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PREFACE

It is possible to prove that many properties of the pwec~
tor fields as well as many geometrical, topological or diffe-
rential facts which can be described by these fields are not

. only characteristic feature of p-vectors but that they con-
stitute & common feature of a broader class of tensor fields.

The author of this paper deals with a certain sector of
this problem, namely with proving that many properties of
dual and self-dual p-vector fields, many properties of the
harmonic p-vector fields or Killing p-vector fields cover a
broader class of the tensor fields,

The solution of this problem reguired first of all the
generalization into broader class of the tensor fields the
concept of dusl and self-dual .p-vector and bi-tensor fields,
the concept of the harmonic p~vector fields and Killing p-vec-
tor fields and finally the examination of certain properties
of special tensor fields, thus generalized respectively.

Formally =.in a sense ~ transferring of some concept of
p-vector or bi~tensor fields into more generalized class of
tensor fields, enabled the author to obtain also a member of
new results for the p-vector fields and bi-tensor fields.

It has also occurred that at the harmonic +tensor field,
generalized in this manner (definition 1) it was possible to
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> Z.Zekanowski

give non trivial examples on the existence of the generalized
harmonic tensor fields in the Riemannian space (expanded me~-

p
tric tensor and expanded curvature tensor

; gi1.:.ipj1...jp .
Ri1...ipj1...jp in the Einstein space v2p)°

Solution concerning the generalized self-dual p-vector
and bi-tensor field also enabled +the author to introduce
the c¢oncept of a generalized ZEinstein space V2p and
concept of generalized conformal Euclidean space V2 ag well
as to gave a number of necessary and sufficient conditions
that the 2p-dimensional Riemannian space V2p should be the
generalized Einstein space or the generalized conformsl - Eu-

clidean space.

§1., INTRODUCTION

Let V be an n-dimensional Riemannian space with non
gingular fundamental tensor qu and reciprocal to it g

Consider a p-vector f' CRY) at a fixed point of the
examines space Vn. The socalar

2 2 by g
1= (5) i f O F (1)

pl1-Jp
where (2)
p df
Giy-.ipin-ip — P~ jiafia 933
is a square of the norm of the p-vector floth [13].

P
The tensor gi i3 3 ~ defined above will be called
1..' 1.‘.

here inaffer the expanded metric tensor.
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On certain generalisation...

3

it || £ 2 = +1 then the p-vector f“"'l? is called a
...
unit p~vector, if ||f||2 = 0, the p-vector f£' ' is called

gingular p-vector.

Denote by € Yot ang by Ei 1 the contravariant
- 1.'.n .

and covariant Riococl’'s symbols - respectively. From the

finiton we have

+1 if 11...in
of the sequence of 1,2, ... n.

of the sequence of 1,2 ... n,
0 in the remaining cases.

From the definition of determinant and (2) it follows

i,;.in j,”.jn i,."in
g E 8 gl1j1 glnjn E li...ln
iq...1
= 'n = nl
- xe 8(1_.% - n x
Hence
x =g = det ((g;)
and consequently we get
€,.i = 9& i
As is known, the Ricei symbole €' """ ang Eir
satisfy the identities [18]. o
Lol ipggiy ipag- g
£ PP L. L= l n- 'J ;

where Q." "'k ig the generalized Kronecker symbol,

ook
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4 2. %ekancwski

From (3) and (4) it follows

lil l”( P“’
e " ey i, = gp'(n-p)!d; (5)

p p+1 1‘,4»1 ]

Consider n-vector J'7° " ''n defined, in a fixed coordi-

nate system (xi), by the equations

= € (6)

where the asterisk denotes that equality taken place in a
fixed coordinate system.

From the definition of n-vector Jl"'J" ag well as from
(5) it follows

by by g i .
J tplperd J.“ . in = € p!(n-—p)lJ ’1 (7)

g ipipeq- Jpet jn

where

€ g1 = sqng

Prom (6) it follows, that the n-vector J ' the go-
called Ricci's n-vector [3], is a real n-vector and from (7)
it follows that it is a unit n-vector.

fhe unit n-vector J .+l makes it posgsible to establish
‘a one correspondence between p-vectors and (n-p) vectors,taken
at the same point of a Vn, using the formula

*fim...in € 14 lperin iy



On certain generalisation... 5

Be means of the n-vector J''"''" we can 2lso establish a
one to one correspondence between p-vectors and (n-p)-vectors,
taken at the same point of the Vn’ using the following formu-
la [5]0

N T PV

ofipﬂ“‘in g _?_J .lp+1“
p! iy U
1
where ¢ = 1207 g g0 ane ¢ = 1(-1y2P=?)
if g <0, i =V-1.
Indeed, applying the formula (8) to the {(n-p) vector

of‘w"' “In we get [13].

.

o(of)i,...ap _ fa,.. ) o)

The (n-p3-vector °f Y+t 'n gefined by the equations (8)

is called the dual of £''" "'

The one to one mapping T:{f} ——{°f} of the set of all p-
vectors f onto the set of all {n-p)-vectors °f determined
by the formula (8) has, besides its elegance and simplicity,
some defect. As it is easy to observe if g > 0 and p(n-p)=
= 2k+1 or if g <0 and p(n-p) = 2k, the formula (8) esta-
blishes a one to one correspondence Dbetween real p-vectors
and (n-p)-vectors, whose components are imaginare, and vice
versa.

When the dimension.of the space 1g even i.e. n = 2p it is
posgible to consider p-vectors which satisfy the relations

... byl
where 6 1is some scalar. It results from (9), that 6 = 1

The p-vectors satisfing the relations (10) are called the
salf-dual p-vectors [13].
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6 Z,7ekanowski

In general the self-dual p-vectors are the p-vectors with
complex components, however if g > 0 and p = 2k, or if. g <0
and p = 2k+1 there exists the real self-dual p=vectors,

i be a tensor satisfing the identities

Let a A .
11"'lp31“'3p
[iy-ip] Jy-ip by Updyadp (11)
as well as
a .. . =4a. .. .
bgipg - Jy-dp g1 (12)

The tensors of the form which satisfy

a . .

11...1pj1...3p

the relations (11) and (12) will be celled bi-tensors [6].
When n >4 and 2 = p € n-2 the bi-tensor

ygol o og] S T S Joag]
o pertnlperdn g 0 pritn Ltplidp P (g3
a g -7 . a J .

(pl) byl Jy--dp

3p(n- 10 (n-
where Q = (_1)7p(n ") y if g>0 and Q = i(—1)zp(n P)

if
g <0 is called the dual of the bi-tensor a, . .
l1...ipa1ﬂi'ap[13}
From {13) it follows
lgoo iy jgoo ] G L j.”j
o/, 1 'pd1dp 1 pi1ip
(a) = a (14)

[P TR P
If n = 2p1) the bi-tensors a'l PN

identities

gatisfing the

]

fyoi o ey iy
T Qg TP (15)

a

where O = +1 are called the self-dual bi-tensors.

1)W.Wrona in the paper [13] gives more general definition of the
self-dual bi~tensor but for bi-tensors of special constructions,
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On certain generalisation,., 7

In the Riemannian space Vn the covariant derivative of the

field of the unit n-vector J ' ‘M

cally equal to zero i.e.

is, as is known, identi-

v, Ji'“'l" (x) =0 (16)

New, let us take- into consideration a field of self-dual

i (x) and a field of the self-dual hi-ten-
D

a . .
11...1pj1...3p
The from (10), (j5) and (16) there follow the identities

p-vectors fi
) 1

LN ]

sors {(x) of class ¢’ -respectively.

—
il

ef . . (17)

11..,ip;j byoefp i

as well gs

‘a. =0aq

L 18
byeodpdyip; W (18)

by pdgerdp, W
where the covariant derivative is denoted by semicolon.

Introduction of the concept of a dual bi tensor as well as
the concept of a self-dual bi-tensor constituted a natural
transfer of the concept of dualism and self-duaslism of multi-
vectors on the bi-tensor. The identities (17) and (18) point
to the possibility of transformation of +those concept on a
broader clags of the tensors.

Let us pay attention to the fact, that in the definitions
of mappings T: {f} —-{of} and T1: {a} —*-{oa} given by the
formulas (8) and (13) intervened in essntial manner all indi-
ces of the mapped tensors (multivectors and bitensors).

In the sections to follow we shall introduction a one +to
one mapping of the set of certsin tensors onto +the sget of
other tensors in such a way that not all the indices but only
a fixed group of indices of the tensors will be used in the
definition.
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8 7. Zekanowski

To conclude our considerations of this section we shall
quote some more fundamental concept of the Rimannian geometry,
which often shall be dealt with in the next sections of this
paper.,

Let us denote the curvature tensor of the space V by

n
Rijke and the scalar curvature of this space by
i
of Ru g
¥ = -
n(n-1)
where Rij is the Riceci -~ tensor.
The tensor
P |
g B (19)

iy ip g Jp ] R[i,iz[m'z giajsm gip]JpJ

is called the expanded curvature tensor of the V _, and the

scalar [4], [13]. .
P g 1 P i,...ip j,.ujp
x = f f (20)

(P ) “f|F ' y-p

is called the scalar curvature of non -~ singular p-vector

TR respectively.
In a like manner, let us denote the deviation tensor of

the Vv, by [13]

2
df
Ui = Riji * % G

then the tensor

Co

dt p!

.o A P ¢ B (21)
1 tpdpedp 2 U[‘1'2D112 9‘313" q‘v]’v]
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On certain generalisation,.. 9

is calléd the expanded deviation tensor of the Vn, and the
scelar [13]

p _ 1 lru'p )
W = <p| "f“z U. f f (22)

li.uipj,”.jp

ig called the deviation of non-singular p-vector respectively.

§2. THE r/p - TENSOR IN A V_

Let f . (x) be an arbitrary tensor field in
11...1p11..'1r._

the Riemannian space Vn, where 2 £ p €£n, r > 1 satisfying
relations

f[i,...i,]l,..,lr (x) = fi1...ipl,...lr (x) (23)

The tensor fields £, (x) satisfying the re-

11...i lr"'lr
lations (23) will be called the r/p-tensor field,
An example of such a field is the r-th coveriant deri-
vative of the p-vector field f . (x), p>2 i.e. the
T

11...1
field

f' i ;lﬁ.”;lr(x)

by P

It is easy to note that an arbitrary 1linear combination
of a r/p -~ tensor field is again a r/p - temsor field,

On the other hand the r/p - tensor fi1”’ip11"'lr has

(;)ﬁr ~ linearly independent components, Thus, a set of ell
the r/p - tensors at the fixed point of Vn creates the(n)n-

Y
~ dimensional linear space,
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10 ' 7. %ekanowski

Theorem 1. The r/p tensor £,

11000i 11‘..11' is i"‘

P
dentically equal to zero if and only if for each r/p-tensor

hi1...ipl1...1r there is the identity

f""P""f b L= 0 20)
g ly

Proof. The necessity of the condition (24) is evi-
dent. To prove its sufficiency it is enough to show +that if
the assumption of the theorem is satisfied, then all the com~
ponents of the tensor fi il 1 are equal to zero.Let

. 1... p-]..O r -
us assume that the relations (24) are satisfied for each r/p-

tensor hi1...ip11...1r, where fi1...i 11"'1r is_a certain

P
r/p~-tensor.
Denote an arbitrary, but a fixed sequence of indices, by

%1"'%p%r"’%r and consider the r/p-tensor defined as follows

b _ g

all the other components of the tensor h s sline~
N . i1'..lpl1...1r

l'1'-.i. 1...'-
arly independent of h° bo b or

Thus we have

are equal to zero.
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On certain generalisation,.. 11

Due to arbitrariness of the choice of the sequence of in-
dices %1"'%p%1"'%r and corresponding to it choice of the

tensor hi 11"’lr, we conclude that

1.'.ip

which ends the proof.

For an arbitrary r/p-tensor fi there are

1000i 1100011‘_

P
the evident identities (from the definition of alternation

operations)
e+ f. =f —f. ——— 4
p+l) iyt ety = Tigeip gt ™ Tligeipigty .t
i'h.lp_' llplz...lr
Multiplying the last identities by an arbitrary r/p-ten-
sor hi1...i ...l end sumining for 11...ip11...lr, we get
(using its asymetry to the sequence of indices i1....ip)
izu.lplilz...lr

iz...ipillz,,.lr

L o (25)
_ iflz...lplllz...lr _E [(1...lpl]ll...lrh
" p ig-ipillylp T p Tyl L,

From (25) and from theorem 1 it results that, if the r/p-
tensor fi1...ipl1;..1r gatisfies the identities

- ﬂ

iy Pt PR quPle.“lr
it is equal to zero. Particularly we have
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12 7. %ekanowski

Corollary 1. The p-vector field f . p>

of the class C is a covariant constant field, if
£ (x
lz...lp[l,l]( )

Let fi1 il be an arbitrary r/p-tensor.The r/{n-p)-
e coly
tensor P

.

’f df 0 Ji’...ip f

i

. , . . . (26)
inly- L, p! (e ip 1,...1,[,...[

pee ’

10 (n. 10(n-n) .
where Q=(-1)7p(n p), if g>0 and where Q=(—1)7p(n p)-l ir g <0
(i= V=T), is called a dual of the tensor fi, il
From (26) it results immediately that

f = f . (27)
( )11 P' l l,..‘l’(r..lr
Let us assume now that the r/p~tensor f-l1 gl ses
tisfies the conditions P r
f =0 (28)
9 iy iyl 1,
From (28) and (26) it follows that
Jiw Liglig.. i , -
igor- ity L,

Multiplying the last identity by n-vector Jkp,1- kg Qi

and summing for the indices iz...ip we obtain by wirtue of (7)

°f =0 (29)

[Kper - kn @] Lty
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On certain generalization,.. 13

Thuse: from (28) there results (29). We shall now prove
that from (29 there results (28).

Indeed, the identity (28) is equivalent to the following
identity

| ipsq - int
Ep (n—p)!d.kp". f . = O

PR lpey-rin 2L,

or by virtue of (7) to

it fyoly o iyeg o .
J Peegeeteee o f =0 o
9 Kpat--kn@ tiy by lp+1“Jnllzu.lr
From (30) and from (26) we get
il ..l
J L =0
g kp’,‘..kﬂq “2'"‘pllz'~'lr

k o,q...k cen
Multiplying the last identity by n-vector 7 e n® Q2 --0p

and summing for k..k, we get (29).
In this manner we have showed that

g fiiz...ipllz...lr =0 &= f[ipﬂ"‘inl]lzmlr =0 (31

If fH i (x) is a p-vector field of the class C1 on the
g
menifold V_, then the (p~1)-vector field [3]

(p+1) f[i1,..ip;j] (x)

is called the rotation of the p-vector field f . (x) ywhich
is written as P

Rot ;i (x) < (P”)

X 32
,, ,,J]() (32)
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and the (p-1)-vector field

ij
g fiiz...ip;j (x)

is called the divergency of the p-vector field fh---i (X)
which is written as P

 (x) (33)

ipii

Div f, (1) £ g"F,

ip iy...
A p-vector field fh...i (x) of the class C'is called a
p

harmonic field [6], if its rotation and divergency are equal
to zero.

Putting r=1 and =T

H---p
of (32) and (33) we get.
Corollary 2. The rotation of the p-vector field

fh i (X) " of the C1 class is identically equal to zero if
p

and only if the divergency of dual (n-p)-vector field
° ig identically equal to ZETO0. .

: i .1 into (31),by virtue
11. . 'lpl

Lpoge - o
pe1- o ~ln -
Hence, from the definition of the harmonic p~vector field
there results:
Corollary 3. If a p~vector field fﬁ  (x) is
ceep

a harmonic p-vector field then the dual field to it is a har-
monic (n-p)-vector field too.
From (26) it follows immediately that, if r/p-tensor

is the product of the p-vector and a

.

l1...lp |.1.. 'I'I'

certain tensor di1 i lee. if
b

then the dual tensor ofi

°f ity =%

Lpag - in



On certain generalization.., 15

The p=-vector field fl.' i (X) of the class C1 in a Vn
sty

is called a recurrent field [11] if on the given manifold the=-
re is a vector field W(X) gsatisfying the identities

oo =1 () )

PR Py ig-- i

~Prom the definition of the recurrent p-~vector field and
from the above it follows: It the p-vector field fh i (x):
celp

is a recurrent field then the dual field ofi o (X) is
also a recurrent field. ' a "

Let us assume now that the space examined by us is a 2p-
dimensional Riemannian space.

The r/p-tensors fH~~'iplr-~lr of a V2p will be called

self-dual r/p-tensor, if they satisfy the relations

f, R L AT (34)

where O is a scalar.

From (27) it follows that if (34) occurs, then 8=*1 Ara-
logically, as in the case of p-vectors (15), the =r/p-tensor
ey by satisfying the identities-(34) when 8=+1, is
called the self-dual r/p~tensor of the 1-st kind and when 8=51,

the self-duasl r/p-tensor of the 2-nd kind respectively.

Similarly to §1 we conclude from (6), (26) and (34) that
the self-dual r/p-tensors in general are the tensors with
complex components, However, if q>0 and p=2k ,or if g <0 and
p=2k+1, there are also self-dual r/p-tensors with real com-
ponents,

We shall continue to deal with the examination of the pro-
perties of the real self-dual =r/p-tensors only, and con-
sequently we assume that the dimension of the space under
further examination is n=4k, if >0 or n=4k+2, if q<0.
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16 %, Zekanowski

From the definition (34) and from (17) it follows that the
r-th covatiant derivative of the self-dual p-vector field of
class C' is the self-dual r/p-tensor field.

Let ﬂ i(x) and fi i (x) ve the fields, of class Cz

g i 21 -1y

of the self - dual p~vector of the 1-st kind and of the 2-nd
kird respectively. Moveover, let us assume for example, that

fo i . (x)=0

2ip il Ly

and consider the field of p~vectors

df
fo o) = f ) +f & (35)
The p-vector field (35) in gemeral will not be a p~vector
field of the self - dual p-vectors., Differentiating (35) r-
times and teking into account the assumption, we obtain:

Fi1.. i () = F [(X)

gl iy

Thus: The covariant derivative of the r-th order of the
field of non self-dual p-vectors may be a field of self-dual
r/p~-tensors (upon meeting certain conditions).

It is easy to note, like as in the case of p-vectors,that
each r/p~-tensor ﬂ1..i ..., in a V2p may be expressed

in one to one form as a sum of two self-dual <v/p-tensors of
the 1-st kind and of the 2-nd kind according to the formula:

=1 0
fl1 ol 2 (fii...ipl1...lr * fi1...iplt...lr)
1 _ = (36)
T2 (fi1...ipl1...lr fi1...ipl1...lr) B

il
-A-T*-,

~—



On certain generalization... 17

where f='% (f+°f)=°f is the self-dual r/p-tensor of the 1-st
o
kind, and f=’%(f‘°f)=‘ g is the self-dual r/p-tensor of the

2-nd kind respectively.

From the definition of self-dual r/p-tensor it follows
immediately that an arbitrary combination of self-dual r/p-
~tensors of the 1-3st kind (or the 2-nd king) is also selfdual
r/p-tensors of the 1-st kind (or the 2-nd kind respectively).

From the above and (36) as well as from the fact that a
gset of all r/p~-tensors at a fixed point of a Vn cre-
ates an (g)nr- dimensional linear space it follows that:

I, A set all self-dual r/p-tensors of the 1-st kind (ana-
logically of, +the 2-nd kind) at a point xeV creates
‘%(ﬁf)(sz' - dimensional linear space.

II. A linear space of r/p-tensors is a direct sum of the
linear sub-space of the self-dual r/p-tensors of the 1-st kind
and of the 2-nd kind.

Now, let fh...%l,..i be an arbitrary self-dual r/p-
tensor, i.e.

2p

-

_ a8 i o
f"nt‘e'p‘J i T (37)

Ageiply Ly p iy 1y jt”jplr;lr

where B=1+1 |
Multiplying (37) by an arbitrary temsor (Q V
we get the p~-vector

oL
r and

summing for L4...L,

T df
foo=f i@

which is, as it follows from (37), a self-dual p-vector.
Thus we have
Corollary 4. Multiplying an arbitrary self-dual

r/p-tensor of the 1-st kind (or 2-nd kind) fh' il by
B P

, We obtain
of the 1-st kind (2-nd kind re-

b o
an arbitrary tensor al" ' ana summing for l,...l

a self-dual p-vector ﬂ1 i
Sy

spectively).
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18 Z.,Zekanowski

In the paper [15] i.a. there have been proved the following
theorems.

I, The p-vector f i is a self~dual p-vector of +the
1-st kind (of 2-nd klnd) 1f and only if, for each self-dual
p-vector h iy of 2-nd kind (of 1-st kind respectively) if
P is even, and for each self-dusl p-vector h i of +the
1-st kind (of the 2-nd kind respectively) if p is odd, there
is the identity:

II. The p-vector f J is a self-dual p=vector of the
1-st kind (or of the 2-nd kind) if and only if,for each self-
dual p=-vector hi1...% of the 2-nd kind (of the 1~st kind res-
pectively) if p is even, and for each self-dual p-vector
i i of the 1-st kind (of the 2-nd kind respectively) if p
is odd, there are the identities

iy ipli i]
2 4

f

Prom corollary 4 and from the above theorems there follows
Theorem 2, The r/p~tensor fh--iplr--h is a sel-

dual r/p-tensor of the 1-st kind (of the 2-nd kind) if and

only if, for each self-dual s/p-tensor hir..gl1”.l; of the

2-nd kind (of .the 1-st kind respectively) if p is even, and

for each self~dual s/p-tensor hi1 iyt of the 1-st kind
sl byt

{of the 2-nd kind respectively) if p is odd, there are the
identities
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Proof. Let us assume that fh is a self-

coipglyaad

p-1 r
dual r/p-tensor, e.g. of the 1-st kind and hi,u.iﬂ1..is is
a gelf-~dual g/p-tensor of the 2-nd kind respectively and p=
=2ko

Multiplying the r/p-~tensor fh~-~%l1~~lr by an arbitrary

tensor 0L1"'Lr as well as the s/p~tensor hi1”.% Ly L by an
le.. L

arbitrary tensor b s and summing for l,...l. and ;...
respectively, we get, by virtue of corollary 4, the self-dual
p-vectors '
r ¢ liuir

T PR a ~ of the 1-st kind

by l1'Jplf”lr

s
b ~ of the 2-nd kind respectively

By virtue of the above quoted theorem I, from the paper

[15], the self-dual p-vectors fi1 and hi1 i satisfy
ey .

the identity

(%) OO PO T O
fooo  h" g 0

dptyde e

.01
Since this identity (%) occurs for each pair of temsors a4 ' ' °

Ly...l
end b "%, thus from (%) there follow the identities

(% %) i

Inversely, let us assume that the didentities (¥*) are
satigfied for eack self-duasl s/p-tensor hi1”,i ... for
example of the 2-nd kind, if p=2k ~ where f; is

a certain r/p-tensor.
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20 Z.Zekanowski
From the identities (»*) there follows

-

e gy iy
it @ h b, ;=
oo bp by lp | byl

(2% %)
0

ly...1L byt
where 0 * and b * are arbitrary tensors.

.. A, L. s

is a p-vector, h.

Since f, gy g

1--dplye e
is a self-dual p/vector of the 2-nd kind. Hence, by virtue of
the above theorem I we conclude from (%) that the p-

T ...t
t . .= 1. . 1 r - —
vector ﬂ1_.4p fH-'ublt-'Jr a is a self-dual p-vec
tor of the 1-st kind, i.e.
(% % % %) ; ly...1, of L. L,
. a = T1. . a
H..lplrnlr l'.JPlr“lr

The last identities are.satisfied for each tansor Cll1'"lr

by virtue of our assumption. Hence, from (xxx%) we obtain

which means that the r/p-tensor fi.. is a self-
dual r/p-tensor of the 1-st kind.
The further part of the proof is analogical.

.Theorem 3, The r/p-tensor f“

bl

oyl 188

self-dual r/p-tensor of the 1-st kind (of the 2-nd kind) if

and only if for each self-dual s/p-tensor hi, il L of
NN
the 2-nd kind (of the 1-st kind respectively) if p is even,

and for each self-dual s/p-tensor hi1 | of the 1-st
cenbplyo g

kind (of the 2-nd kind respectively) if p is odd, there are
the identities:
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Note that the theorems 2 and 3 hold true also if r
or s are equal to zero. It is obvious that 1in this canse
the r/p or s/p-tensors are p-vectors.

Now we shall prove

Theorem 4. The r/p~tensor f~ el is a
gself-dual r/p-tensor of the 1-st kind (of the 2-nd kind) if

and only if for each self-dual r/p-tensor hir- i “ i of

the 2-nd kind (of the 1-st kind respectively), 1f p is even,

and for each self-dual r/p-tensor hi1 T of the 1-st
Higeedplye g
kind (of the 2-nd kind respectively, if p 1is odd there is

the identity:
iy L b
fi it h =0 (38)

Proof. Let f A be, for example, a self~

iy
dual r/p-tensor of the 1—st kind and hh--~i

Lo a gelf-
dual r/p-tensor of the 2-nd kind respectively.
Additionaly 1let us- assume that p = 2k then at the
assumption that s = r, from theorem 2 there follows (38).
Let us assume inversely that there is identity (38) for

each self-dual tensor hi1 il of the 2-nd kind, where
_ S P R

L. . .1 is a certain r/p-tensor,
p .

From (38) and by virtue of (36) we have

ot )R
(1l1...l l l Zl1”'lp!1"'[r h O

plite

ig. . .

and consequently by virtue of the first part of the theorem
we get

) A pefplinle 0 39)
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By virtue of the first part of the theorem we also have

£ '
2l1...lp oLy (40)

Where hi1...ipl1".lr

the 1-st kind. Thus from (39) and (40) it follows that

is a arbitrary self-dual r/p-tensor of

=y p e
2y i Lt h =0
pitr

where hi1 il is absolutely arbitrary r/p-tensor. By
e ol

virtue of theorem 1 we get

f ety 0

Zir“ip r
that is
i1“.ipl, (" 114 lpl' L,
thus f. is the self-dual r/p-tensor of the 1-st

el tg
kind, In ell the remaining cases the proof. runs analogically.

In paper [17] it has been showed i.a.that for each pair
of self-dual p-vectors fH~--% and hi,”.5 of the same kind,
where p is even and of different kind where p is odd there
are the ldentities

i i dged

hy . = Zig £ %h, . (41)
.. p 1--. p

From corollary 4. &nd identity (41) there follows:

Theorem 5. If fg...i,, e e g

are respectively the self-dual r/p and s/p-~tensors of the same

..., amd Ny

- 97 -
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kind when p is even and of different kind, when p 1is odd,
there are the identities

| L iy
oty Migeiy kpoks = 729 F Dk

From identity (25) and from theorems 2 and =4 there
follows:
Theoren 6. For each pair of self-dual r/p - ten-

f. Gty and hi1 by L of different kind, if

p is even, and of the same kind, if D is odd,respectively,
there are the identlties

ig- 1) p _

f i hiz...ipj-lz...lr -

__p! szHJpU]lzmlr A

T p lig-ipti]ty-Lp

Similarly from identity (25) and theorem 5 there follows:
Theorem 7. For each pair of self-dual r/p-tensors

fi,...lpl1..ir end hi1--iplr--H- of the seme kind, if

p is even and of different kind, if p is odd respectively,
there are the identities:

p+1 [ A U] S
P - h[iz... ipif] Lt

We shall prove for example theorem 6,the proof of theorem
7 runs similarly.

Let us assume that p-= 2k and that f” il L and
4 P
iyl are the self-dual r/p-vectors of the 1=-8t
kind and of the 2-nd kind respectively.

- 98 -
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By virtue of theorem 4 identity (25) is reduced to

iznjpluzuir
|2“Jan2“Jr
. (41)
p+1 f[l,...lpl] | P h
p D1'"‘pl]lz'~lr
On the other hand from theorem 3, if S =1, we have the
relations

fZ' r h . -
lz.Jp.kr.kr '

fiz..,ipjl,...lr i (42)

i .ip.k,. k,
Multiplying (42) by g‘l1 gjk1 and summing for (ijly...l k.. k.

we get
fiz Ipt PR h j _

i ty- lpj.lzﬁlr

-fiz...ipjilz...lr (43)

iy ipiily-iL,

From (41) and (43) there follows theorem 6,

§3. The r/p x p~tensors in a V,

Now, let us take into cosideration any <tensor-field

i1-~iph-'Jpl1-~ir(X) where Zép4n and r21, in a Vi

satisfying the conditions

Ay o =qa, .. . (44)
[liu.lp] by dp Ly Ly by Uy Jy-dp

L.t

PRRRILS

- 99 -
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as well as

g by yode Qe Gy gy (45)

The tensor~field aq.. b i -y Uy L satisfying the i-
L PR N YR

dentities (44) and (45) shall be called briefly the =r/pxp-
tensor fields.

The covariant derivative of the r-th order of the expan-
ded curvature tensor i L ; ina V_ is an example
EERY R n
of the r/pxp-temsor~fields,

The r/pxp-tensor ~ fields constitute -~ as it may be noted
easily - a particular example of more general class of temsor-

fields, created by the s/p~tensor - fields ai1 il ..l (x)
cebplyen by

where S$=p+r. For this reason.all the properties of the s/p-
‘tensor - fields, where S=p+I, examined in §2 aresutomatically
the properties of the r/pxp-temsor, fields.

From theorem 1 and the identity (25), (if we note that
it is unimportant in (25) which of the indices [, where o =
=1,2,...r are alternated with the group of indices Q...Lp),
there followsa,

The r/pxp~tensor d;

iy dyy. - dply. L, 8tisfying the i-

dentities

a. . . .. =q. .. .,
tyelpdg-dpl l,..L, ‘1~~'p12-~1plllz---lr

is a tensor equal to zero.

Hence, there follows:.

Corollary 5. The covariant derivative of the
bi-tensor field air jp(x) s of class C', is equal to

N PR
zero, if P

By i iynip i) (x) =0

- 100 -



26 Z.Zekanowski

From corollary 5 it follows particulary that:
The Riemannien space Vn is a symmetric space, in sens of
Caertan [7] if its curvature tensor satisfies the relations

Rijk[l;m] =0

It is obvious that due to their specific construction;an-
ti-symmefry with regard to all indices of each group of in-
dices {i“] {ja} (cf. (44)) and symmetry with regard to these
whole groups of indices (cf. (45)) "the r/vxp-tensor -fields
ai1__i o U possess more properties than the »/p-

plidpte r
- tensor-fields which are of much more general character,
Let us note, first of all, that the propersties (44) and
(45) of the r/pxp-tensor-fields allow us, besides the one to
one mapping of the from (26) to determine, by the formula

. g 0 J.'"'"’.' iy-iy (46)

iy tnipeg-inlyty BT C perin  dperinDig-ipig-iply-ty
3p(n-p)
where 0 =(-1)2P"""P tne second one to one mapping {analogi-
cally to (13)) of the set of all r/pxp~tensors onto the sget
of 211 r/(n-p)x(n-p) - tensors, takepn at the same point of
the Vn" '
It is easy to note that +the above mapping, in contra-
distrinction to the mapping defined by (26),always establishes
a one to one correspondence between the 1real r/pxp-tensors
and the real r/(n-p)x(n-p)-tensors, independently of the in-
dex of the space, the dimension of the space and the valency
of the r/pxp~tensor under mapping.
The tensor odi
the tensor air

i Ll is called dual1) of
pete - tnlper - Iplye by

celp gy byt
1) Since for the r/pxp-tensors it is possible to determine funda-
mentally two different dual tensors, one by formula (26) and the other

by formula (46), they should be distinguished, The first of them, for
example, should be called dual and the other bi-dual.

- 101 -



On certain generalization... ' 27

From 46 there follows immediately

90
(a)i,...ipj,...jpl,...tr = iy iggp by, (47)
It is easy to state that due to the analogy in the formu-
las (26) and (46) defining the dual tensors of the given ten-
gors we shall get, at least in part, analogical formulas, co-~
rollaries and theorems.
Really it is so,for example for the r/pXp-tensors we prove
analogical relations to relatioms (31)

jt

a. .. .. =0 = ‘q = 0 (48)
g l1.“lp]2.”]pjllzn.lr

ipet-inlipet-int] 2 - Ly
In the seme manner it follows imediately from the defini-

6 £ X p= o
tion (46) that if the r/pxp~tensor a‘r--lph-'dpl1--ir is

the product of the bi~tensor 611..i [ and & certain
tensor VH--ir’ i.e. P

a. .. . = a '
l1“.lpjr“jpl|“.lr Iin.lpj1n.jp (PR
then its dual tensor odi .o il L takes the form
. p‘_1...lnjp+1...Jn 1-0 by
. =
a. . . = (. . .V
l”1.“anp".“j“|'.”lr tpeg--Indpesin P

In particular we get.
Corollary 6. If the bi-temsor d; e
g di

field 1s a recurrent field, the dual field of it is also a
recurrent field.

Let Qi iyjy...j,

bi-tensors. By a simple calculation it 1is possible to sfate
that the formula

be an arblitrary recurrent field of

- 102 =
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1 j,“JP
he oo=510 i f
14 p! g pjf“jp
etablishes a one correspondence between the recurrent fields

of p~-vectors fh . and the recurrent fields of p-vectors
B

i.1--.i.p-
Let us assume now that the space examined further on is
a 2p - dimensional Riemannian manifold.
The r/pxp-tensors (.

T T I DU | satifying the i-
dentities ot dpta

[}
a, .. . =08a .. .
(FT FY P P PR PO Y P (49)

where 9==§1, are called the self-dual r/p=x p~tensors ..of the
1-st kind, if B=+1 and respectively of the 2-nd kind, if 8=
=-1,

It is easy to note that the covariant derivative of the =
~th order of the field of self~dual bi-tensors is a field of
self-dual r/pxp-tensors,

It is also evident that enalogically to the decomposition

(36) each r/pxp-tensor d. o . [ at the point
l1...lpJ1...jp 1Ly

X€Vz)may be expressedhin a uniqual form as the sum. of +to
gelf=-dual r/pxp-tensors of the 1-st kind and of the 2-nd kind

by the formula

a. . = — +
iy lp]r..jp'l’ L (U U) 2(0 ‘a) =
=4a;, .. . +a. .. . (50)
1 11”.lp11.”1pl,“.lr 3 l1u.lpj1.njp‘1.ulr
where q=%(a+°a)=°g and cz1=%(a-°a)=—°9
Let (; oo : ol be an arbitrary self-dual r/p p-

Ly pJ1 Jp
tensor, Mnltiplying the self-dual r/pXp=-tensor G ~iﬂr~jﬁ1~‘lr
ly...1
by an arbitrary tensor V 4 " and summing for h‘.ir we al-
ways get,-as it follows from (49), a self-dusl bi-tensor.
Hence, we have:
- 103 ~
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Corollary Te Multiplying an arbitrary self-

dual r/pxp-tensor G i H pJ1 L of the 1-st kind (or
r
-y

of the 2-nd kind) by an arbitrary.tensor VJ1
for j,...j, we get a self-dual bi~-tensor

and summing

of the 1-st kind (and of the 2-nd kind respectively).
In particular from (50) and corollary 7 there follows
immediately the respective formula [15]

Lty Jy o dp Tigdpdyjp 28y g iy dp (51)

for the decomposition of an arbitrary bi-tensor Gi1 ipj1~'jp
into the sum of two self-dual bi-tensors of the 1-st kind and
of the 2-nd kind.

From the definition of the r/pxp~tensors it follows that
an arbitrary linear combination of these tensors gives a ten-
sor of the same type. The same may be said about the salf-
dual r/pxp=tensors of the 1-st kind (and of the 2-nd kind res-
pectively). Thuss A set of all the r/pxp~tensors at the point
xewb creates an N-dimensional linear space., By virtue of (50)
the N~-dimensional linear space of the r/pxp-tensors may be de-
composed into the simple sum of %—N-dimensional linear spece
of self-dusl r/pXp-tensors of the 1-st kind and of the 2-nd
kind.

The following theorem have also been proved in paper [1ﬂ:
I. The bi-tensor 011 'jpjr‘_Jp is a self~dual bi-tensor
of the 1-st kind (or of the 2-nd kind), if and only if for

each gelf-=dual bi-tensor b i J . of the 2~nd kind and
1 4

(of the 1-st kind respectlvely) there is

a..\.b J1J=O
gy
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and analogically, if

aiz...ip[iljz...jp|[j b K

Q.utp.jzujp.-
II. For each pair of self-dual bi tensors of the same kind
. .o . b. . . i i
PR HR N and Ly ipdeedp there are the identities
H"Jpjzujp(j b t) g U g
a i =30 4 b, . .
1u.pjzn4p. p tytpdgdp

Using the above theorems and corollary 7 we prove the
following theorems:

Theoren 8. The r/pxp~te a. © .
/pxp-tensor byoodpipeagpla o by

is & gelf-dual s/pxp-tensor of the 1-st kind (or of the 2-nd
kind), if and only if for each self-dugl s/pxp~tensor

i Ll 1 of the 2-nd kind (and of the 1-st kind
1...pJ1...Jp 1+ s

respectively) there are the identities

[ T PO
17°p "
TP T O ko, = 0
.. pj1qu 1t 1---Kg
and analogically, if
i2'“ipE|j2’”jp|[j b k] L] O
a , =
L, Gty Jgedp - Ky kg

where the alternation concerns independetly the dindices "i"
end "k" ag well as "J" and "1,
Theorem 9. For each pair of self~dual r/pxp-ten-

sors ai1 and s/pxp-tensors b,

e dplye Ly gy gy

of the same kind there are the identities:

- 105 -
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: by by by (4 b ) _
1, bylp peedp - ky ... kg
BUolyd g
= _J_. a1 Pl b
2p 9 L. L
Theorems 8 and 9 also hold true if.r=0 or s=0. In this
case the r/pxp~tensors become just the bi-tensors.

It is easy to note that the r/pxp-tensors ah AT
gl dplye

may be used to establish a certain correspodence between p-
vectors and r/p-tensors.
Indeed, the formula

gdp Ly
f (52)

establishes a certain correspondence betwen the r/p-tensors

and the p-vectors h.

11...lpl1...[r Ly

Similarly, the formula

P

f _ i a . hl,...lp
{yip Lty pT Sigcip ity Ly (53)

establishes other correspondence between the p~vectors

h11“_ip and the r/p-tensors fh~~-%l1-~lr'

Assuming that >0 and p= 2k or g <0 and p=2k+1(i.e. that
we refer only our consideration to real self-dusl p-vectors
and r/p-tensors) we shall prove:

Theorem 10, The r/pxp~tensor a; P 1l |
1o gl dply o be

is the self-dual r/pxp-tensor of the 1-st kind (or of the
2-nd kind), if end only if the formula (52) and analogically
(53) establish a correspondence between self-dual r/p-tensors
fH"‘ipL1"‘lr end the self-dual p-bector hi4..ip according
to the following tables

- 106 -
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Table 1

G il e | My fiy oty
1-st kind 1 (2) kind 1 (2) kind
p=2k '
(%) 2-nd kind 1 (2) kind 2 (1) kind
1-st kind 1 (2) kind 2 (1) kind
p=2k+1 '
2-nd kind 1 (2) kind 1 {2) kind

Proof., Let us assume that {; - i1 { is a self-
‘1'.'lpJ1.“J'P 10ty
dual r/pxp-tensor, that is
2 v
e ‘ ui...appf..ﬁp
a. .. =0 /7 J N N
11...1p11...1pl1...lr (pl) oy...oty iy iy By Byly- Jy .1,

where B=%*1 and that fi1. il is a gelf-dual 1r/p-tensor,
that is P

£ - 6‘9‘3 o fT,...xp
1,...1,[1...1.,, p_' ¥y iyl L,

~

where 8=%1, By virtue of the above from (52) it follows that

Jyedplyely
hy i = ;% 0 i f i =

L,

o By B y ¢ j,...jp
g PRI
P v Tp

0
(an)
D

_

&

g 3
gu

N .
1 Qplyaty Bl...ﬂpji...jp

°‘1'"°‘pﬁ1"'f5p £ L., _

=00 (p!)z J o a 51~--f5p

oy iy li"'lvr
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3 o«
a0 ey, g BBy Ly,
68 pl J PR pl ad1-~-qpﬂ1 ﬁpl1 lrf -
_ nAi .2 9. - Ay _na 20 _
=880 ;3 T Nt = 08¢ hi.iy =
°
- 9%,

where 8#8 §¢=4 . Thus, the p-vector |1H~ip is the self-

dual p-~vector, according to table (1D.

Let us assume inversely that for each self-dual r/p-ten-
sor fi...%l1“.lr the p-vector hir-ip defined by relations
(52) is a self-dual p-vector,

Then, by virtue of the assumption, from (52) we have

1 ' j'...j”l'...lr P Aty 1
Py ittt =03 i pe

ip-iply-lr
o, ..qu,...jpl,...l,

or equivalently

1 8 oAy j' j"
—-a. .. . - ] s | . =
(p’ l,...lpji...jpli...lr (FIQ)_Z fyip d,...dp]'...jpl'...lp>f (54)0
By virtue of theorem 4 it folliows from (54) that

1 8 ..y
—-a. .. . - J o .
pl 1'...lpj1...Jpl,...lr (p!) 11...lpaq1...¢1pj1...jpl,...lr
~ 1 BBy 1 % aP
=-85J J
p! Jr-ip\ p! a'q ‘51 ~8p1 _% y--lp “1 ap By Bply-
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or equivlently

1 Bo %1%
S, - i

pdply-Ly iy p 1“Jplr"[r
(55)
-063 ', IR

Aply-gly-tr " (pI?

Finally, from (55) it follows (it is sufficient to consi-
der seperate cases, for example:f-is the self-dual r/p~tensor
of the 1-st kind and h-is a self-dual p-vector of the 1-st
kind and p=2k and so on)

J1 Jpa'1 (pBy-Bp Ly

a. PR . =_98°a; PO .
l1u.lpj1n.jpl'.“lr ltu.lpj1.”jpl1 W

i.e, that the r/pxp-tensor 011 L is the self=-

.ipj1...jpl1. Sl
dual r/pXp-tensor of the kind defined in table (1).

The remaining part of the proof runs analogically.

From theorems 10, 2, 3 and 4 and from theorems I and II
cited in §2, there immediately follows:

Corollarxry 8. Each of the following identities

iy Dy
a .. . f h = (56)
l1u.lpj1”.jpl’n.lr g
i [ Klj,...]
pladp Ly
a | fi'...ip hj1“Jp[r"lr - 0 (58)
i p]1.njpl1.“lr‘
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il i Ko K
11...1911...jpm1‘..mr
i L f KDy jo Ky k |
f1 [} 1 r u. o . h 2 p S - 0 (60)
lt...lpjz...jp. m,...mr
R il e L
fz p u h1 p 1 r = 0 (61)

g dgeeiplyly

(independently one of the other),if is satisfied by an arbit-

rary pair of self-dusl: p-vectors fh i and hﬂ . r/p-
b g
tensors fi1...ipl1...1r end hl1...ipl1...lr or the p-vector fi1...ip
and the r/p-tensor hi1 il L according to +the following
cebplye g
table 2
Table 2
a .. . f. . L L L
igedpipdplyly] Tgen -4y ht,...tp (PRAM PR hl,...tpl1...lr
I-st kind | T (II) I (I1) I (I1) I (11)
p=2k
II-nd kind | II (T) 1 (11) 11 (1) ;I (11)
I-st kind | I (II) I (11) I (11) I (11)
p=2k+1
"II-nd kind | II (1) I (11) II (1) I (11)

expresses the necessary and sufficient condition that the

r/pxp~tensor ai1n.ipl1”.lph...jr be the self-dual r/pxp-ten-

sor of the kind defined by the table above.
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§4. The r/p harmonic and Killing tensors in a Vn

In §2 we have taken into consideration a certain class of
tensor-fields which we have named the r/p-tensor - fields,

The r/p-tensor-fields - in a sense - may be regarded as a
certain kind of generalized p-vector fieids.

By analogy from p-vector fields, for the "generalized" p-
vector fields we have introduced the concept of a dual field
to the given field and the concept of a self-dual field, and
the remaining part of §2 has been devoted to examinations of
certain properties of these fields,

In §3 we were dealing with a certain sub-class of =r/p-
tensor-fields, called the r/pxp-tensor-fields. .

In this paragraph we return to +the general class of r/p-
tensor-fields to apply to them the concept of the harmonic p-
vectors and Killing p-vectors, teken from p-vector-fields.

However, here again we shall begin our considerations from
citing the fundamental concepts and facts from the theory of
the harmonic and Killing p-vector - fields [6].

In this connection let us assume that the spacehnka exa-
mination is an n-dimensional compact Riemannian menifold of
class (® with a positive definite metric ds’= qﬁdx‘dx‘.

Moreover, we assume that all the tensor-field examined on
the given manifold of this section are of class CZ.

Let fh.“iéx) be an arbitrary temnsor-field of class C2 on

the examined manifold.
The Laplacian of the scalar-~function

o) = f, |

is given by the formula

A0() = 2 (fi,...n,;j £ . fij-..lp g‘kﬂrn‘-';,-;k)

l.|...l
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From the assumption concerning the metric of V it

n
follows that the form

is a positive definite form of ﬂ1“.

Therefore, if the tensor~field ﬂ,.“i (x) satisfies the
deferential equations of the form P

ik Jy---Jp

9 fi’,...i',;j;k =T ijif (62)

where 1. is a certain tensor-field and if the

11...ipj1‘..jp
quadratic form

A e
T=T .. . f7PfF" P50 (63)
Apdyp

then

Ad > 0

end by virtue of Bochner's Lemma 1 [2] we have

Ad =0

Consequently we get

ag well as
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If.the form | is the poeitive definite form, then from
the equation T=0 we conclude that

Thus we obtain 6.
Theorenmn I. If, in compact Vn with positive
definite metric ds’= qijdxldxJ the tensor-field fﬁ i (x)
cody

satisfies the relations (62) and (64) then it also satisfies
the identities

f. ... (x) =0 (65)

1--ipi ] .

and

... 1 o
T fFror g =0
h.”ipjfnjp (66)
If the quadratic form (63) is a positive definite form,
then from (66) it follows that

f. 'l(X)-'-'O

l,‘... p

Let us take into consideration an arbitrary r/p-tensor -
field of class C2, i.e. the tensor field satisfying the rela~
tions

Ly, (p>2; r>1)

f[i1.. [ (x) = f,

4y '...(p

The anti-symetric part of the second covariant derivative
of a r/p-tensor field is given by the formula
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fn, il ik fi,. gl ks j
a a
B —Fuiz gyl R ik iyaigiply.d R ik T
a a
B fi,.“ipqul,...lr R ik ~ T fi,...ipl'...lr_1a R [, jk
According to the above, we have the identities
fjiz.“ipl,...lr;i,;k - fjiz...ipl,'...lr,-k;a, ¥ fi,jiz...ipl,...lr;iz;k *
_fi,jiz...ipl, ki, T fi,...ip_,jt,...lr;ip;k *
a a
_fi,...ip_1jl1...lr;k;ip=_faizu.ipl,‘..lr ji,k_fjai, ip gl LR ik
a a
o fja, dg_galy i, R ipigk ~ {jiz...ipalz.. L R ik (67)
a a
'f,nz ity tp_yg R ligk "fuji3 plyty R ik
a a
*iyjigeiplyd oy R\ i ~aiyipgily - .k
a
—ri1...|p_1,jl,...lr_1a R lpipk

Adding to aend subtracting from the left side of (67) the
expression f~ Ll k and next multiplying both si-

des of (67) by the tensor g and summing for jk as well as
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taking into account the identity fR [,,cd]-o we get {(cf. paper
[12])

jk ik
f . - (f. . - f -
q l1...lp|1...lr;j',k g '1""p'1"'lr;1 fjlz....lpl1...lr;l1
k k
. , _( | -
p-1ll p )ik flz pl ki, g iplybeikiny
k P &
~f ) =>R.f
PR SRRV R PO ; ig gy q@ig,. -1, (68)
. P, ab F
. +
gi; gl iy lg g @lgyq by g By g iply 0y

P r a b

—ZZRiifi g Ll bl

=1 = st tplgoq Qlgaq gl b g Ol b
It follows from (68) that if +the r/p~tensor field

f, i L. (x) satisfies the relations
1 *tp 1 r
: f f f
o AT SR o= =T P
g ( 11...1pl1.“lr;; jlzu.lplr..lr, i (PRA P jly- L, lp),J
k k k | (69)
'(f i i ke 'f il l'k‘i)=0
fg--ply iy iyl ok ~ip-glyly- ki
it also satisfies the relations
jkf J Ru ¢
o o= i A T . . +
g l,...lpli...lr,k,) & I '1""5-1“'sd'"‘plr"lr
R ¢ (70)
+ - o C . + 0
= ighy iy ..15_1013,,1...1t_1bltﬂ...(p ..,

p .
R..f . . .
,Z ; igiy '1“"5-1“‘3*1""plf""t-1 bl -
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and consequently the relatioms

= - +
p _ijkl gyl (71)
_ R “z Iply-dpog @lpyq L fj
P {: igiplypgklpegly

Introducing the denotation

ige-ip Lyl (72)

i,.“t’lrnl?_1klt,,.ulr
we can give a more compact form to (71), namely

i iy,
g Frr fi,...ipl,...lr;j;k = PF-(fi,...ip.lr..lr) (73)

From theorem I of this section and from the above consi-
derations there follows:

Theoremn 11. If in an n~dimensionsl compact Rie-

mannian space with a positive definite metric the r/p-tensor

fie1d fi ... (x) satisfies the identities (69) and if
Sl ,

F (fi,... iyl lr) >0
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then

J '1”.'9 -l (74)

and consequently

'1...ipl,...lr) = O (75)

If the form F_(f ) is a positive definite form,
1 lpl1.,.lr
then from (75) it follows immediately that

fi,... iply-ty (x)

Now, adding to and subtracting from the left side of (67)

the expression pf- gy jik and next multiplying Dboth
p rr !
gides of this identlty(Py g‘ » summing for jk and taking into

account the identity R [bcd] =0 we get

- pg fl"...( |1..,lr;]' g (Pf r;j +fjiz-~-l'p',...lr;i'+'“

p
K k

+f . AT | -=
fI‘...l'_'jlr..lr;lp);k (f az...:a'l' Ak, f P"‘ Ak 1)
SR f

= A , + (76)
st s t,...nﬂalm...lpl,...lr

b, ab

+ZR,.f._._ L +

= igly 1y Tg_y s,,...lt_1br“'...l’,_l,...l,.
s<t

>R,
= = gly gt a1"1...i'l,...lt-’bl"'...lr
From (76) it follows that i1if the r/p~tensor field

- 1 | (x) satisfies the relations:
l1..-lp 1n~-r
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jk
f +{. . +-+f +
9 (P iy lpl1 L iy .tPl1 !r'H ilyd p ik
) ) (77)
- (f e )= 0
( (R TR S it Ptk b
then it also satisfies the relations
ik 1 i
f. + = R . f . _ +
I Tiiph ik TP & i
1 ab
P 5'1.1R is't lyootgg Qlgay ‘t-ib'hi 'p'i te *
1 L, a b
-7 2. 2R, i, .0 ST Y SO |
PS4 Gl tgq @igeqtplylg o Blggy 1y

9' fr”.’ o fi,...il ik 'F(f ipl,...lr)

’l rllo

where F(f A, ) is the form defined by (72).
Thus from tgle above considerations and from theorem I of
this section there follows: :
Theorenmn 12, If in a compact Vn with a positive
definite metric the r/p-tensor field fi1... il A (x) sa~-.

tisfies the identities (77) and if

F(fi, igly- lr) <0
friptyty i (0 = 0 79)
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and consequently F-(fﬂ-~ip‘i“ir) = 0 (79)

If the form F (f- L ) is a negative definite form,
ity

then from (79) it follows that
Fiy i1y, 007 0

Now we introduce the definitions

Definition 1, The r/p-tensor field ﬂ,“.%L1H.LXX)

ig called a harmonic r/p-tensor field, if

= (80)
v[j fi,...i.] l,...lr(x) v fi'...i’ L1,
as well as jk ”
g Vif iy g by (x) = 0 Aw (81)

Definition 2. The r/p-tensor field
is called the Killing r/p-tensor field, if

V[j fi,...ip]l,...lr(") =0 (82)

For the Killing r/p-tensor fields it follows from (82)
that

jk
gV fki,...i,’,t,...lr(") =0 (83)

It is easy tq note that the harmonic »/p-tensor fields
satisfy the relations (69), and comsequently from therem 11
there follows the '

Corolleary 9. If in & compact n-dimensional Rie-
mannian space with a positive definite metric; the harmonic

field of the r/p-tensors fh...il,..i,(x) satisfies the ine-
qualities P
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(o,

)<O
then this field is a covariant constant field, that is

Fi i Lol (x) =0

l,...lp

and consequently

= 0

i (f (84)

iy, 1,...1,)

If the quadratic form F-(ﬂ1 iy L ) is a positive de-
ey by

finite form, then - as it follows from (84) - there do not
exist the harmonic »/p-tensor fields different from zero.
Similary, the Killing r/p~tensor fields satisfy the iden-
tities (77), from theorem 12 there follows:
Corollary 10, If a compact n-~dimensional
Riemannian space with a positive definite metric the Killing
r/p-tensor field fh---%l1---H(x) satisfies the identities:

F (. ) <0

iy 1 11...

then this field is a covariant constant field, i.e.

f.

{

1...l",,l,...l’_; j(x) =0

and conseqeently

F(fi,...iP l,...l,) =0 (85)

If, however, the quadratic form F(fh ...l ) is a
o N
negative definite form, then - as it follows from (85) there
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do not exist the Killing r/p-temsor fields other than equal
to zero.

In section 2 we have stated that the field of a covariant
derivative of the r-th order of the p-vector field fg.__ %(XL
i.e,

f.

i ..;lr(x) (86)

1”.ip;l1;.
is a particular case of the r/p-tensor field.,

It is easy to note that if we restricted our considera-~
tions of this section to the particular case of r/p-tensor
fields of the form (86), a part of our considerations and re-
sults would be the same as the corresponding considerations
and results of R.Srivastave published in paper [12].

There may be noted something more, namely that if in
nearly all places of paper [12] we substitute the +tensor

fg..ip;lﬁ.. L by a more general r/p-tengor f”"'ipl1"'h

respectively, we shall get similar results.

This enable us (while refraining ‘from the proof which
would be amnalogical to the corresponding proof of paper [12])
to formulate the following two theorems which constitute a
natural generalization of the corresponding theoreéms of pa-
per [12]: '

Theorenmn 13. In a compact orientable n~dimensional
Riemennian manifold with a positive definitfe metric; the r/p-

tensor field fh i ..l is a harmonic field of the r/p-
ceetplynldy

tensors, if and only if it satisfiesgs the identities

jkf = i ’ f +
9 Tk T &4 R, gy @igygeip oy
ab
¥ g; igiy fi,....',_, Qigyyoigog Digaymip byl +
5 r a b

5-1 t" .s.t 11...13_'ﬂl$+1...l’ l'...lt,1blt’1... lr
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Theoren 14, In & compact orientable n-~dimensional
Riemannien manifold with a positive definite metric, the r/p-
tensor field . fH i L | is the Killing r/p~-tensor field,
ceetplydy
if and only if it satisfies the identities

i,..'p pil T s iq-lgoq@ig plyty
ab
+> R .. f +
e iy g lgg @lgyq oty g by, t by Ly
ID I 0
T G bl Qe by by e
and the identities
k
f.oo. L (x) =0
tz...lpl,...lr,k

Let Vn continue to be a compact orientable Riemannian

menifold with a positive definite metric and fi il L (x)
- dplye by
an arbitrary field of r/p-tensors fH Ll in the given
ceelplye by

manifold.

Like in the case of the p-vector fields, we define the
inner global product of the r/p-tensor fields by the formula

() =f _— EUTTE
ACEUTE

where:

df

de ST de’ dx"> 0, g det (g,)
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Since from the assumption the metric i1s positive definite,.
we always hawe (f,f))O, where (ff)=0 i f=0.

To simplify the further calculations we shall establish
new symbols

- ¢
P Py, (p+1) Vi i, i 4, &7

and

= ) j
LA A R R SR A (88)

New, if ‘Pi1.‘.ipl1...lr(x) is a harmonic field of the r/p-

tensors, in accordance with the definition 1 as well as with
the above denotations, we have

¢ =0 ¢ =0
D

R

'Lr(X) and h lr(x) continue to

Let f11...u1.. Byl
be arbitrary r/p and r/(p+1) tensor fields respectively.

Let us consider the vector field

i ogf
u =f. .

Ly pl1te

On the basis of Green s theorem [2] we get

] jigedohy il
0=J\7j u'dv =I(V[j fi,...ip]lf..lrhl‘ T h ;j)(89’

-
vl’l
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From (89) as well as from (87) and (88) it follows

(5:0)+(pe1)(f:h) = 0 0)

If (p-l1 i L, ! is a harmonic field of the r/p-tensors,
Sl
then ¢=0 and (g=0
R

¢ % (9) +(g) - 0 o

Let us assume now that the r/p~tensor field satisfies the
relations (91). Putting f=(p and h=¢ into (90) we get
D

(¢:¢) *(p+1) (0:19]) = O (52

If we put f=(p and h=@ into (90) we get

(((P )*p(gi9) =0 (93)

From (91), (92) and (93) we get

(0:9) = (019 +9) = (0. 0)*(0:0) -

1 . - . =
“pi(9i9) TP (gi9) =0
from which there follows immediately

(?,?)=O e ¢=0

and

Il
o

(9;9) = 0 e ¢

6 0 0
In this manner we have proved:
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Theorem 15 (De Rahm's and Kodaire's [9]).

In a compact orientable Riemannian manifold Vn with a
pogitive definite metric, the r/p tensor <fileld is a harmonic
r/p-tensor field, if and only if it satisfies the identities:

Let FH ity (x) be a harmonic field of r/p~tensors,
gyl
satisfying the identities

Fi,...ipt,...l,(x) R v[gﬁiz...ip]l,..‘lr (94)

i.e. according to the denotations of (87) and (88)

F-h
R

From the definition of the harmonic field of the r/p-ten-~
sors as well as from the assumptions (94),(87) and (88) there
follows

?) = 0 and { = (
Putting f=h and h=§ into (90) we get
(hih)+p(h h) =0
and by virtue of (95) we have

R=F-0

R

o

Thus we have proved that if the harmonic field ﬁ1 igly [(X)
cdplye L
of - the r/p-tensors is 1linked by (94) with the field
- 125 -
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h. | (x) of the r/(p-1)-temnsors, it is equal %o
l2...lp 104

ZeT0.

It is known from [7] that if a V, @admits a one ~ para-
metre group of motions generated by an infinitesimal transfor-
mation

Pl

X = xi + vi(x) dt

the Lie derivative of the metric tensor with respect +to this
motion disappears in Vn, i.e.égu=0and consequently the o~
perator of the covariant differentigtion Vj, in this case is
interchangeable with the operator { of the Lie derivative.

Let us assume now that there is a harmonic field of the
H(X) in a Vn.

r/p tensors fi ;|

" Then from the definition we have the identities

V. f. ]h--hm =0 (96)

iy i

and

ik
9 Vi, (0 =0 (97)

By virtue of the assumption, that the ILie derivative of
the metric tensor qU turns into zero and that the differen-
tiation operators %;{ are interchangeable, from (96) and (97)
there follows

and
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Hence: If the Riemannian space Vn edmits infinitesimal
motions generated by an infinitesimal transformation 'x'=
=x‘+v%x)dt the Lie derivative %f with respect to Vv of the
harmonic field of the r/p~tensors is also the harmonic field
of the r/p~tensors. '

From the definition of the harmonic fields of +the r/p-
tensors as well as from the definition of the dual-tensors
with respect to the r/p tensors and from (31) it follows im~
mediately that: if the r/p-tensor field i1s a harmonic field
of the r/p-tensors, its duasl is also a harmonic field of the
r/(n-p)~tensors, Further it follows that: The hit‘iph“‘lr(X)

tensor - field in V2p is a harmonic field of the »/p-ten-
sors if and only if the self-dual tensor-fields in decompo-~
gition (36) are harmonic fields of the r/p tensors,
Let us also agsume that the space under our consideration
is a 2p-dimensional Riemannian space (p > 2).
Consider the form F(fi..i L, .. l) ag defined in the iden-
: 1 prt--tr

tity (72), i.e.

N - (98)

S £ PO RN U Y PO B
-2 R f
- aij

fiplyo gkl gyg ety

Using the decomposition (36) we have

k o dp by Ly @ty gl j

R .f PP f =

aij

_ k liz"'ipli"'lt-1alfﬁ""r iiz....il’l,...l,,,uIM..Jr
=R [t +f | :
atj \1 2
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J S
'F +f_‘ ):
(1 ‘2“"pl1“'lt-1k!t+1'"lr 2 lz.“lpl'“.lt_1 klyy- 4
k

- P f“’ iplytyg Ol fj ' .
at) 1 (2“Jp“nit_1kl”1“1r

« iply by @l gty

R Flizn. _ f ‘“ N

aty 1

. Rk ) fn,mnpgnuf poglp

aij , 2. G iply by gkl

dl

tfi'“lr
where f and f are gelf-dual r/p -tensors of the 1-st and
of the 2-nd kind respectively.

‘ Using the theorems 3 and 5 as well as identities Rd[”]=
R‘mj it is easy to show that

k i Lo by @l
2 LA &% Bkl £3
R .. f P A =0

aij by l,“Jt 1(1l“1 A,

Thus, we have

Corollary 10, The form F(fh L. L) - de-

.lp 1ty
fined by the identity (72) - in a 2p-dimensional Riemannian

space agsumes the form:

- (100)
iigiplyt, ik

p—1
to Ry f

Now, using corollaries 9 end 10 ag well as the theorem
3.4, from [6] it is easy to prove:
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Corollary 11, In & compact 4p-dimensional
Riemannian space Vﬂo with a positive definite metric there
are no harmonic fields of p-vectors if and only if there do
not exist harmonic fields of the r»/p-tensors in this space.

Let us taeke now into consideratlion an arbitrary harmonic
field of the p/p-tensors ai1...ij1..J (x) which are bi-ten—
sor field at the same time. P P

Thus from the assumption this field satisfies the identi-
tes

(x)

ag well as

ai,., iy,

as the bi-tensor field, and

as well as

a8 & harmonic field of the p/p ~-tensors,
It is easy to note that having a given bi-~tensor field
Gi1 i h j (X) it is possible to form a new bi-tensor field
ceelplpe ey
according to the formula

(101)

We shell prove.
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- (x)

coilpfpee )
P P
is a harmonic field of the p/p bi-tensors, the field of the

bi-tensors aiz (g -] (x) defined by formula (101) is also
bl p

& harmonic field of bi~tensors.
Proof. Let us assume that air
field of the r/p tensors, then

Theorem 16, If a bi~tensor field Qi1

iy j(X) is a harmonic
dplye -y

a, ~a, . —-q =0
i k wlygkly. Lt H“JPI ( 1k,lp (102)

i el pi ylp-

1 pl1...lp;

as well as
k
@, i =0 (103)

iyl
Multiplying the identities (102) by g " ana suming for
414 and taking into account (101) and (103) we get

a. . =0

lzmlpﬂznlp;k]

From the properties of the bi-tensor fields and from {103)
it follows that

—k

a. . =0
|3m(p12mlp,k
Consequently a field of the bi-~tensors ai i : is
2...p12¢.-Jp
harmonic field of the p/p ~tensors.
We prove analogically
Theorem 17. A bi-tensor field a; P (x)
(R P PR

satisfying the identities

a,. . =0
[igip |ty |;K]
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is a harmonic field of the p/p -tensors, if and only if the
bi-tensor field

L =9 Q

iz...ip 2-1p liz.”lpjjz.ujp

is a harmonic field of the (p-1)/(p-1)-tensors.
Let the bi-tensor aUkl be a harmonic field of 2/2 ten-
sors., Then we have

Oiiktia * Qijak;t * Qijla;k = O (104)

as well as

o

O e =0 (105)

Multiplying (104) by 9 ¢ and summing for ijkl and ta-
king into consideration (105) we get

where

il

df it jk
ad= 0 g 9

Thus we have:
Cnrolary 11, If the bi~tensor field G&jkl is a
harmoniic field of 2/2 tensors, then the scalar field

a(x) £ qu qjkaijkl (x)

is a constant field.
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§5. APPLICATION AND FINAL CONCLUSIONS

In his paper [13], W.Wrona has proved i.a. that the i~
dentities

©°
Co

. pj‘.”jp ii""pl1”'1p (106)
where §=+14if p=2k or 0=-11if p=2k+1(or where 8=-1 if p=2k or
©@=+1 if p=2k+!), express the nacessary and sufficient condi~
tions that the Riemannian space V2p should -be the Einstein
space (and conformal - Fuclidean space respectively).

From (106) it may be concluded [15] that the identities

)
R, i i =B8R, .. . (107)

where 8=+1 if p=2k or B8=-1if p=2k+1, also satisfy the nece-
gsary and sufficient conditions that the Riemannian gpace V2p
should be the Einstein space. >

The expanded curvature tensor R.

i i + and the ex-
P 4. p“"'JD
panded deviation tensor UH by in the Einstein space
gy .
V2p satisfy the identities
R 0
. . = (108)
iy ip[ty-tpi k]
as well as
p
U =0 (109)

[l k]

From (48), (106), (107), (108) and (109) it follows that
the expanded curvature tensor in the Einstein space V2 and
the expanded deviation tensor, also'satisfy the identities
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ﬁ" 0
L o= (110)
lz.ulplr“lp,k
as well as
Pk
u-. . =0 (111)
ly-1p ‘1""p ik

From definition 1 and the identities (108), (109), (110)
and (111) there is

Corollary 12, A field of the expanded curvature
tensor ”"‘%j1b‘JP as well as a field of the expanded de=-

viation tensor UH in the Einstein space V2p are

T |
harmonic fields of th: p/pp-tensors.

From theorem 16 and corollary 12 we have

Corollarxry 13. The curvature tensor Rijkl and
the Ricci tensor Rﬁ in the Einstein space V2p are harmonic
p/p-tensors,

It does not follow from the fact that the curvature temsar
of +the Riemannian space V2P is a harmonic 2/2 tensor that
it is also the Einstein space,

It is-easy to note that, if the curvature tensor qul in
V4 satisfies the condition

(1]

Rijkl = R * Tijkl (112)

where 'T“H;a=0 the V, ceases to be the Einstein space (cf.
(107)) however the curvature tensor RUkl continues be a har-
monic,p/p-tensor. Thus, the Riemannian space Vn whose cur-~
vature tensor RU“ is a harmonic 2/2 +tensor, is a more gene-
ral space than the Einstein space.

From corollary 11" it follows

Corollary 14.The Riemannian space whose curvatu-
re tensor RUH is a harmonic 2/2 tensor has a constent scalar

curvature,
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From (106) and (107) there follow immediately the identi-
ties:

p
G =8u (113)

as well as

(-]
A-J
-

R, =6R

i dyedp i K (114)

i'...ip i1...jp;k
from which by virtue of the definition of the r/pxp -tensors
(cf.(49)) and from (106) and (107) we get

Corollary 15, The covariant derivative of the
expanded curvature tensor and the expanded deviation tensor
in a 2p-dimensional Einstein space are the self-dual flelds
of r/pxp =-tensors of the 1-st kind if p=2k.and of the 2-nd
kind, if p=2k+1

Corollary 16, The covariant derivative of the
expanded field of a deviation tensor in a 2p-dimensional con~
formal ~ Fucliden space is & self-dual field of +the r/p=x p-
tensor of the 2-nd kind, if p=2k and of the 1-st kind,if p=2k+]

It is also evident that from (106) and (107) there follow
the identities (113) ~and (114) but in general (as a rule)
there do not follow inverse conclusions (cf. (112))5 Thug the
Riemannian space V2p in which the curvature tensor RH~~ijr-J

P P

satisfies-the conditions (114) if 6=+1 and p=2k or if B=-1 and
p=2k+1 is as a more general space than the Einstein space V;r

Similary, the'giemannian space V2p in which the expanded
deviation tensor UH-~~%h"~h satisfies the identity (113)
if 6=-1and p=2k of if O=+1 and p=2k+1 is a more general space
that the conformel -~ Euclidean space.

Thus, let us assume the following definitions:

Defimnitio n 3.The Riemannian space V2p in which
the curvature tensor RH--~%]T-Jp satisfies the identities
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R ay:
by dp ;1...]P;k i,...tph...jp; k
where 8=+1and p=2k and where 0=-1and p=2k+! is called a gene-
ralized Einstein space V2
Definition. 4, The Rigman.nian gpace v2p in

which the expanded deviation tensor Ui1- i j1. o gsatisfies
the identities ’ P

P

o P
U, =0U

I‘...ipjr.‘jp;k k

Ly ‘P [1...jp;
where 0=-11f p=2k or O=+1 if p=2k+1 is called a generalized
conformel -~ Euclidean space.

To conclude, let us pay attention to +the fact that all
the theorems for self-dual r»/pXp -tens?rs proved in section 3
and applied to tensors R; ;. . j (Ui . ij..j,
enable us to state whether the given Riemannian space V2p is
a generalized Einstein space, or the conformal -~ ©Euclidean
space, or wheter it is neither of the two.
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0 PEWNYM UOGOLNIENIU POJECIA SAMO-DUALNEGO
TENSORA, TENSORA HARMONICZNEGO I TENSORA
KILLINGA W Vn

Streszczenie

Niniejsza praca sklada sie z pleciu paragraféw zwigzanych ze sobg
tematycznie.
W § 1~szym autor przypomina znane pojecia i fakty z geometrii rie-

mannowskiej,
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W § 2~gim i 3=-cim autor uogdélnia znane pojecie dualnego i samo-du-
alnego multiwektora,oraz bi-tensora na szersza klase pél tensorowych,a
nastepnie bada pewne wiasnosci tych pél,

W § 4~ym autor uogélnia pojecie pola harmonicznego p-wektoréw i po-
la p~wektordéw Killinga na klas¢ pdl tensorowych rozwazanych w §-fach
2-gim i 3-~cim, podajgc réwniez szereg witasnosci tych pél tensorowych,

W ostatnim paragrafie autor podaje prébe stosowania wprowadzonych
pojeé do badania pewnych wlasnosci specjalnych przestrzeni Riemanna,

Praca stanowi pewne uogdélnienie rozwazan zawartych w pracachs: J,
Haantjes i W. Wrona [4], W. Wrona [13], K. .
Yano 1 S, Bochner [6], RCh, Srivastava [12]
oraz we wczeéniejszych pracach autora [15]; [16]; [17].

Received, July 13th, 1969.

Adress of author: dr Zbigniew Zekanowski, Warszawa, ul, Marszalkowska
140 m 86

- 137 -



