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A g n i e s z k a Pluciriska 

O PEWNEJ UOGÓLNIONEJ POSTACI RÖWNAN ROZNICZKOWYCH 

W TEORII PROCESÖW STOCHASTYCZNYCH I O ZASTOSOWANIACH 

TECHNICZNYCH ROZWIAZAN TYCH RÓWNAN 

Glównym celem niniejszej pracy jest podanie równan rózniczkowych 

cz^stkowych Kolmogorowa dia niemarkowskich procespw, to równania 

(17), (22), (2?).Wyst^pujace w tych równaniach funkcje F, H dystry-

buantami, f oraz h - ggstoáciami, funkcje oznaczone literami a z od-

powiednimi indeksami sq infinitezymalnymi momentami procesu Y(t) dia 

t > 0; dokladne okreslenie wszystkich tych funkcji podane jest v spi-

sie oznaczeñ. 

Podane sq pewne szczegolne rozwi^zania równania (2?).Mianowicle je-

áli infinitezymalne momenty dane s^ wzorami (33)» (34-)» to gfstoáé f 

dana jest wzorem (36), jesli y-x > 0 i infinitezymalne momenty dane 

sat wzorami (38), (39), to ggstoáé f dana jest wzorem (40). Szczegól-

nym przypadkiem g§stoáci (36) jest ggstosó zmiennych losowych procesu 

Wienera. 

Klad^c x=0, t=const, s=const w (36) i w (40 ) otrzymujemy gestoác 

zmiennej losowej Y czyli odpowiednio funkcje (51 ) oraz (4-9). Funkcje 

(51 ) i (4-9) mog^ bye równiez otrzymane*jako rozwiqzania uogólnionej po-

stad równania rózniczkowego zwyczajnego Pearsona; funkcje (4-9) otrzy-

mujemy jako rozwiqzanie równania (AS), funkcje (51) - jako rozwi^zanie 

równania (50). 

Funkcje (4-9) i (51) mogq byé napisane za pomocg. jednego wzoru a 

mianowicie wzoru (52). Funkcja (52) jest uogólnionq postaci^ g§stosci 

wielu znanych rozkladów prawdopodobieñstwa. Día szczególnych wartosci 

parametrów otrzymujemy jako szczególne przypadki ggstosci rozkladówt 

gamma, chi, chi-kwadrat, Veibulla, wykladniczego, normalnego.Maxwella. 

Omówione sq rozne przyklady zastosowañ funkeji (52) do zagadnieñ 

technicznych w szczególnoáci zastosowaá w teorii niezawodnoéci. 
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2 A.Pluciáska 

SPIS OZMCZEft 

Wektor losowy» Y(t) = [ y ^ ( t ) , . . . , Y n ( t ) ] . 
Dystrybuanty warunkowe 

F ( s , x , t f y ) = P [ T 1 ( t ) < y 1 , . . . , T n ( t ) < y Q | YÜD = x ] d ía 0<s<t 

H ( s , x t r , z ( t , y ) = P ^ ( t ) < 7 l , . . . ,Y Q (t) < y j Y(i") = x , 1 (F ) = ¿] 

día O < s < r < t 
Gfstoáci warunkowe 

f ( s , x , t , y ) 
9y/i . . . 0 y n 

h ( s , x , r , z , t f y ) = ^ ( s . x . r . z . t . y ) 
9 y 1 . . . 9 y n 

Infi'nitezymalne momenty 

^ (s,x) = limo ^ J ( y i - x i ) P ( s , x , s + As,dy) , 

|y-x|<(f 

a<»> 

|y-x|<d 

i8»*» 1 5»2) = i t ' / ( y i - a i ) M s , x t t , z f t + Ä b , y ) d y , 
|y-z|<cT 

a^)>;j(SfX>t,z)= limQ^ J (y^z^^Jíy^-z^hís.x.t.z.t+At.yJdy, .(H)-
l2, 

|y -Z |«f 

= l i m —'-g- / ( y - z ) 2 k ~ \ ( s t x f t , z , t + A t , y ) d y , <¿k— i » » » Af—n ./ 
,(H) 

5T-0 

a ^ í s ^ t . z ) = l im — ^ f ( y - z ) 2 k h ( s f x , t , z , t + dt ,y)dy. 

|y-z|<tf 
- 50 -



0 pewnej uogólnionej postaci równan rózniczkowych 3 

1° TJwagi wst§pne 

Celem niniejszej pracy jest syntetyczne przedstawieniewy-

pewnych uogólnien niektórych wyników tych prac. 
W pracy omawiane zagadnienia zwiqzane z rawnaniami róz-

niczkowymi cz^stkowymi Kolmogorowa dia niemarkowskich proce-
sów. Podana jest pewna wazna z punktu widzenia zastosowaàfurt-
kcja "b^d^ca rozwi^zaniem tych równan i dia ustalonej wartoéci 
parametru czasowego b§d^ca rozwiqzaniem. uogólnionej postaci 
równania rózniczkowego zwyczajnego Pearsona. Ponadto wskazane 
s^ konkretne przyklady zastosowan tej funkcji w teorii nieza-
wodnoéci. 

Zagadnienia zwi^zane z równaniami Kolmogorowa dia proce-
sów markowskich byly tematem wielu publikacji. Równania te 
wraz z licznymi zastosowaniami podane s^ na przyklad w pra-
cach [7]» [8], [ 9 ] . Uogólnienie tych równaà na przypadek zlo-
zonych procesów Markowa tzn. takich, ze stan procesu w danej 
chwili zalezy od stanów w n chwilach poprzednich podane jest 
w pracy [ i o ] . W monografii [il] równania Kolmogorawa dia pro-
cesów markowskich rozwazane s^ w oparciu 0 teorif pól-grup 0-
peratorów. 

Glównym celem niniejszej pracy jest podanie równan Kolmo-
gorowa dia przypadku procesu, który nie musi spelniaé warun-
ku Markowa. Zalozenie, ze proces jest procesem Markowa ¿Jest 
silnym zalozeniem i wiadomo, ze bardzo wiele rozwazanych w 
praktyce procesów nie moze by6 traktowanych jako procesy Mar-
kowa. 

Uzyskane wyniki b^dq porównywane ze znanymi wynikami dia 
procesów markowskich. Dia ulatwienia zestawieii zostan^ wife 
najpierw podane równania Kolmogorowa dia procesów markowskich 

2° Równania. rózniczkowe cz^stkowe Kolmogorowa dia markow-
skich procesów. 

Równania te dia markowskich procesów zostaly podane przez 
Kolmogorowa w pracy [ 1 2 ] i jak to juz zostalo zaznaczone, za-

ników zawartych w publikacjach 
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k A.Plucinska 

gadnienia zwi^zane z nimi byly tematem wielu publikacji. Aby 
napisaó te równania trzeba wprowadzié pewne podstawowe ozna-
czenla: 

Niech Y(t) dia t > O bçdzie n-wymiarowym wektorem. lo-
sowym 

gdzie Yjj-Ct) s^ dia k = 1,2,...,n procesami stochastycznymi 
Markowa, z których kazdy przyjmuje wartosci z przedzialu licz-
bowego Ik. Niech I* bçdzie iloczynem kartezj&dskim przedzia-
lów I, tzn. 

Oznaczmy przez x, y, z n-wymiarowe wektory o wspólrz§d-
nych rzeczywistych 

zaá przez F dystrybuantç warunkow^ w n-wymiarowej przestrzeni 
Euklidesowej 

F(s,x,t,y) = p[Y1(t)<y1,...,Yn(t)<yn|Y(s) = x ] (1) 

YTt) = [ï^it),...,!^)], 

I # 

X a 

y = [^»••••^n] 

dia 0 < s < t 

Niech dia dowolnego <5 > O istniej^ granice 



O pewnej uogólnionej postaci róvnañ rózniczkowych 5 

^•fü = I»»»«»11» 
przy czym zMeánosé we wzorach (2) - ( 4 ) j e s t jednostajnaw^sjlç-
dem X. 

Nieoh 

« • A * . » » • ty§*tyB • < 5 ) 

Wówczas przy pewnych zalozeniach dotycz^cych regu la rnoác i 
f u n k c j i sprecyzowanych np. w pracy [9] spelnione s^ równani a 
róiniczkowe cz^stkowe Koimogorowa 

9 P ( s . x t t t y ) + y - ( J ) ( = £ ) a g ( s t x t t , y ) 
ÖS fa. * \ f 1 

i,j=1 1 3 

^ t B t x , t , y ? + ¿ a J ¡ » > ( B f x ) ä f i ^ M j + 
i -1 ' i 

• i ¿ ^Ül'h^ - o. »> 
i.j-1 1 J 

x , » . » > ] • 

- s ¿ : i j ^ ^ M ^ - f i ' - A ^ ) ] - 0 - ( 8 ) 

Na to aby spelnione "bylo równanie (6) n ie j e s t oczywiácie 
potrzebne i s t n i e n i e gçs toéc i (5 ) . Równania (6) , (7) nazywaj^ 
s i f równaniami retrospektywnymi. Równanie (8) nazywa s i ç rów-
naniem prospektywnym. Równanie (6) wyprowadza s i § w oparciu o 
równanie Chairaana- Koimogorowa d ía dystrybuant 
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6 A.Plueinska 

*(B,x ftfy) = J 
J* 

Równania (7)» (8) - w oparciu o równanie Chapmana-Kolmo-
gorowa dia g§stoéci 

f(s,x,t,y) = / f(s,x,rtz)f(r,z,t,y)dz . (10) 
J* 

3° Równania róèniczkowe cz^stkowe Koìmogorowa dia niemar-
kowskich procesów. 

Hieoh analogicznie jak w 2° Y(t) b§dzie n-wymiarowym wek-
torem losowym. ale nie zakiadamy, ze skiadowe sq procesami Mac-
kowa, Niech P bfdzie dystrybuant^ warunkow^ okreslong. przez 
(1) zaé H dystrybuantq, warunkowq rz§du drugiego tzn. 

H(s,x,r,z,t,y) = p[Y1(t)<y/,,...,Yn(t)<yn|Y(^)=5E,Y(F)=i](11) 

0 < s < r < t . 

Nalezy zaznaczyé, ze funkeja H(s,x,r,z,t,y) jest nieokre-
élona w zbiorz'e U: s=r, x^ / z^ bowiem s=r, x^ jé z^ dia ja-
kiegokolwiek k (k=1,...,n) oznaczaloby nalozenie sprzecznych 
warunków w (11). Wszystkie dalsze rozwazania dotyczq obszaru 
nie zawieraj^cego zbioru II. 

Przy zaloèeniu wlasnoéci Markowa pelna struktura probabi-
listyczna procesu jest wyznaczona przez rozklad pocz^tkowy i 
prawdopodobienstwa warunkowe rz§du pierwszego (vide praoa[l3]) 
tzn, prawdopodobienstwa postaci (1). Jeéli nie zakiadamy wla-
snosci Markowa prawdopodobienstwa warunkowe rzfdów wyzszych 
(we wzorze (11) wyst^puje prawdopodobienstwa warunkowe rz§du 
drugiego) nie redukuj^ si§ do prawdopodobienstw rzfdu pierw-
szego, tym samym funkeje (1), (11) daj^ tylko cz§sciow^ infor-
m a c i o procesie. (Moàna tu odwolaé si§ na przyklad do nast§-
puj^cej analogii: podanie wartoàci momentów dwóch pierwszych 
rz§dów nie wyznacza rozkladu zmiennej losowej, podanie warto-
sci tych momentów ¿jest tylko cz§éciowq informaci o zmiennej 
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O pewnej uogólnionej postaci równan rózniczkowych 7 

losowej, niemni ej ¿jednak w wielu zagadnieniach wykorzystuje 

siç tylko tç inf ormac¿j§ ). 

Z (1) (11) wynika, ze 

F(s,x,t,y) = I H(s,x,r,z,t fy)F(s,x,r,dz). (12) 

J* 

Zaleznosé (12) jest uogólnieniem równania Chapmana-Kol-

mogorowa (9) na przypadek procesów, które nie musz^ spelniaé 

warunku Markowa. Zaleznosó pierwszego czynnika pod calkg. od 

s,x we wzorze (12) wskazuje na niespeinienie warunku Markowa 

(vide praoa [14] ). 

Udowodnimy nastçpuj^ce 

T w i e r d z e n i e 1. Jeáli día dowolnego cf>0,jedno-

stajnie wzglçdem x 

(13) 

|z-x| > d 

Ä / (z i-x i)F(s,x fs+ As,dz) 3 a ^ ( s , x ) , (14) 

|z-x|<d 

1=1,...,Q t 

l ^ o IB / ( a i - « i ) ( z r x ; j ) r ( 8 f x f B + A s f d S ) = 0 5 ) 

|z-x|<d 

i» d=i»•••» nf 

día kazdego i,j istniejq. cingle pochodne cz^stkowe (16) 

d 3 d^ 
g j H ( s , x , r f z , t f y ) t H ( s > x > r t z t t , y ) , d z 9 g H ( s j g t r t z , t t y ) 

i i j 

to spëlnione jest równanie rózniczkowe czqstkowe 

H(s fx,r,x,t,y) + > 'affi(B tx)-s|~H(B tx tB tz tt ty) 
i = 1 ' i 

r=s 

(17) 

Z=sX 
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A.Pluciñska 

.(F) + 2 > . a y , ^ 8 » * ) a,.. a*; H(s ,x , s , z , t ,y ) 
i.j = 1 1 J 

=0. 
z=x 

Pochodne wystçpuj^ce we wzorze (17) naleèy rozumieó jako 
granice 

i 
lim TT- H(s,x,s+ Äs ,z , t ,y ) 
As—0 

z=x z=x 

g ^ - _ H ( s t x f s , z , t t y ) 
1 D z=x z=x. 

Koniecznosé wyjaánienia oznaczeá tyoh symboli wi .̂¿e si§ z 
faktem, ze funkeja H jest nieokreslona w zbiorze U. 

D o w ó d t w i e r d z e n i á 1. ZauwaÈmy, ze 

H(s ,x , s , x , t ,y ) = p [ Y 1 ( t ) < y 1 , . . . , Y n ( t ) < y n | ï ( i ) = 5 , Y ( i ) = i ] = 

= p [ Y 1 ( t ) < y 1 , . . . , Y n ( t ) < y n | ï T i " ) = x ] = F ( s , x , t , y ) . (18) 

Rozwijajqo f u n k e H wediug wzoru Taylora i korzystaj^c 
z uogólnione.i postaci róvraania Chapmana-Kolmogorowa (12) o-
trzymuj emy 

P( r - 4 r , x , t , y ; = / H(r- Ar,x,rtz,t,y)P(r- Ar t x,r ,dz)= 
J" 

= f Î H i r - t o ^ ^ . j E j t ^ + y ^ i z . - x . J g l - H ^ - A r ^ . r . z . t . y ) 
iz-xi<cr jrr 1 1 o z± z=x 

n 2 
+ \ ^ ^ ( z i ~ x i ) ( z j ~ x j ) Qz d z H(r- A r , x , r , z , t , y ) 

i,j = 1 1 J z=x 
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O pevnej uogólnionej postaci równan rózniczkowych 9 

[ i + o ( z - x ) 2 J j F ( r - A r , x , r , d z ) + o(Ar) . ( 1 9 ) 

Ze wzorów ( 1 8 ) i ( 1 9 ) wynika, ¿e 

[ n ( r - A r , x , r , x , t , y ) - H ( r - A r , x , r - A r , x , t , y ) ] + (20) 

* J ( z . £ - x ^ ) F ( r - A r f x f r J d z ) + . 1 ^ 0 

+ 7 T / "57" ÄT H ( r _ ^ , x , r f z f t , y ) 
i - 1 

z=x | z - x | < d 

n 2. 
+ r s î X H ( r - A r , x , r , z , t , y ) 

U - 1 z=x 

J [1 + o ( 2 - S ) 2 ] ( a i - X 1 ) ( B ; j H * ; j ) P ( r - A r l x , r t d z ) ' + = 0 . 

I z - x I < â 

Erzechodzqc we wzorze (20) do g r a n i c y przy Ar—-0 i u -
wzglçdnia j^o ( 1 4 ) , ( I 5 ) otrzymujemy ( 1 7 ) end. 

J e é l i dodatkowo zaloéymy, ¿e i s t n i e j e gçstoàé 

h ( s , x , r , z , t f y ) = ' " ^ f f i * , ( 2 1 ) 

to r ó z n i c z k u j ^ c stronami ( I 7 ) wzglçdem y 1 , . . . , y n i z a k l a d a j ^ c 
c i ^ g l o á ó odpowiednich pochodnych cz^stkowych otrzymujemy rów-
nanie róàniczkowe d i a g ç s t o s c i (przy analogicznym, j a k we wzo-
r z e ( 1 7 ) rozumieniu symboli pochodnych) 

¿ h ( s , x , r , x , t , y ) | = a j F j ( s > x ) ¿ - h ( s > x > s ) z t t > y ) 
i - 1 ' 1 z=x 

3 (22) 
z=x . 

Równanie (22) z o s t a l o wyprowadzone w pracy [ i ] d í a p r z y -
padku n = 1 . Podany tam dowód przehlega podot>nie Jak, podany 
w n l n l e j s z e j pracy szkicowo, dowód t w i e r d z e n l a 1 . 
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10 A . P l u c i n s k a 

Rownania (17) i (22) s3. odpowiednikami rôwnan Kolmogoro-
wa retrospektywnych. I s t n i e j e rôwniez dla procesôw nie spel-
niajqsych warunku Markowa odpowiednik rôwnan Kolmogorowa pro-
spektywnych. A mlanowioie zakladajqo istnienie g§stoéci ("21) 
mozna udowodnié. 

T w i e r d z e n i e 2. Jezel i dla kaèdego 6> 0 jedno-
stajnie wzglçdem z 

lim £ f h(s,x,t,z,t+ £t,y) dy = 0 , (23) 
A t - 0 J 

|z-y| >6 

lim J ( y i - z i ) h ( s , x t t , z , t + At,y)dy = ajj1^ (s,x, t , z ) , (24) 
| z - y | < d ' 

lim0 / ( y i - z
i ) ( 7 j - z ; j ) h ( s , x t t , z f t + At,y)dy = 

I z - y ^ r f 

= 4 E l - ¡ ( s , x , t , z ) ( 2 5 ) 

i s t n i e j ^ cingle pochodne cz^stkowe (26) 

^ ( s . x . t . y j . ^ - ^ ^ s . x . t . y i f i s . x j t j y ) ] , 

3 
a y 

wowczas spelnione jest rôwûanie rôèniczkowe cz^stkowe 

^ f ( s , x , t , y ) + Ç g | ^ [ a 1
( ^ ( s , x , t , y ) f ( s , x , t , y ) ] = 

n 

1 . 1 = 1 •*• 
= i £ Ô y . f y , [ 4 * 1 , 0 ( B , x , t f y ) f ( s , x t t , y ) ] . ( 2 7 ) 
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0 pewnej uogolnionej postaci rownaii rôzniczkowych 11 

Twierdzenie 2 udowodnione byio w pracy [2] dla przypadku 
n=1. Dowôd twierdzenia 2 nie zostanie podany, poniewaz dowôd 
ten dla przypadku dowolnego skonczonego n przebiegà podobnie 
jak dla przypadku a=1 i modyfikacje s^ analogiczne-jak przy 
przytoczonym juz uogôlnieniu twierdzenia 1 na przypadek dowol-
nego skonczonego n. 

Rôwnanie (27) rzfdu drugiego zawieraj^ce momenty i n f i n i -
tezymalne rzçdu pierwszego i drugiego mofcna dla n=1 uogôlnié 
na przypadek rôwnania rzçdu wyzszego niz drugi zawieraj^cego 
i n f i n i t ez'ymalne momenty rzçdu wyàszego ni i drugi. A mianowi-
c i e metodg. indukcji mozna udowodnic (patrz praca [ 1 ] ) . 

T w i e r d z e n i e 3 . J e é l i dla dowolnego <¡>0 i dla 
wazystkich k < m jednostajnie wzglçdem z 

lim — / ( y - z ) 2 k h ( s , x , t , z , t + At,y)dy = 0 , (28) 
(At) J 

|7-z| >(S 

l im 0 / ( y - z ) 2 k - \ ( s f x t t , z , t + û t , y ) d y = 4 2 ! 1 ( s , x , t , 2 i ) , ( 2 9 ) 

|y-z|<d 

lim — f ( y - z ) ^ h ( â f x f t , z , t + A t . y ) d y = a i ? 5 ( s , x , t f z ) , ( 3 0 ) 
At-0 (At) J 

[7-z\<à 

przy ozym szybkosé zbieènoéci we wzoraoh (28) - (30) j e s t t a -
kay ze dla k < m 

J ( y - z ) 2 k h ( s , x t t , z , t + £ t , y ) d y = o(At)m , (28^ 

/ (y -z ) 2 k ~ 1 h ( s , x , t , z , t + At,y)dy = 

|y-z|<cf 

a d t * a 2 J c _ 1 ( s t x , t , z ) + o U t ) m , < 2 9 ) 
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12 A.P luc ióska 

/ ( y - z ) 2 k h ( s , x , t , z , t + d t , y ) d y = ^ ^ ^ ( s . x . t . z J + o C A t f , ^ ' ) 
|y -z|<t f 

i s t n i e j ^ G i n g i e pochodne c z ^ s t k o w e ( 3 1 ) 

8 k / d 2 k r H 1 f ( s , x , t , y ) » ^ - 2 k [ a 2 k ( B , x f t f y ) £ ( s t x , t , y ) J , 

g ^ - l r „ -i 
. 2 k - 1 a ? k - 1 ^ s ' x » t » y ^ f ( s » x » t » y ) » k = 1 , 2 , . . . , m 
o y L J 

t o d i a dowolnego m n a t u r a l n e g o s p e l n i o n e j e s t r ó w n a n i e r ó z n i -

czkowe c z ^ s t k o w e 

1 3 m 

i l T m f ( s , x , t , y ) + 
o t 

^ a2m-1 r c H \ ] 
+ I 2 i ^ n r " ^ S P f [ ^ m ^ ( s t X , t , y ) f ( s , X , t , y ) j = 

Podstawowym z a g a d n i e n i e m zwi^zanym z r ó w n a n i a m i K o l m o g o -

rowa j e s t z n a j d o w a n i e d y s t r y b u a n t w z g l § d n i e g § s t o s c i p r z y z a -

d a n e j p o s t a c i i n f i n i t e z y m a l n y c h momentów ( p a t r z p r a o a [ 7 ] ) « 

Zauwazmy, z e r o z w i ^ z a n i e m r ó w n a n i a r e t r o s p e k t y w n e g o ( 1 7 ) 

j e s t f u n k c j a H ( s , x , s , x , t f y ) c z y l i .jako rozwi.a7.aoie r ó w n a n i a 

( 1 7 ) o t r z y m u j e s i g f u n k c j g F ( s , x , t , y ) . P o n i e w a z w s p ó l c z y n n i -

k a m i w r ó w n a n i a o h ( 6 ) i ( 1 7 ) s ^ t e same f u n k o j e a - p } - , 
9 11f J 

z a t e m koncowy w y n i k r o z w i q z y w a n i a r ó w n a n i a ( 6 ) i równania ( 1 7 ) 

j e s t t a k i sam l i c z b o w o , a l e do u z y s k a n i a r ó w n a n i a (17) a i e b y -

l a wymagana w l a s n o é ó Markowa. 
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0 pevmej uogölnionej postaci rownan rözniczkowych 13 

Innego typu analogia zachodzi pomî dzy röwnaniami prospe-
ktywnymi (8) i (27). W ot>u tych röwnaniach wyst§puje ta sama 
funkcja f ( s , x , t , y ) zas wspölczynniki s^ rözne. W rownaniu (8) 
sa nimi funke je ai ^ J w rownaniu (27) sa nimi funke je 

(H) (H) ' i 1 
a<i i » ao i j.Eozwi^zania röwnania (8) mogq. toyc traktowane ja-
ko szczegolne przypadki rozwi^zan röwnania (27)»Dia przykladu 
niech n»1, proces Y(t) t>§dzie jednorodny w czasie i przestize-
ni i niech 

a^ H ) (s,x f t ,y) = 2±|=£|y_x|1-P S g n ( y _ x ) , (33) 

a< H ) (s,x,t ,y) = | |y-x|2"P , (34) 

przy czym d > 0, p-liczba naturalna y / x . 
Podstawiaj^c 

i S w T 

i korzystaj^c z metody rozdzielenia zmiennych sprowadzamy röw-
nanie (27) do postaci (patrz praca [2]) 

(v-dv1-p)£,,(Y) + v2~P f^(v) = 0 , (35) 

gdzie 

f ^ v ) = r 1 / P f ( r , v ) . 

Röwnanie (35) jest röwnaniem roiniczkowym zwyczajnym rz§-
du pierwszego. Rozwi^zuj^c röwnanie (35) otrzymujemy nast^pu-
j^Ce rozwi^zanie röwnania (27) 'b§d^ce g§stosci^ prawdopodötdjen-
stwa 

f ( s , x , t , y ) = 
p - 1 - d 

P P r l y - x l 1 
d 

e x p 
1 i l y - x | . j 

P d 
e x p 

P 
. ( t - 3 ) 1 / P 

(36) 
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P r z y j m u o ^ c w ( 3 3 ) » ( 3 4 ) d = O, p = 2 o t r z y m u j e m y 

a J ¡ H ) ( s , x f t , y ) = O 

4 H ) ( s , x , t , y ) = 1 , 

c z y l i i n f i n i t e z y m a l n e momenty s ^ s t a i y m i , n a i c h w a r t o s é n i e 
m a j ^ wplywu. s t a n y p r o o e s u w c h w i l a c h s , t a w i § c p r z y j m u j ^ c w 
( 2 4 ) i ( 2 5 ) s = t , z = x i k o r z y s t a j ^ c z ( 1 8 ) o t r z y m u j e -
my 

F u n k c g a ( 3 7 ) j e s t g ç s t o s o i q . z m i e n n y c h l o s o w y c h p rocesu llíie-
n e r a , k t ó r ^ o t r z y m u j e s i § j a k o r o z w i g . z a n i e r ó w n a n i a ( 8 ) . A w i e c 
i s t o t n i e r o z w i ^ z a n i e r ó w n a n i a ( 8 ) o k a z a l o s i § s z c z e g ó l n y m 
p r z y p a d k i e m ( d i a s z c z e g ó l n y c h w a r t o á o i p a r a m e t r ó w ) r o z w i ^ z a r ü a 
r ó w n a n i a ( 2 7 ) . 

J e á l i y - x > 0 i 

a J [ H ) ( s f x f t , y ) = a j j P ) ( t f y ) = 0 

a | E ) ( s , x , t , y ) = t f y = 1 

z a s f u n k c j a f ( " s , x , t , y ) p r z y j m u j e p o s t a é 

(37) 

a ^ ( s , x , t , y ) = 2 + ^ - ^ ( y - x ) 1 - P 

a | H ) ( s , x , t , y ) = | ( y - x ) 2 - P 

( 3 8 ) 

(39) 
t o 

f ( s , x , t , y ) = 
P 

(40) 

- 6 2 -



0 pewnej uogolnionej postaci rownaÄ rozniczkowych 15 

Mo£na udowodni6 (patrz praca [2]), ze przy pewnych dodat-
kowych zalozeniach funkcja (40) jest jedynym rozwi^zaniemrdur-» 
nania (27). 

Podstawowym zagadnieniem zwi^zanym z röwnaniami Kolmogo-
rowa jest, jak zostalo to ju£ poprzednio zaznaczone,znajdowa-
nie dystrybuant ozy g§stoäci majqc zadan^. postaö infinitezy-
malnych momentöw. 

Jeäli nie zakladamy wlasnosci Markowa,to z röwnaniami (27) 
i (32) wi^fce si§ röwniei nast^puj^ce odwrotne zagadnienles ma-
j^c dan^ funkcjf f wyznaczy6 infinitezymalne momenty a ^ ^ (k= 
=1,...,m) 0dp0wiadaj3.ce funkcji h. Czyli majg.c zadan^ funkcj§ 
f wyznaczamy pewne wielkosci charakteryzuj^ce funkcj§ h.Niech 
n=1. Wstawiaj^c do (32) zadan^ postad funkcji f otrzymujemy 
röwnanie röäniczkowe, ktöre dla ustalonego m musz^. spelniac 
infinitezymalne momenty a-^^, ^nP* D l a us1;alCine?0 m w röw-
naniu (32) wyst^puj^ dwie niewiadome funkcje ajj^» * 
funkcji tych bez dodatkowych zaloieA nie mofcna wyznaczyö w 
sposöb jednoznaczny. Ale wprowadzaj^c dodatkowe zalozenia mo-
zemy wyznaczaö postac infinitezymalnych momentöw. Na przyklad 
zakladaj^c, ze Y(t) jest procesem jednorodnym w ozasie i prze-
strzeni, funkcje ^ z a l e ^ czasu,funkcja f da-
na jest wzorem (36), mofcna udowodnic (patrz praca [l]),zewow-
czas a ^ ^ s^ dane wzorami (33), (34-). 

Zadanie wyznaczania z rownan Koimogorowa infinitezymal-
nych momentöw ma jq.c zadan% g§stoä6 w przypadku procesu Marko-
wa jest trywialne, bowiem momenty infinitezymalne mozna wöw-
czas obliczyc po prostu z ich okreslenia czyli ze wzoröw (3), 
(4). Zadanie to ma istotny sens jedynie w odniesieniu do szer-
szej klasy procesöw a mianowicie w odniesieniu do niemarkow-
skich procesöw. 

4-°. Zwi^zki pomi§dzy infinitezymalnymi operatorami a in-
finitezymalnymi momentami, 

Niech g(x) b§dzie ci^gl^ funkcja okreslong. w przedziale I. 
Hiech Y(t) b§dzie jednorodnym w czasie procesem Markowa. Wöw-
ozas infinitezymalnym operatorem funkcji F (infinitezymalnym 
operatorem procesu Markowa jest (patrz praca [ll], [15]). 
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/ g(y)F(x, At ,dy)-g(x) 

A ( F ) S ( X ) = l i m i r - r - = l i m 6 " 6 ( 4 1 ) dt-0 At At-0 -̂b 

Przeksztalcenia T ^ "tworzq. w przypadku procesow markow-
skich polgrup§. 

Okreslenie przeksztalcenia (41) mozemy zachowaö nie zaklar-
dajac wlasnosci Markowa (przeksztalcenia T4 . nie bfdq two-

" (H) rzyö polgrupy). Ponadto okreölmy infinitezymalny operator Av 

funkc j i H dla procesu jednorodnego w czasie w nast^puj^cy spo-
söb I g ( x , t , y ) H ( x , t , z , A t , d y ) - g ( x , t , z ) 

A ( H ) g ( x , t , z ) = lim ^ : (42) 
At—'0 At 

Nie zakladaj^c wlasnosci Markowa mozna wyprowadzic nast§-
puj^ce zwiqzki pomi§dzy infinitezymalnymi operatorami a i n f i -
n i t ezymalnymi momentami 

* 

A ( P ) g ( x ) = g ' ( x ) a f } ( x ) + I g " ( x ) a | F ) ( x ) , (43) 

A ( H ) g ( x , t , z ) = g ; ( x , t , z ) a i ( H ) ( x , t , z ) + \ g ^ z ( x , t , z ) 4 H ) ( x , t , z ) 
(44) 

Wzory t e mozna wyprowadziö metod^ analogiczn^ jak w pracy 
[ l ] , przy czym w pracy [ l ] zakladane bylo dodaükowo i s tn ien ie 
g§stoäci czy l i pochodnej funkc j i F. 

5° Uogolniona postaö röwnania rozniczkowego Pearsona. 
Punkcje ( J6) i (40) zostaly uzyskane jako rozwi^zania row-

nan rozniczkowych cz^stkowych. Nalözmy warunek 

s = const, t = const, x = 0 (45) 
i oznaczmy t - s = a^. 
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Wówczas f u n k c j e (36) i (40) sq. g ç s t o é c i a m i z m i e n n e j l o s o -

we j Y . E tapem prowadz^cym do u z y s k a n i a f u n k c j i (36) b y l o r ó w -

n a n i e ( 3 5 ) . Równan i e (35) d'est r ównan i em ró zn i c z kowym. zwycza j -

nym, l i n i o w y m , r z ç d u p i e r w s z e g o a w i ç c ¿jest a n a l o g i c z n e g o t y -

p u j a k r ó w n a n i e r ó z n i c z k o w e P e a r s o n a , k t ó r e g o r o z w i ^ z a n i a sq. 

g ç s t o s c i a m i dosò s z e r o k i e j k l a s y z m i e n n y c h l o s o w y c h . Równan i e 

r ó è n i c z k o w e P e a r s o n a , j a k wiadomo ma p o s t a ó ( v i d e p r a o a [ l 6 j ) 

f'(y) = ( y + c ) f ( y ) . 
"b0+b1y+lD2y 

( 46 ) 

E r z y czym w s p ó l c z y n n i k i c , "bQt b 2 mozna w y r a z i c p r z e z 

momenty m̂ . = EÍY^) z m i e n n e j l o s o w e j Y . Z a l e z n o é c i pomiçdzy mo-

mentami m^ a w s p ó l c z y n n i k a m i e , b Q , b^, b 2 s^ dane r ó w n a n i a -

m i 

(c + b ^ n ^ + ( Zb 2 + 1 = 0 

b o m Q ( c + + ( 3 b 2 + I jn i g = 0 

} 

2"b0m^ +(c + 3 ^ ) 1 ^ + ( 4b 2 + 1)m 5 = 0 (47 ) 

3bom2 +(c + 4b^ + ( 5b 2 + = 0 . 

Z r ó w n a ù i a (46 ) n i e mozna o t r z y m a c w s z y s t k i c h ( d i a wszyst -

k i c h d o p u s z c z a l n y c h w a r t o s c i p a r ame t r ów ) g ç s t o s c i ( 4 0 ) . 

Rozwazmy n i e c o o g ó l n i e j s z ^ n i è (46 ) p o s t a é r ó w n a n i a r ó z -

n i c z k o w e g o , a m i a n o w i c i e rozwazmy r ó w n a n i e 

. f ' ( y ) = J ¿ i 2 i £ í z ) ( 48 ) 
t>0 + b 1 y -+ b 2 y 

g d z i e 

p - l i c z b a n a t u r a l n a . 

W s p ó l c z y n n i k i c , b 0 , b , , , b 2 w y s t ç p u j ^ c e w r ó w n a n i u (48 ) moz -

n a r ó w n i e z d i a u s t a l o n e g o p w y r a z i é p r z e z momenty m^.Pomiçdzy 

w s p ó l c z y n n i k a m i c , b o f b - i f b 2 a momentami m^ z a c h o d z q z w i ^ z k i 
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(c + + + nip = O 

b o m o + + + $ l o2m2 + = O 

(c + J b ^ ) ^ + + m ^ g 3 O 

^ 3 o m 2 + + + 5b 2m 4 + = 0 . 

J e á l i przyjmiemy w równaniu (48 ) bQ = b 2 = O f t o otrzymamy 
równanie , k t ó r e g o jedynym rozwi^zaniem bçd^cym g ç s t o à c i ^ j e s t 
d i a y > 0 

przy czym z o s t a l y wprowadzone o z n a c z e n i a ê— = d, b,, = - a ^ . 
1 

A n a l o g i c z n i e rozwaèajqo równanie 

f< (y ) = ( | y | p + o ) f ( y ) sgny d í a y ¿ 0 (50) 
b o + b 1 7 + í 5 2 7 

c u i przyjmuj^c o z n a o z e n i a = d , b^ = - a oraz warunek. bQ s* 
= b 2 = O otrzymujemy r o z w í ^ z a n i e 

6 o . Pewna u o g ó l n i o n a p o s t a ó g § s t o á c í zmiennej l o s o w e j i 
j e j z a s t o s o w a n i a t e c h n i c z n e . 

Funkoja (49) rozwazana j e s t d i a d o d á t n i c h w a r t o é c i a r g u -
mentu y , f u n k c j a (51 ) d í a w a z y s t k i o h w a r t o á o i argumentu y r ó à -
nyoh od z e r a . Zauwaàmy, ¿e o b l e t e f u n k c j e mofcna n a p i s a é z a 
pomoc^ jednego wzoru a mianowic i e wzoru 
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f(y) a Ti(-y) 
c 

c+C 

+ 

p H - D 
p 

o+C 
m 

A ( i f 
(52) 

przy czym a > 0 , A > 0 , d > 0 , D > 0 , p > 0 , o oraz 0 sq ta-

kie "by f(y) byio g§stoäci^ za6 rj(y) jest funked skoku. ¿je-

dnostkowego dan% wzorem 

n(y) = 

1 dla y > 0 

\ dla y = 0 

0 dla y < 0 

Funkcja (52) zawiera jako szczeg6lne przypadki g§stosci 
wielu znanych. rozkladow prawdopodobienstwa. Zauwafcrny bowiem,ze 
przyjmujqc c = 0 otrzymujemy g^stosd uogolnionego rozkladu. 
gamma (vide praca [17] ), ktorego szczegolnymi przypadkami sq 
rozklady gamma, chi, chi-kwadrat, wykladniczy, Weibulla, 

a = A , d = D = O t c = C , p = 2 otrzymujemy rozklad normalny 

a = A, d = D = 2, c = C, p = 2 otrzymujemy rozktad Maxwella. 

Funkcje (49) i (51) zostaly uzyskane zarowno jako rozwi^-
zania rownan rozniczkowych cz^stkowych jak i zwyczajnych.Ogo-
lnie mowiqc badanie wlasnosci funkeji jako rozwi^zan zadanych 
rownan rofcniozkowych jest wygodn^ i cz§sto stosowan^ w mate-
ma tyoe iaetod^. Za pomoc^ r6wnan rozniczkowych mo£na charakte-
ryzowad przebieg wielu zjawisk. 

Niezaleznie "od powi^zari. funkeji (52) z rozpatrywanymi w 
teorii procesow stochast^cznych i rachunku prawdopodobienstwa 
rownaniami roiniczkowymi mofcna. poda6 roine zastosowania tech-
niczne funkoji (52) ¿ju£ nie wi^iqoe si§ bezpoSrednio z rowna-
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20 A.Plucinska 

niami róàniczkowymi. Zastosowania te wi^z^ si§ z faktem, ¿e 
wiele zagadnien rachunku prawdopodobienstwa rozwi^zuje si§ ptzy 
zalozéniu pewnej szczególnej postaci g§stosci prawdopödobien-
stwa zmiennej losowej. W zastosowaniach technicznych cz§stym 
zalozeniem jest zaloèenie normalnoéci rozkladu prawdopodobieó-
stwa. Jesli' zalozona postaó g§stosci ma Charakter dose ogólqy, 
to i wnioski otrzymywane w rozumowaniach opartych o to zalo-
ze.nie majg. Charakter równie ogólny. Konstruowanie funkeji o 
dose ogólnej postaci zaleznej tym samym od wielu parametrów 
¿jest celowe nie tylko dlatego, ¿e za pomoc^ tej funkeji mozna 
badaó l^cznie wlasnoéci odpowiadaj^ce dosé szerokiej klasie 
zmiennych losowych, ale równieè jest celowe dlatego, ze pewne 
wyst§puj^ce w praktyce rozklady S3. bardzo nieregularne i do 
ich opisu nieodzowne jest wykorzystywanie funkeji wielo-para-
metrowych. 

Funkcja (52) zostala zastosowana do matematycznego opisu 
nast§puj^cego praktycznego zagadnienia (vide prace [3], [4]). 
Cechy elementów pochodz^cych z masowej produkeji nie ŝ . éci-
sle zdeterminowane, ogólnie mówiqc s^ to pewne zmienne loso-
we. Otrzymany z produkcji zbiór elementów jest czfsto dzielo-
ny na klasy o róznej dokladnosci ze wzgl§du na pewng. okreélo-
114 cech§ Y tych elementów. Wewn^trz kazdej z tych klas inna 
jest g§stoéé prawdopodobienstwa badanej cechy. Órodek nasta-
wienia automatu segreguj^cego jest zmienne losow^ i mozna si§ 
spodziewaó, ze wartosc oczekiwana tej zmiennej losowej jest 
równa wartosci oczekiwanej wyjéciowej populacji.Jednakze dia 
poszczególnych serii produkcji obserwuje si§ nieraz du±e róz-
nice mi§dzy wartosciami tych zmiennych losowych. Po selekcji 
rozklad badanej cechy jest niesymetryczny.Sprawdzana byla(vi-
de praca [4]) za pomoeg. testu statystycznego lambda hipoteza, 
¿e niesymetryczny rozklad oporu pewne j gx-apy oporników jest 
rozkladem postaci (52). 

Rozwaèymy teraz pewne wlasnoéci funkcjifktórej argumentami 
s^ niezaleène zmienne losowe Y^, Y2,...,Yn o g§stoéciaoh (52). 

Nieoh 
Z = g(T1f Y2,...,Yn) 
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Znajdowanie rozkladu lub przynajmniej tylko parametrów 
zmiennej losowej Z przy zadanej postaci runkcj i g j e s t zagad-
nieniem interesujqcym zarówno z teoretycznego jak i praktycz-
nego punktu widzenia. W odniesieniu do praktyki odpowiada to 
na przyklad s y t u a c j i , gdy elementy o cesze Y wchodz^ w sklad 
pewnego ukladu czy aparatury zaá funkcja g opisuje ich l^czne 
dzialanie . 

Rozwaèymy ki lka postaci funkc j i g. 
Niech 

Z = g(Y^, Y 2 , . . . . , T n ) = + Y2 + . . . + Yn (53) 

c z y l i Z j e s t sum^ zmiennych losowych. Zagadnienie badania sum 
zmiennych losowych wyst^puje na przyklad w elektrotechnice przy 
anal iz ie obwodów elektrycznych. Z j e s t opornosci^ lub induk-
cyjnosci^ w przypadku szeregowo pol^czonych oporników lub ce -
wek zaá pojemnosci^ w przypadku równolegle pol^czonych konde»-
satorów. Zakladamy, ze Y^, Y 2 , . . . , Y n s^ zmiennymi losowymi o 
g§stosciach (52) przy czym 

p = 2 , c = C, a = A, d = D i d j e s t l i czb^ parzyst^.. (54-) 

J e z e l i dodatkowo przyjmiemy d = 2, to g§stoáó prawdopodo-
bieñstwa f Q ( z ) zmiennej losowej Z okreslonej przez (53) mozna 
znaleéc jako transformat? Pouriera uprzednio obliczonej funk-
c j i charakterystycznej. Gfstoéó t a daña j e s t wzorem (videpree-
ca [3 ] ) 

V2nn L=o j n x ' 

gdzie ju j e s t momentem centralnym rz§du s zmiennej losowej s 
Y^ík = 1 , 2 , . . . , n ) . Wzory przyblifcone día funkc j i f Q ( z ) praw-

dziwe dia dowolnego d parzystego, znalezione w oparciu o roz-
wini fc ie funkc j i w szereg Edgewortha maj^ postaó 
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f n ( z ) « 1»(z) + ¿ 

(6) 

X 

4!(d+1) 

n , " 3 + § e t / 8 ) ( z ) 6! ( d + i r T 2(4! ) (d+1 ) ' 
(55) 

gdzie 

fn(z) « v(z) + ¿ 
. 4!(d+1) 

4 

5ír - pólniezmiennik rzçdu r , d^ = d + 1, 

(56) 

Bl^d, ¿jaki popeinlamy stosuj^c wzór (55)» j e s t wielkoácia A >1 
rzçdu - t , zaá stosujg.c wzór (56) - wielkoáci^ rzçdu —^ . 

V? n 

Podobng. metodq. tzn . korzystaj^c z rozwin i f c ia asymptoty-
cznego Edgewortha mozna znalezé rozklad zmiennej losowej ( v i -
de praca [5]) 

Z = 
E 1 E 2 . . . E n 

oraz 

H1 2 n 
(57) 

(58) 

gdzie L .̂, s^ zmiennymi losowymi o g fs toác iach (52) przy 
czym parametry przyjmujQ wartosci okreálone przez (54) . Funk-
oje (57) i (58) zwi^zane s^ z anal iza bl§dów ukladu w przypa-
dku równolegle lub szeregowo pol^ozonych oporników. 
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Rozwazmy teraz f unkc ¿j § 

h Z = s(Y/j t Yg» • • • ~ * " 

gdzie i^, Í2»...»in - stale rzeczywiste takie aby Z miaio sens 

liGzt>owy w dziedzinie rzeczywiste j, Y^ ,Y2». • • ,Yn - zmienne lo-

sowe, z których kazda ma rozklad okreálony funkcj^ rodziny 

(52), przy czym gçstosc zmiennej losowej Y k zaleày od parame-

trów maj^cych indeks k(k=1,2,...,n). Momenty dowolnego rzçdu 

zmiennej losowej Z znajdowane przy zastosowaniu funkcji MeULi-

na maj^ postaó (vide praca [4]) 

E(Z 2 r) 
n n 
k=1 Ck +°k 

2ri, p /2ri k +P k +1 

A k r \ Pk 

\ p k 
2 r i k J 2 ^ k + d k + 1 

1 Pk 

° k + °k + 1 

E(z 2 r + 1))= n 
k=i 

°k A k 

°k + ck 

(2r+1)ik r (
( 2 r + 1 ) V V 1 

D,+1 
'(-1) 

(2r+1)i, 

(2r+1)l k r /(2r+1)ik + d k + 1 

c k + 0 k 
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W przytopzonych przykladach zastosowan omawiane s^ pewne 
zagadnienia zwiqzane z weryfikacjq hipotez d.otycz^cych zmien-
nych losowych Y^. o g§stoéoiach (52) oraz zagadnlenie doty-
czq.ce "badania rozkladu wzgl§dnie tylko momentów funkcji nie-
zaleènych zmiennych losowych Y^. o g§stosciach (52) w zupelnie 
ogólnej postaci lub przy narzuceniu pewnych warunków na para-
metry funkcji (52). 

Irmym zastosowaniom funkcji (52) poéwi^cona jest praoa[6]. 
W praoy tej "badane jest matematyczno-ekonomiczne zagadnlenie 
takiego doboru IT elementów danego ukladu, aby oaiy uklad miai 
maksymaln^ niezawodnosé, pod warunkiem, ie l^czna oena wszystf-
kich elementów ukladu jest wielkoéci^ dan^. Podane s^ cztery 
twierdzenia o podobnym charakterze. Pierwsze z tych twierdzen 
orzeka: Jezeli dostatecznie regularna funkcja Z = giY^Yg,... 
...,Yn) charakteryzujqca l^czne dzialanie wszystkich elemen-
tów jest symetryczna wzgl§dem wszystkich argumentów i Y^, , 
.. • ,Yn niezaleinymi zmiennymi losowymi o g^stoéciach rodzi-
ny (52) przy czym c^ = C^» to wariancja zmiennej losowej Z 
przyjmuje najmniejsz^ wartosé, gdy wszystkie IT zmienne losowe 
Y^ maj^ jednakowe rozklady. Zaklada si§ przy tym doéc ogóln^ 
postac ceny posz,czególnego elementu. Otrzymywany w tym twier-
dzeniu wynik ma Charakter zupelnie podobny jak wyniki otrzymy-
wane przy badaniu wlasnosci ekstremalnych w rozwazaniach ana-
lityczno-geometrycznych takich jak na przyklad maksymalne j waiv 
tosci pola wieloboku w zaleànosci od jego ksztaltu. Tez^ oma-
wianego twierdzenia jest fakt, ze extremum zachodzi w przypa-
dku równosci elementów okreslonego rodzaju.Jest to wynik zgo-
dny z intuicj^. 
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26 A.Pluciáska 

OB AflHOM $OPME J[H$$EPEHII¡HAJIHHX yPABHEHHË B TEOPHH 

0 TOXA.C TH^CKHX ITPOIIEGOB H O TEXHIWECKKUX IIPHMEHEHHHX 

PEŒEHHË 3TUX yPABHEHHË 

K p a i K o e c o A e p s a H H e 

TJiaBHHM pe3yjiTaTOM STofi paÖOTH HBJiaeTCH npeflCTaBJieHHe i a -

cTHHx flH$$epeHn;HajiHHx ypaBHeHHñ KojiMoropaBa äjih He —MapicoBCKO— 

ro n p o q e c c a ; DTH ypaBHeHHs flama $opMyjiaMH ( 1 7 ) , ( 2 2 ) , ( 2 7 ) . 

$yHKn;HH F , H HBJiaiorcH ycjiOBHHMii $yHKqHHMH pacnpefleoieHHsj f , 

h - njIOTHOCTHMH BepOHTHOCTHj (JiyHKRHH a C HHfleKCaMH - HH$HHH-

TeouMajiLHHMH MOMeHTSMH n p o q e c c a Y ( t ) . 

To^Hoe onpeaeaeHHe Bcex 9 T H X $yHKn;iiñ aaiio B yKa3aTejijo 060-

3 H A Y E H H Ë . 

flamme HeKOTOpne ocoôeHHHe pemeHHS ypaBHeHHH ( 2 7 ) . HMeHHO 

eCJIH HH$HHHTe3HMajIbHHe MOMeHTH flaHHHe $OpMyJiaMH ( 3 3 ) , (34) TO 

njiOTHOCTB BepoHTHOCTH f flaHa $0pMyji0M ( 3 6 ) , eoJiH y - X > 0 h 

HH$HHHT6 3 H M a j I B H H e MOMeHTH flaHHHB (JOpMyJIBMH ( 3 8 ) , ( 3 9 ) TO HJIOT-

H O C T B BeposTHOCTH f flaHa $opMyjioH ( 4 0 ) . OcoôeHHUM cjiyqaeM 

$yHKn;iiH (36) JiBJiaeTCfl H J I O T H O C T B B 6 P O H T H O C T H npoi jecca Biraepa. 

E C J I H riojioxHM X = 0 , t = c o n s t « s S c o n s t B ( 3 6 ) H ( 4 0 ) , 

T O R F L A f H B J I A E T C a H J I O T H O C T H ) B Q P O H T H O C T H C J I Y I A H H O H B E J I N W U H H Ï 

H f nojiyqaeT cooTBecTBeHHO bhä ( 5 1 ) , ( 4 9 ) . 

SyHKHHH ( 5 1 ) h ( 4 9 ) M03CH0 TBKX8 nojiyquTB KaK pemeHHH 0606-

neHHOfi $opuH ÄH$$epeHijHajiHoro ypaBHeHHH IlnpcoHa. $yHKiin» (49) 

nojuyiHM KaK pemeHHe ypaBHeHHH ( 4 8 ) , $yHKECHIO ( 5 1 ) nojiy^HM.KaK 

pemeHHe ypaBHenna ( 5 0 ) . 

T Y H K Q M I ( 5 1 ) h (49) M O X H O N P E F L C T A B H T B B BHfle O ^ H O H $opMy-

jiu, HMeHHO $opMHJiH ( 5 2 ) . fcyHKijHa ( 5 2 ) HBJiHeTCH o6o6ii(eHHeM He-

KOTOpHX H3BecTHHX $yHKijH0 pacnpeflejieHna BepoflTHOCTH. IIpHflaBaa 

HeKOTOpne KOHKpeTHHe 3HaieHHH napaMeipaM, nojiyiaeM B K a q e c i B e 

^lacTHHx cJiyiaeB pacnpe^ejieHHa: raMMa, XH, xn-KBaapaT, OKcno-

HeniiHajiHoe, Beftöyjuia, HopMajibHoe, MaKCBeiuia. 

J J A H H H Q P O 3 J I K ^ H H 6 H P H M E P H N P H M S H S H H Ä $ Y H K C H ß ( 5 2 ) K T 6 X -

HHqecKHM npoßjieMaM a B O C O 6 B H H O C T H K Bonpocau TeopHH H A ^ Ë X -

HOCTH. 
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ON A GENERAL FORM OF DIFFERENTIAL EQUATIONS IN THE THEORY 

OF STOCHASTIC PROCESSES AND ON TECHNICAL APPLICATIONS 

OF THE SOLUTIONS OF THESE EQUATIONS 

S u m m a r y 

The main result of this paper consists in giving partial differen-

tial Kolmogorov equations for non-Markovian stochastic processes, that 

is the equations (17), (22), (27). Functions F, H are conditional cu-

mulative distribution functions, f and h - conditional density of pro-

bability, functions a with indices - infinitesimal moments of process 

Y(t). The exact determining of all these functions is given in the list 

of notations. 

Special solutions of equation (27) are considered. Namely if the 

infinitesimal moments are given by (33) (34-), then the density f is gi-

ven by (36); if y-x>0, the infinitesimal moments are given by (38) 

(39) then the density f is given by (4o).A special case of density (36) 

is the density of Wiener process. 

Putting x=0, t=const,s=const in (36) and in (40) we obtain the den-

sity of random variable Y, that is the functions (51), (4-9). Functions 

(51) and (4-9) may be also obtained as solutions of a general form of 

Pearson differential equation. We obtain function (4-9) as a solution of 

equation (43) and function (51) as a solution of equation (50). 

One can express both functions (51) and (4-9) by one formula, name-

ly the formula (52). The function (52) is a generalization of some 

known probability density functions. Certain parameter values yield 

known distributions, as e.g. the Gamma, Chi, Chi-square, exponential, 

Weibull, normal and Maxwell distributions. 

Different examples of applications of the function (52) in tech-

nic problem in particular in the reliability theory are also discused 

here. 
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