(45) of the r/pxp-tensor-fields allow us, besides the .one to 
one mapping of the from (26) to determine, by the formula 

'a 3 i' i' a • W 

V r '.Vf in'l 'r (p!r V'"-'» V ' 1 » 't V l ipV 'r 

where (D = the second one to one mapping (analogi-
cally to (13)) of the set of all r/pxp-tensors onto the set 
of all r/(n-p)*(n-p) - tensors, taken at the same point of 
the Vn. 

It is easy to note that the above mapping, in contra-
distrinction to the mapping defined by (26),always establishes 
a one to one correspondence between the real r/pxp-tensors 
and the real r/(n-p)x(n-p)-tensors, independently of the in-
dex of the space, the dimension of the space and the valency 
of the r/pxp-tensor under mapping. 0 1) The tensor d: ; ; ; , , is called dual ; of lp+r • nJp+1 • • -Jn 1 • • r the tensor <3; : ; : 1 t • -lp J1 • • -Jp li • • -lr 

^ ̂  Since for the r/pxp-tensors it is possible to determine funda-
mentally two different dual tensors, one by formula (26) and the other 
by formula (46), they should be distinguished. The first of them, for 
example, should be called dual and the other bi-dual. 
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Prom 46 there follows immediately 

-'r = Qil -¿pil Jp'l-'r W 

It is easy to state that due to the analogy in the formu^ 
las (26) and (46) defining the dual tensors of the given ten-
sors we shall get, at least in part, analogical formulas, co-
rollaries and theorems. 

Really it is so,for example for the r/pxp-tensorB we prove 
analogical relations to relations {31) 

9 " v v , v » 2 > , = 0 v k < , = 0 C 4 8 ) 

In the same manner it follows imediately from the defini-
tion (46) that if the r/pxp-tensor Q: : ; ; ( ( is _ l1' ' • lpJl • • 'Jp l1 • ' '-r 
the product of . the bi-tensor 0: ; ; • and a certain 

„ ll --lpJl - Jp tensor Vi 1 , i.e. 

¿pi, jpll lr = Q,'l ipir ip V lr 
0 

then its dual tensor A; ; ; ; 1 1 takes the form Ip+1- • • ln Jp+1 • • -Jn M- • • r 

'q *Q V 
V i V p - M i n ' r lr V l ' n V l ^ n ll-lr 

In particular we get. 
C o r o l l a r y 6. If the bi-tensor Q; ; ;... lf • • -lp J1 • • - J p 

field is a recurrent field, the dual field of it is also a 
recurrent field. 

Let Q: : ; ; be an arbitrary recurrent field of ••-lpJi---Jp 
bi-tensors. By a simple calculation it is possible to state 
that the formula 
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L 1 rJ1'JP 
h ; : = rf a. : ; f 

11 lp p! ' 1 - V i i p 

etablishes a one correspondence between the recurrent fields 
of p-vectors f: : and the recurrent fields of p-vectors 
h. . p 

Let us assume now that the space examined further on is 
a 2p - dimensional Riemannian manifold. 

The r/pxp-tensors a.- : : : , , satifying the i-
dentities p p 

^ V V r J V i - ' r = 0 Q ' 1 ipiiip'i-lr U 9 ) 

where 8 = *1, are called the self-dual r/p * p-tensors -of the 

1-st kind, if 0=+1 and respectively of the 2-nd kind, if 8= 

= - 1 . 
It is easy to note that the covariant derivative of the r-

-th order of the field of self-dual bi-tensors is a field of 

self-dual r/p*p-tensors. 

It is also evident that analogically to the decomposition 

(36) each r/pxp-tensor d: : • ; > ( at the point l1 • • • lpJi- • -Jp l1 • • • lr 
XeV2p may be expressed in a uniqual form as the sum- of to 

self-dual r/pxp-tensors of the 1-st kind and of the 2-nd kind 

by the formula 

= a ; . . . . . + n . • . (50) 
1 ' l - V i —jp 'f" lr ¥ «t-«pJi-Jpli-lr 

where a=j(a+°a)=°a and a*\(a-°a) =-°a 

Let Ct- : ; : I i be an arbitrary self-dual r/p p-L1- • lpJr • -Jp'r • lr-
tensor. Multiplying the self-dual r/p*p-tensor 0: ; ; ; i i 

[ t
 I

PJ1- Jp
Li-  Lr 

by an arbitrary tensor V 1"' r and summing for lv..lr we al-
ways get, as it follows from (49), a self-dual bi-tensor. 

Hence, we have: 
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C o r o l l a r y 7. Multiplying an arbitrary self-

dual r/pxp-tensor a ; ¡1 . ; ; of the 1-st kind Cor L1 • • • lp Lr • Lp J1 • • -Jr • 
of the 2-nd kind) by an arbitrary-tensor V 1 r and summing 

for jf--jr we get a self-dual bi-tensor 

df V ' r 
a. • . . = a. • • • 1 , v 
»1--«pJi--Jp »1- lpJl -Jp't 'r 

of the 1-st kind (and of the 2-nd kind respectively). 

In particular from (50) and corollary 7 there follows 

immediately the respective formula [15] 

a- . • • = a. • • . + a. 
l 1 - V l - J p 1'i-'pJ,-Jr 2't 'p J1-ir (51) 

for the decomposition of an arbitrary bi-tensor fl; : ; ; 
m- • -lp J1 • • • Jp 

into the sum of two self-dual bi-tensors of the 1-st kind and 

of the 2-nd kind. 

Prom the definition of the r/pxp-tensors it follows that 

an arbitrary linear combination of these tensors gives a ten-

sor of the same type. The same may be said about the salf-

dual r/pxp-tensors of the 1-st kind (and of the 2-nd kind res-

pectively). Thus: A set of all the r/pxp-tensors at the point 

xeV^p creates an N-dimensional linear space. By virtue of (50) 

the N-dimensional linear space of the r/pxp-tensors may be de-

composed into the simple sum of j N-dimensional linear spece 

of self-dual r/pxp-tensors of the 1-st kind and of the 2-nd 

kind. 

The following theorem have also been proved in paper [15]: 

I. The bi-tensor Q; ; ; ; is a self-dual bi-tensor '1 • • -lpJi- • -Jp 
of the 1-st kind (or of the 2-nd kind), if and only if for 
each self-dual bi-tensor b; ; : ; of the 2-nd kind and I1- -'p Ji• • • Jp 
(of the 1-st kind respectively) there is 

a. • • b " i p i r J p = 0 
•1 l

P h - J p 
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and a n a l o g i c a l l y , i f 

a i 2 - i p [ i | J 2 - i p l [ J b ' J / ] = q 
i2 . . i p . j2 - jp-

I I . F o r e a c h p a i r of s e l f - d u a l b i t enso r s of t h e same k i n d 
Q; : : ; and b; ; • ; t h e r e a r e t h e i d e n t i t i e s l1 • • -lp Jv • -Jp- • • l

pJi- --Jp 

a v v , i P 0 b I g ^ a ' - V . ^ 

' i - ' p J i - J p - 2p y « i - 'pJ i -Jp 

Us ing t h e above t heo rems and c o r o l l a r y 7 we p rove t h e 
f o l l o w i n g t h e o r e m s : 

T h e o r e m 8 . The r / p x p - t e n s o r d ; ; ; ; . i 
M • • • lp Ji • • -Jp L1 • • • L

r 

i s a s e l f - d u a l s / p x p - t e n s o r of t h e 1 - s t k i n d ( o r of t h e 2 -nd 
k i n d ) , i f and o n l y i f f o r e ach s e l f - d u a l s / p x p - t e n s o r 
b; : ; ; I , of t h e 2 -nd k i n d (and of t h e 1 - s t k i n d H • • - lpJi- • -Jp I1 • • • i s 
r e s p e c t i v e l y ) t h e r e a r e t h e i d e n t i t i e s 

rt t p l f - J p 

V y ' l V r - l r k r -

and a n a l o g i c a l l y , i f 

i i - ' p D I i i - J p l U h
 k ] l J

 n 
a i r . . i r t 2 . . . i p . J 2 . . j p • k r . . k s

 u 

where t h e a l t e r n a t i o n c o n c e r n s i n d e p e n d e t l y t h e i n d i c e s " i " 
and "k" a s w e l l a s " j " and " 1 " . 

T h e o r e m 9 . F o r e a c h p a i r of se l£ -dua l r / p x p - t e n -
sorB a ; ; : ; i i and s / p x p - t e n s o r s b- ; ; .; j i l1 • • lpJl • • -Jpll-• Lr L1 • • • lpJl• • -Jp L1 • - LS 
of t h e same k i n d t h e r e a r e t h e i d e n t i t i e s : 
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' y ipV' jpO 0 

l}...lr ir..ipJ2...jp. k r..k s 

_ L / ' ' - V ' - V u 
2p y U ll" ' r V V'l Jp^- *<S 

Theorems 8 and 9 also hold true if. r=0 or s = 0. In this 

case the r/pxp-tensors become just the bi-tensors. 

It is easy to note that the r/pxp-tensors (3; ; ; ; . i l1 • • -lpJi- • -Jpl1- • • v 
may "be used to establish a oertain oorrespodenoe between p-

veotors and r/p-tensors. 

Indeed, the formula 

, 1 r Jt Jpl1 lr 
h i f = 77T" CI J i j I I | ' (520 ir..ip p. »1 •• p J1 - Jp 1 * 1 r 

establishes a certain correspondence betwen the r/p-tensors 

f: : | | and the p-vectors h ; ; . l1 • • lp l1 • • Lr I1 • • 'p 
Similarly, the formula 

1 't "• ' p 
fir..iplr. lr

 = p! Qi,- ¡pi, Jpll • 'r H « 3 ) 

establishes other correspondence between the p-vectors 

hi : and the r/p-tensors f; • , , . 
1 " P l1 ' ' lp l1- • r 

Assuming that g>0 and p = 2k or g <0 and p=2k + 1(i»e. that 
we refer only our consideration to real self-dual p-vectors 
and r/p-tensors) we shall prove: 

T h e o r e m 10. The r/pxp-tensor Q; : - - , , I1- • • lp Ji- - Jp L1 • • -Lr 
is the self-dual r/pxp-tensor of the 1-st kind (or of the 

2-nd kind), if and only if the formula (52) and analogically 

(53) establish a correspondence between self-dual r/p-tensors 
f.- ; | | and the self-dual p-bector h ; ; according 
1 • • • p 1 • • r l1- • lp ^ 

to the following tablet 
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T a b l e 1 

ai1...ipj1...jpl1...lr hi i H - - -lp 

p=2k 
1-st kind 1 (2) kind 1 (2) kind 

p=2k 
2-nd kind 1 (2) kind 2 (1) kind 

p-2k+1 
1-st kind 1 (2) kind 2 (1) kind 

p-2k+1 
2-nd kind 1 (2) kind 1 (2) kind 

Proof. Let us assume that Q; ; ; ; , i is a self-I1- • -lpJi- • -Jp'i- • • lr 
dual r/pxp-tensor, that is 

P <*pßl • ßp 

where 8 = ±1 and that f: ¡1 1 is a self-dual r/p-tensor, I1 • • • lpll- • -lr 
that is 

r = 5 - 2 - 1 
V - i P l t lr ö P' V v i - * p T lr 

where 0 = ±1, By virtue of the above from (52) it follows that 

h: ; = TT a-. -A J 
it-ipft — lr 

'p p! »p J-, Jp l1 1
 r 

~JL 
ir.ir r,~rp 

= 0 9 1. _ : : a lt. ,Cr fp, - ß p (p!)2 ip 
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" 9 §p! ° 1 V-¡p P' V«PP, Vr lrf 1 

= 0 °h . j 1 'p 
Where 8^8 0(̂ *1 . Thus, the p-vector , is the self-

dual p-vector, according to table (1j. 
Let us assume inversely that for each self-dual r/p-ten-

sor f; ; I I the p-vector h; •. defined by relations l1 • • • lp l1 • • • Lr l1' -lp 
(52) is a self-dual p-vector. 

Then, by virtue of the assumption, from (52) we have 

1 Jr lpli-lr_0£1"i-Mp 1 AVrY 
P- >1 'pil-Jp'r 'r " W Pi J Y-'p P1 V 

or equivalently 

JrVrA 

By virtue of theorem 4 it follows from (54) that 

f ± n _Bo1
uraP n \JrVr lr 

[ P? V , ipl, lr " ( W J ir ip «1 "pJi Jpli lpJ , " U 

1 _ _0O "r «p 
p! \ ¡pji Jplt Y M 1 J iv..ipa«1.«pj1...jpll...tr " 

= J l n M p n 8p \ 
° p! J ii~ip[P' y Ar 1PT Y V\«pfiï w Iy 
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or equivlently 

1 Q() a1 "ap 

p! V ipj,- jy,-lr " ( p f 0 ¡i - i p
a V « p j i -ip'i -'r

 = 

( 5 5 ) 
= A A l ° n A / " " ' ' t~i 

0 0 p! aii-'pj,-Jp«i--l.r (p!)2 J ir.jp
ai1.ippi. .ppl1...lr 

Finally, from (55) it follows (it is sufficient to consi-

der seperate cases, for exampletf-is the self-dual r/p-tensor 

of the 1-st kind and h-is a self-dual p-vector of the 1-st 

kind and p=2k and so on) 

Qii-ipj,...jplr-lr
 = ~"°ait...ipiV-jplf lr 

i.e. that the r/pxp-tensor 0; : ; : i i is the self-I1 • • -lpJr • -Jp
l1- • • r 

dual r/p*p-tensor of the kind defined in table (1). 

The remaining part of the proof runs analogically. 

Prom theorems 10, 2, 3 and 4 and from theorems I and II 

cited in §2, there immediately follows: 

C o r o l l a r y 8. Each of the following identities 

J l lp , J l Jp r\ 
i j j I I

 f h = 0 (56) 
lr•• p'i"Jpf" r 

i.... i. 
f ' Q; 

1 tpJ2 Jp 'l • lr l«... h ^ ' = 0 (57) 

f U h H U = 0 

'irpJi Jpli V 

(58) 
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|.it-'p'l-lr i, ^ ( 5 9 ) 
u
ll...ipj1...Jpm1...mr 

¡pi, ir c ^ o ( 6 0 ) 

i,-ipJ2-Jp-m, ...mr 

*2 - 1 p • Jf Jp*1 •1 r 

(independently one of the other),if is satisfied by an arbit-
rary pair of self-dual: p-vectors f; ; and h; : r/p-I1 • • • 'p 1 • " p * 
tensors f; ; , , and h; ; , i or the p-vector f( ; 'i • • -lpli- • lr I1 • • • p i • • lr 1 " p 
and the r/p-tensor h; : i i according to the following I1- • -lpl1- • lr 
table 2 

T a b l e 2 

ûi,-ipj,-jpli-lr hL i V-ipl^r 'V-Vv-lr 

p =2k 
I-st kind I (II) I (II) I (II) I (II) 

p =2k 
Il-nd kind II (I) I (II) II (I) (II) 

p = 2k+1 
I-st kind I (II) I (II) I (II) I (II) 

p = 2k+1 
Il-nd kind II (I) I (II) II (I) I (II) 

expresses the necessary and sufficient condition that the 
r/pxp-tensor d: : , , •. • be the self-dual r/pxp-taa-

'1 • • • lp M • • • Lp J1 • • • Jr 
sor of the kind defined by the table above. 
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§4. The r/p harmonic and Killing tensors in a V n 

In §2 we have taken into consideration a certain class of 
tensor-fields which we have named the r/p-tensor - fields. 

The r/p-tensor-fields - in a sense - may be regarded as a 
certain kind of generalized p-vector fields. 

By analogy from p-vector fields, for the "generalized" p-
vector fields we have introduced the concept of a dual field 
to the given field and the concept of a self-dual field, and 
the remaining part of §2 has been devoted to examinations of 
certain properties of these fields. 

In §3 we were dealing with a certain sub-class of r/p-
tensor-fields, called the r/pxp-tensor-fields. 

In this paragraph we return to the general class of r/p-
tensor-fields to apply to them the concept of the harmonic p-
vectors and Killing p-vectors, taken from p-vector-fields. 

However, here again we shall begin our considerations from 
citing the fundamental concepts and facts from the theory of 
the harmonic and Killing p-vector - fields [6], 

In this connection let us assume that the spacej under exa-
mination is an n-dimensional compact Riemannian manifold of 
class C with a positive definite metric ds2= g ^ d x W . 

Moreover, we assume that all the tensor-field! examined on 
2 

the given manifold of this section are of class C . 
Let f^ ;(x) be an arbitrary tensor-field of class C on 

the examined manifold. 
The Laplacian of the scalar-function 

W X ) - f; j f'1 IP 

is given by the formula 

A 4 ( x ) - 2 ^f'' f j ^ . j + f 9 i l \ . .i>;j;k) 
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Prom the assumption concerning the metric of Vn it 
follows that the form 

r l i " l P ; j
 r GJ = f f. . 

is a positive definite form of f; ; .; li • • • lp> J 
Therefore, if the tensor-field f: : (x) satisfies the I1• • • lp deferential equations of the form 

jk r T rj1--ip 
9 4 i i k = 'i i i i f ( 6 2 ) 
J »I---• p,j, K 'r p'i- ip 

where T; : : ; is a certain tensor-field and if the li- •• lpJr • -Jp 
quadratic form 

T = Tj • j , f'* '' i'' '' > 0 (63) 
'l •lpJ1 JP 

then 

> 0 

and by virtue of Bochner's Lemma 1 [2] we have 

A 4 = 0 

Consequently we get 

as well as 

f v V i - 0 

T. , . f'' f'' "'» = 0 •r - 'p Jr ip 
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If the form T is the positive definite form, then from 
the equation T = 0 we conclude that 

f: : = 0 
'1 lp 

Thus we obtain 6. 
T h e o r e m I. If, in compact V n with positive 

definite metric d52= q:: dxl dxJ the tensor-field f; ; (x) TIJ li - • • lpv 
satisfies the relations (62) and (64) then it also satisfies 
the identities 

f, i .j(x) - 0 •r -'o >J 
(65) 

and 

T. • • . f'1",p f , r" i p = 0 
V - v i jp 

If the quadratic form ( 6 3 ) is a positive definite form, 
then from (66) it follows that 

f; i ( X ) « 0 1 *** 'p 

Let us take into consideration an arbitrary r/p-tensor -
Ld 

tions 

2 
field of class C , i.e. the tensor field satisfying the rela-

The anti-symetric part of the second covariant derivative 
of a r/p-tensor field is given by the formula 
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f . • - f 
l i - ' p l i - l r ; j ; k < r <p ii ' r ; k; j 

a a 
= - f R - f R - • • • 

ai2 . . . ipl 1 . . . i r " i ^ k ' ¡ 1 a i 3 . . . i p l 1 ...lr " i 2 j k 

a a 

~ ¡ p - l * 1 ! 'r R ipjk V ' V f - ' r - t « R I p i " 

According to the above, we have the i d e n t i t i e s 

1» j p ^ 
j'2 'pi, l r ; ' , ; k j i 2 . . . i p l 1 . . . i r ; k ; i 1 + i 1 j i i . . . ipl , . . . i r ; i 4 ;k 

i , j i 2 . . . i p l 1 . . . l r ; k ; i i + « t - ' p - t i ' i »r; ¿pik + 

a a 
- f - _ f n _ r D + 

i 1 . . . i p . 1 j l 1 . . . l r ; k ; i p ai2 ..¡„1,...lr jitk iai3 ip l t lr i^V 

a a 

^J'i • ' p - 1 ' l 'r R V ' l k " V v ' l - ' r R W " t 6 7 ) 

a a 
- f p _ f d _ 

j ' z - ' p ' l I r - I a l r i l k a i ' 3 " V l " 'r ' " M 

a a 
... _ f p f D + 

'lJ'3 ' p ' l - ' r - l " ' r i 2 k a ' i ' p - l j ' r 'r 

a 
f p 
' i r . . i p - t J ' * t - » r - 1 a l r i p k 

Adding to and s u b t r a c t i n g from the l e f t s ide of (67) the 

express ion f: ; i i • i • k next m u l t i p l y i n g both s i -
1'* p i ' ' f J I * 

ik 
des of (67) by the tensor g and summing f o r jk as w e l l as 
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3 
[bed]" 

a 
t a k i n g i n t o account the i d e n t i t y j{ rbcdi=0 we ge t ( c f . paper 
[12]) 

9 V i p ' r . ' r i J ' . k ( f i t tpl t . Ir; J ~ f j i 2 . . . i p l 1 . . . ! r ; i 1 

V i J i , • ' r i « ' p ) ; k ~ ^ V - i p l f - l r i k ; ! , ~ * V j - i p l , . l r ; k ; i 2 

• • • - f k R° f 

¿2 ' p - t ' i ' l ' r ^ i ' p / é î ¡s V ^ W . . ¿ p l r . . l r C6S) 

P R a b ^ 

s<t 
P r a h 

- V T d bf 
fe ' s ' t ' s - i a W ' p ' r ' t - l b W - 'r 

I t f o l l ows from (68) t h a t i f the r / p - t e n s o r f i e l d 
f. : , I (x) s a t i s f i e s the r e l a t i o n s 

H • • • lp li • • lr 

9 ( ^ . . . ¡p l , . . l r ; j " ^ ¡ 2 . . . i p l r . . l r ; i 1 V v j j l r V . O i J ' + 

(69 ) 

~(fk - f k - f k V o 
V ' r - ' p 1 , l

r ; k ; i t ' ¡,¿3 ipli f r i r . i p _ t i 1 l t . . . l r ; k ; i p / 

i t a l s o s a t i s f i e s the r e l a t i o n s 

•s+l- -'p'l • ' r 

j k f = R a f 

A ab 
> R f + (70) 
fa V t 'i ' s - i a , s + i » t - i ^ M - ' p ( i - 'r 
$<t 

R V t V w , a i s + 1 . . . i p l f . . . l t . 1 b l t + 1 . , . l r 
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and consequently the relations 

/ ¡ i V ^ r r . n R A V f 'r f i 

P(P~1) n ¡ ¡ i j - i p l f - l r M 
p ijkl f i 3 . . i p i r l r (71) 

r k U2...i | t J H f l l H , . . . I j 

• p £ R 01, f f i 

Introducing the denotation 

F ( V v , - ' r ) " M ' M 'Vf 
+ 

S 'p'l 'r 

n-1 ¡i i . ¡ J , L kl 
V R.-.l, f 3 P 1 r f : ; , , + 2 »jkl 1 ' i , . . .«p l r . . l r (72) 

- V P k f ^ p ' t l t - i a , tM 'r J 

U ai> V ' - lt-t 

we can give a more compact form to (71 ) f namely 

i* ¡,. . 

9 f ' i I...i,l1...t r;jik ' P F ( V V , . . . 0 (T3) 

Prom theorem I of this section and from the above consi-
derations there fol lows: 

T h e o r e m 11. I f in an n-dimensional compact fiie>-
mannian space with a positive def inite metric the r/p-tensor 
f i e l d f; ; I I (x) sa t i s f i es the identi t ies (69) and i f l1 • • • lpM • • -Lr 

F ( U > , . . . . , ) > 0 
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then 

V . 1 . . V , - ' , W - ° (74) 

and consequently 

(75) 

I f the form i i1 i ) is a positive definite form, 

then from (75) i t follows immediately that 

f i i . M = 0 <1 - 1 p 11 lr 

Now, adding to and subtracting from the l e f t side of (67) 
the expression pf ; ; . i . : . i, and next multiplying both 

i li • •• 1D 1 • • r ' ' ' 
ik 

sides of this identity by g , summing for jk and taking into 
account the identity R[bccl] = ® w e Set 

jkf jkf f f 
P9 ti1...«pl1...lr;j;k + 9 [P iy ipl, l r ; j + J'ij ipl, i r; i| + 

= V R f l f . . • . , + (76) 

JL, ab 

+ £ R V . V i , 
s<t 

p r a b 

" £ £ R V t V - V i 

lais*1 ' l - i ^ t H ' p V l r + 

a i H - V r l H b l t M - l r 

Prom (76) i t follows that i f the r/p-tensor f i e l d 

P 1 
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jk / x 
9 (Pflt...ipl1...lr;j +fji|...ipl|...lr;«1 + ' * V ' p ^ V ' r ^ p K 

(77) 

- i f " - - f k • ) = 0 V lf —Ir; It; If ¡2- «p-ti1l, »r;k;'p/ 

then it also satisfies the relations 

• l l + 
M ' V l - ' r 9 V V i 'r'j;k + P Pi ^ 't j 5 - l a i 

- 1 ^ n a b
 f 

P J-̂ M V t V V l f l W 4 - 1 b i t * 1 «p'l l r 

P V't V i i - f f l W - V t - " l s - f . b W " l r 

and consequently it satisfies the relations 

jk «1.ipJ1..lr , . 
9 r Tif...iplt...lr;i;k ' ^ I V V i W 

where F ^ i i1. . i ) i s t h e f o r m defined by (72). 
Thus from tîie above considerations and from theorem I of 

this section there followst 
T h e o r e m 12. If in a compact V n with a positive 

definite metric the r/p-tensor field ; . < fx) sa-ir. . ip^ . . .ir / 
tisfies the identities (77) and if 

then f. . / « V _ Q (78) 
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and consequently F i f • • i . ) — 0 
V 'i 'p ' r lr / (79) 

If the form F ( f ; , , ^ i s a negative d e f i n i t e form, 

then from (79) i t fol lows tha t 

f , M , M - 0 «1 «p «1 «r 

Now we introduce the d e f i n i t i o n s 
D e f i n i t i o n 1. The r / p - t e n s o r f i e l d f-. ; . i (x) 1' * p i ' * r 

i s ca l l ed a harmonic r / p - t e n s o r f i e l d , i f 

V m , ] ' , V ' I - V h ' . ~ ' r 
(80) 

as well as jlc 

D e f i n i t i o n 2 . The r / p - t e n s o r f i e l d 
i s ca l l ed the Ki l l ing r / p - t e n s o r f i e l d , i f 

(82) 

For the Ki l l ing r / p - t e n s o r f i e l d s i t fol lows from (82) 
t h a t 

jk 
9 v i f k v V i ' r W = 0 ( 8 3 ) 

I t i s easy to note tha t the harmonic r / p - t e n s o r f i e l d s 
s a t i s f y the r e l a t i o n s (69), and consequently from therem 11 
there fol lows the 

C o r o l l a r y 9. I f in a compact n-dimensional Rie-^ 
mannian space with a pos i t ive d e f i n i t e met r i c , the harmonic 
f i e l d of the r / p - t e n s o r s f: ; i i (x) s a t i s f i e s the i ne -l1 • • •lp M • • • r 
q u a l i t i e s 
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F ( V v , J < 0 
P 

then this field is a covariant constant field, that is 

fi i i i -.•(*» = 0 'l • 'p li lr > i 

and consequently 

F(Vv.O = 0 

If the quadratic form F(f . , , ) is a positive de-\ I1- • • lpI1 • • -lr ' 
finite form, then - as it follows from (84) - there do not 
exist the,harmonic r/p-tensor fields different from zero. 

Similary, the Killing r/p-tensor fields satisfy the iden-
tities (77), from theorem 12 there follows: 

C o r o l l a r y 10. If a compact n-dimensional 
Riemannian space with a positive definite metric the Killing 
r/p-tensor field f; ; , , (x) satisfies the identities: l1 • • 'lpl1 • • -lr 

F ( V v . ~ 0 < 0 

then this field is a covariant constant field, i.e. 

U , i I • j fx) - 0 T-'p lr lr' I 

and conseqeently 

F ft..,, ,„.,,) - 0 (85) 

If, however, the quadratic form ^(f^ j t L ) is a 
negative definite form, then - as it follows from (85) there 
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do not exist the Ki l l ing r/p-tensor f i e lds other than equal 
to zero. 

In section 2 we have stated that the f i e l d of a covariant 
derivative of the r- th order of the p-vector f i e l d f ; : (x), I1 • • • V " 
i . e . 

i s a particular case of the r/p-tensor f i e l d . 
I t i s easy to note that i f we restricted our considera-

tions of this section to the particular case of r/p-tensor 
f i e l d s of the form (86), a part of our considerations and re -
sults would be the same as the corresponding considerations 
and results of R.Srivastava published in paper [12]. 

There may be noted something more, namely that i f in 
nearly a l l places of paper [12] we substitute the tensor 
f ; ; . i . i by a more general r/p-tensor f: • i 

1 •' • p' i' * * * i r I1 • • -lp H • • • lr 
respectively, we shall get similar results. 

This enable us (while refraining "from the proof which 
would be analogical to the corresponding proof of paper [12]) 
to formulate the following two theorems which constitute a 
natural generalization of the corresponding theorems of pa-
per [12]: 

T h e o r e m 13. In a compact orientable n-dimensional 
Riemannian manifold with a positive def inite .metric, the r/p-
tensor f i e l d f; : i | ia a harmonic f i e l d of the r/p-

I1 • • ap L1 • • -lr 
tensors, i f and only i f i t sat is f ies the identi t ies 

jk a , a 

Jn ab 
+ V R • • f- • • • , . + 

m V t 't <s-ta W ' t - l ^ f r - ' p ' r 'r 
s<t 

-ffR V 
U U V t ' r ls- i a '$+1 'p ' r ' t- i b It+1 lr 

+ 
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T h e o r e m 14. In ,a compact orientable n-dimensional 
Riemannian manifold with a positive definite metric, the r/p-
tensor fiëld f; ¡1 1 is the Killing r/p-tensor field, 1 • • -lpL1- • -lr 
if and only if it satisfies the identities 

jk ^ Û 
P 9 Vip'i lr'i;k + h R ¡5 V ¡s^W " ^ 'r + 

+ f R°b f 

+ Vt ^ '5-1° W " 't-f^+l • 'p'l 'r + 

- f y R a bf n 
's't V ls-1 a is +f «P lt-1blt+l lr 

and the identities 

.k 

-P 
f i ii i = 0 l2... I I,... lr , K 

Let Vn continue to be a compact orientable Riemannian 
manifold with a positive definite metric and f- • 1 1 (x) 1 • • p 1" ' r 
an arbitrary field of r/p-tensors f: ¡1 1 in the given l1 • • -lp I1 • • •lr 
manifold. 

Like in the case of the p-vector fields, we define the 
inner global product of the r/p-tenso.r fields by the formula 

( f ; M - / f „ . . , , v ' ' r d v 
u i p 1 r n 

where s 

dv = V g d x 1 - d x " > 0 ; g = det ((g;j)) 
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Since from the assumption the metric is positive definite, 
we always hawe (f,f)>0, where (f,f) = 0 if f = 0 . 

To simplify the further calculations we shall establish 
new symbols 

and 

r ^ v - >, f i V v - ' r 

(87) 

(88) 

New, if (p.- :i | ( x ) is a harmonic field of the r/p-1 I1 • •• lpM • •Lr 
tensors, in accordance with the definition 1 as well as with 
the above denotations, we have 

cp = 0 cp = 0 
R 0 

Let f. . . . (x) and h.. . . , ( x ) continue to 

be arbitrary r/p and r/(p+1) tensor fields respectively. 
Let us consider the vector field 

J df f .¡¡I ' p W r 
u - tL i , , n 

On the basis of Green s theorem [2] we get 
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Prom (89) as well as from (87) and (88) it follows 

( [ ; H W f 1 ) ( f ; j | ) - 0 (90, 

If (fl) -.i | is a harmonic field of the r/p-tensors, 
1 • * lpl1 • • • r 

then ip=0 and = 0 

D « 

Let us assume now that the r/p-tensor field satisfies the 

relations (91). Putting f = (p and h=(p into (90) we get 

( f ; 9 ) + ( p + i ) ( < p ; [ f l ) - 0 

D 

If we put f = tp and h = <p into (90) we get 

RJ/ (92) 

(M.<p) + P(<P; <p) = 0 (93) 
g 0 0 

Ftfom (91), (92) and (93) we get 

(<p;y) - (<p; f +<P) = (<p;f) + (<p;f) = 

0 8 0 R 
= (<p;<p)-p(<p;<p) = 0 

" R R D D 

from which there follows immediately 

((p ; <p) = 0 i. e. (p = 0 
R R 

and 

(cp;<p) = 0 i.e. cp = 0 
0 0 0 

In this manner we have proved» 
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T h e o r e m 15 (De Rahm's and Kodaire's [ 9 j ) . 
In a compact orierrtable Riemannian manifold Vn with a 

positive def inite metric, the r/p tensor f i e l d is a harmonic 
r/p-tensor f i e l d , i f and only i f i t sat is f ies the ident i t ies : 

f = f + f = 0 
* 8 § 

Let f ; ¡ 1 | (x) be a harmonic f i e l d of r/p-tensors, 

satisfying the identi t ies 

= P jp]ll lr (94) 

i . e . according to the denotations of (87) and (88) 

f = h 
R 

Prom the def init ion of the harmonic f i e l d of the r/p-ten-
sors as well as from the assumptions (94), (87) and (88) there 
follows 

f = ( h ) = 0 and f = ( h ) = 0 (95) 
R R ° 0 

Putting f - f i and h=h into (90) we get 

and by virtue of (95) we have 

h = f = 0 
R 

Thus we have proved that i f the harmonic f i e l d f; ; . , (x) M' • • 'p 1'' r 
of the r/p-tensors is linked by (94) with the f i e l d 
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h- ; | i (x) of the r/(p-1)-tensors, it is equal to 
'2' ' " p 1 " ' r 

zero. 
It is known from [7] that if a V n admits a one - para-

metre group of motions generated by an infinitesimal transfor-
mation 

x' = x' + v'(x) dt 

the Lie derivative of the metric tensor with respect to this 
motion disappears in V , i.e. ̂ gij=0and consequently the o-
perator of the covariant differentiation Vj , in this case is 
interchangeable with the operator i. of the Lie derivative. 

Let us assume now that there is a harmonic field of the 
r/p tensors f- ¡1 1 (x) in a V„. t •• lp 1' • • 7 

Then from the definition we have the identities 

and 

^Vki* -Vl {r(X) = 0 (97) 

By virtue of the 
assumption, that the Lie derivative of 

the metric tensor turns into zero and that the differen-
tiation operators Vj;<£ are interchangeable, from (96) and (97) 
there follows 

V W 'r
w = 0 

and 

9 * W , i i . M - 0 J 1 l2 '•• ln ••• lr p 
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Hence: If the Riemannian space V n admits infinitesimal 

motions generated by an infinitesimal transformation 'xl= 

= Xl+V ( x ) d t the Lie derivative J. with respect to V of the 

harmonic field of the r/p-tensors is also the harmonic field 

of the r/p-tensors. 

Prom the definition of the harmonic fields of the r/p-

tensors as well as from the definition of the dual-tensors 

with respect to the r/p tensors and from (31) it follows im-

mediately that: if the r/p-tensor field is a harmonic field 

of the r/p-tensors, its dual is also a harmonic field of the 

r/(n-p)-tensors. Further it follows that: The h; ; i i (x) l1- • -lpl1- • • r 
tensor - field in V2p is a harmonic field of the r/p-ten-

sors if and only if the self-dual tensor-fields in decompo-

sition (36) are harmonic fields of the r/p tensors. 

Let us also assume that the space under our consideration 

is a 2p-dimensional Riemannian space (p > 2). 

Consider the form F ( f; : i i ) as defined in the iden-\ i r . .ipi1.. 

tity (72), i.e. 

_ P l ! o r ^ B V t V 1 . 
P 1 ¡j ip',- lr < 9 8> 

J k iif ¡plt fciff lrfi 

K a i j f V i , l r . . l M k l t . t : . . l r 

Using the decomposition (36) we have 

k U l . . . i p l 1 . . . l M a l t H . . . l j 

(99) 

= R k ( f " 2 J M a W - ' r + ^l-r'Vl-• lH f l ,ft-»rj < 
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'(f ¡ , " V , - l t - 1 k W l r + * j2ipl1 ••'t-ikW^ 

= p k rl[2- V r » M ^ f l lr r J 
* aij J [ i1...i>l1...lt.1kl4,1...lr 

+ ? n k
 f

i j
2 'p'l 'i-^'t.r lrfJ 

aiil ] ir..yl...lt.fklt#1...lr 

k ii2- ipV 'M a lt +1- lr fi 
aij J ] ¡2...ipl1...iMklt+1...lr 

where f and f are aelf-dual r/p -tensors of the 1-st and 
1 2 

of the 2-nd kind respectively. 
Using the theorems 3 and 5 as well as identities R = 

R aij it is easy to show that 

k ¡¡2...ip!1...lt.1alt+1...ir j = n 

aij T r ¡,-lpi,-lt-falf1-'r 

Thus, we have 
C o r o l l a r y 10. The form F(f;i ...i i1 ,ir) ~ d e~ 

fined by the identity (72) - in a 2p-dimensional Riemannian 
space assumes the form: 

i ¡2... ip l|».lr j 
F ( V i , ' . - ' , ) " R i i f f i, y , 

(100) 
D-1 iji.-.i-L-L ik + 1 " , 

Now, using corollaries 9 and 10 as well as the theorem 
3.4. from [6] it is easy to prove: 
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C o r o l l a r y 11. In a compact 4p-dimensional 
Riemarmian space V^ with a positive definite metric there 
are no harmonic fields of p-vectors if and only if there do 
not exist harmonic fields of the r/p-tensors in this space. 

Let us take now into consideration an arbitrary harmonic 
field of the p/p-tensors Q: : : ; (x) which are bi-ten-1 • • pJl" • *Jp 
sor field at the same time. 

Thus from the assumption this field satisfies the identi-
tes 

as well as 

CI; i j ; (X) = a j j • • ; (x) 

>1 l
pJ, - Jp Jr Jp'r -'p 

as the bi-tensor field, and 

as well as 

U J k M = 
2"' 'p Jr-Jp/ K 

as a harmonic field of'the p/p -tensors. 
It is easy to note that having a given bi-tensor field 

d; : : : (x) it is possible to form a new bi-tensor field I1- • lpJl- • • Jp 
according to the formula 

ai2...ipl2...lp " 9 aii2..ipjj2...jp (101) 

We shall prove. 
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T h e o r e m 16. If a bi-tensor field 0: : ; ; (x) I1 • • • lpJr • -Jp 
is a harmonic field of the p/p bi-tensors, the field of the 
bi-tensors 5; ; ; ; (x) defined by formula (101) is also i2-• tpj2.. . jpv 
a harmonic field of bi-tensors. 

Proof. Let us assume that CI; : ; ; (x) is a harmonic li - - - lp J-i - - - Jp 

field of the r/p tensors, then 

ai1...ipl1...lp;k ai1...(pkl2...(p;l1" ~ai1.-.ipl1..lp.1k;ip" 0 ( 1 Q 2 ) 

as well as 
a ^ • , i k = 0 (103) 

2 " p 1" p ' K 
i1l1 

Multiplying the identities (102) by Q and summing for 
^ L1 and taking into account (101) and (103) we get 

ai2...ip[l2...lp;kj = 0 

Prom the properties of the bi-tensor fields and from (103) 
it follows that 

" k n 
Q i i I I k = 0 

Consequently a field of the bi-tensors Q; ; ; : is i2... ip j2.. .jp 
harmonic field of the p/p -tensors. 

We prove analogically 
T h e o r e m 17. A bi-tensor field a.- ; : : (x) I1• • •lp Ji • • -Jp satisfying the identities 

a[i1...ip|l1...g;k] 0 
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is a harmonic f i e l d of the p/p -tensors, i f and only i f the 
bi-tensor f i e l d 

* g " 
2 'p'2 lp V l , 2 - ' p J ' l - ' p Q i,... L L...L 9 a i i , . . . i » i i 2 - . j 

is a harmonic f i e l d of the (p-1)/(p-1)-tensors. 
Let the bi-tensor d ^ i be a harmonic f i e l d of 2/2 ten-

sors. Then we have 

a i j l c l ; a + a i j « k ; l + 0 ijlot; k = 0 

as well as 

a * j l d ; a = 0 (105) 

il ik 
Multiplying (104) by Q gJ and summing for ijkl and ta-

king into consideration (105) we get 

where 

df Jk 

a - a i j k l g g 

Thus we haves 
C o r o l a r y 11. I f the bi-tensor f i e l d Qjjki is a 

harmonic f i e l d of 2/2 tensors, then the scalar f i e l d 

Mdf J* , , 
= 9 9 a i j k i M 

is a constant f i e l d . 
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§5. APPLICATION AND FINAL CONCLUSIONS 

In his paper [13], W.Wrona has proved i.a. that the i-
dentities 

•Û, = 0 U f , . j (106) 
-'pJr Jp li 'ph- Jp 

where 0 = + 1 if p=2k or 0=-1 if p = 2k+1(or where 0=-1 if p = 2kor 
0 = + 1 if p=2k+1), express the nacessary and sufficient condi-
tions that the Riemanjnian space V2p should be the Einstein 
space (and conformai - Euclidean space respectively). 

Prom (106) it may be concluded [15] that the identities 

o p 9 

R , ; ; i = 6 R L i i i (107) 'i V i Jp *i- lpJi-Jp 

where 9 = + 1 if p = 2k or 0 = " 1 if p=2k + 1 , also satisfy the nece-
ssary and sufficient conditions that the Riemannian space V 2p 
should be the Einstein space. p 

The expanded curvature tensor R; ; ; and the ex-p li- •• lpJi •• • Jp 
panded deviation tensor U ; ; ; ; in the Einstein space I1 • • lpJi •• Jp 
V 2 p satisfy the identities 

as well as 

"«,..•!,[•,-y]" 0 < 1 0 ? ) 

Prom (48), (106), (107), (108) and (109) it follows that 
the expanded curvature tensor in the Einstein space V 2 p and 
the expanded deviation tensor, also satisfy the identities 
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p k 
R i, .i.L...L:k = 0 

2 " p 1 " p 

as well as 

P k 
U i i I I k = 0 ( 1 1 1 ) 

2 "' p 1 " p 1 

Prom definition 1 and the identities (108), (109), (110) 
and (111) there is 

C o r o l l a r y 12. A field of the expanded curvature 
tensor k: •. ; ; as well as a field of the expanded de-I1- • lpJi j,- "Jp 
viation tensor 0; •, ; ¡ i n the Einstein space V0„ are I1-•-lp Jv •-Jp * 2p 
harmonic fields of the p/p -tensors. 

Prom theorem 16 and corollary 12 we have 
C o r o l l a r y 13. The curvature tensor R [j|<i and 

the Ricci tensor Rjj in the Einstein space V2p are harmonic 
p/p-tensors. 

It does not follow from the fact that the curvature tensor 
of the Riemannian space V 2 p is a harmonic 2/2 tensor that 
it is also the Einstein space. 

It is easy to note that, if the curvature tensor R[j|<i in 
V^ satisfies the condition 

Rijkl = Rijkl + Tijkl ( 1 1 2 ) 

where Tjjkl.ot = 0 the V^ ceases to be the Einstein space (cf. 
(107)) however the curvature tensor R ^ continues be a har-
monic p/p-tensor. Thus, the Riemannian space V n whose cur-
vature tensor R ^ is a harmonic 2/2 tensor, is a more gene-
ral space than the Einstein space. 

Prom corollary 111' it follows 
C o r o l l a r y 14.The Riemannian space whose curvatu-

re tensor Rjjkl is a harmonic 2/2 tensor has a constant scalar 
curvature. 
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Prom (106) and (107) there follow immediately the identi-
ties: 

0 f t 

U: ; • = k - 0 U: - : : . k (113) 
'1 lp h~ >p »* M-'p n - ifi

 K 

as well as 

0 p P 
R i i i i • k = 6 R i I i j k ( 1 1 4 ) 

I1 'p Jt-Jp. * 'r-'p '1 • >pi 

from which by virtue of the definition of the r/pxp -tensors 
(cf.(49)) and from (106) and (107) we get 

C o r o l l a r y 15. The eovariant derivative of the 
expanded curvature tensor and the expanded deviation tensor 
in a 2p-dimensional Einstein space are the self-dual fields 
of r/pxp -tensors of the 1-st kind if p=2k.and of the 2-nd 
kind, if p=2k+1 

C o r o l l a r y 16. The eovariant derivative of the 
expanded field of a deviation tensor in a 2p-dimensional con-
formal - Eucliden space is a self-dual field of the r/p x p-
tensor of the 2-nd kind, if p=2k and of the 1-st kind,if p=2k+1 

It is also evident that from (106) and (107) there follow 
the identities (113) and (114) but in general (as a rule) 
there do not follow inverse conclusions (cf. (112)). Thus the 

p 

Riemannian space V«^ in which the curvature tensor R; : : 
2p H-•-lpJi-• Jp 

satièfies'the conditions (114) if 0=+1 and p=2k or if 6=-1 and 
p = 2 k + 1 is as a more general space than the Einstein space V2p. 

Similary, the Riemannian space V2p in which the expanded 
deviation tensor U: ; ; ; satisfies the identity (113) 

li • • -lpJi- • Jp 
if 0=-1 and p=2k of if 0=+1 and p=2k+1 is a more general space 
that the conformai - Euclidean space. 

Thus, let us assume the following definitions: 
D e f i n i t i o n 3.iThe Riemannian space V^p in which 

the curvature tensor R; ; : ; satisfies the identities li- • lpJi- • -Jp - 134 -
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'R: i t . . . i p j r . jp ; k 
= 8 R: 

'i-'pjt-jp; 

where 0=+1and p = 2k and where 0=-1 and p=2k+1 is called a gene-
ralized Einstein space V, 2p 

4. The Riemannian space V2p in 
which the expanded deviation tensor U; : ; : satisfies h • • lpJi- • • Jp 

D e f i n i t i o n , 
ih the expar 

the identities 

U 
», V i - i t 

= 0 U ; », ipi, jp;»< 

generalized where 0=-1 if p=2k or 0 = + 1 if p=2k+1 is called 
conformai - Euclidean space. 

To conclude, let us pay attention to the fact that all 
the theorems for self-dual r/pxp -tensors proved in section 3 
and applied to tensors ft: : : ( U; : : : ) 

'i • • • lpJi • • Jp \ H • • lp ¡1 • • Jp / 
enable us to state whether the given Riemannian 
a generalized Einstein space, or the conformai 
space, or wheter it is neither of the two. 

space V"2p i® 
Euclidean 
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0 PEWNYM UOGÖLNIENIU P0JÇCIA SAMO-DUALNEGO 

TENSORA, TENSORA HARMONICZNEGO I TENSORA 

KILLINGA V V n 

S t r e s z c z e n i e 

Niniejsza praca sklada si§ z piçciu paragraföw zwi^zanych ze sobq 

tematycznie. 

W § 1-szym autor przypomina znane pojçcia i fakty z geometrii rie-

mannowskiej. 
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tf § 2-gim i 3-cim autor uogolnia znane poj§cie dualnego i samo-du-
alnego multiwektora,oraz bi-tensora na szersz^ klas? pol tensorowych,a 
nastgpnie bada pewne wlasnosci tyoh pol. 

W § 4—ym autor uogolnia poj§cie pola harmonicznego p-wektorow i po-
la p-wektorow Killinga na klas§ pol tensorowych rozwaianych w §-faoh 
2-gim i 3-cim, podajqc rowniez szereg wlasnoScd tych pol tensorowych. 

W ostatnim paragrafie autor podaje prob^ stosowania wprowadzonyoh 
poj§6 do badania pewnych wlasnosci specjalnych przestrzeni Riemanna. 

Praca stanowi pewne uogolnienie rozwazan zawartych w pracach: J. 
H a a n t j e s i W. W r o n a [4], ¥. V r o n a [13], K. 
Y a n o i S. B o c h n e r [6], R.Ch. S r i v a s t a v a [12] 
oraz we wczesniejszych pracach autora [15] ; [l6]> ["17]. 

Received, July 13th, 1969. 

Adress of author: dr Zbigniew Zekanowski, Warszawa, ul. Marszalkowska 
140 m 86 

- 137 -


