Research Article

Jasmine B. Ulmer*, James M. Salvo

Considerations of Post-Pandemic Life

https://doi.org/10.1515/culture-2024-0502 received June 6, 2023; accepted September 26, 2023

Abstract: Although the duration of a pandemic has a limit, it is also a time wherein we comport ourselves toward a world where there is a pandemic. Pandemic time can be a time of panic, during which we may attempt to find solace in the comforting objectivity of the sciences. However much science is necessary, we should remember that science is not the only relevant discourse. Further, adjacent to the particulate matter that spreads airborne contagions, pandemic time can be a time of minuscule identity, the forgetting of our collective being when we are overwhelmed by a concern for personal survival. During a pandemic time, without a collaborative approach to scholarship in general, we can become stuck in pandemic time and isolated as precisely calculating beings that survive only to reproduce iterative knowledge and maintain existing routines.

Keywords: pandemic, particulate matter, air pollution, environmental pollution

1 Introduction

This article turns toward the historical present of post-pandemic life, attempting to imagine how life proceeds from here.

We are grateful to be able to situate this article within a series of broader examinations of air and environmental health in a (post-)COVID-19 world. Those examinations include this special issue, which is based on an international conference on airborne diseases in history, literature, and culture where an earlier version of this article was presented.

In considering air and environmental health in a (post-)COVID-19 world here, we would note that post-pandemic life is "post" not necessarily in the sense that the threat of pandemics is now forever over. Rather, because the event of a global pandemic has occurred, and the lessons learned should not be forgotten for the sake of the health of living beings, the world is now situated in a time that is always already after this event and ever shaped by it. As authors, we here refer to living after such a pandemic event as *pandemic time*.

Prior to the COVID-19 pandemic, it might have been difficult for some to imagine a pandemic on a planetary scale. Nevertheless, there were serious outbreaks of severe acute respiratory syndrome-related coronavirus (SARS-CoV-1) in 2002–2004 and again in the 2010s, primarily in China and surrounding areas in Asia. There were also outbreaks of Middle East respiratory syndrome-related coronavirus (MERS-CoV) from 2012 onward. What people would come to know as SARS and MERS, however, were outbreaks that were, for the most part, regionally contained. This allowed people living, working, and traveling outside the affected areas to minimize what was happening and compartmentalize SARS and MERS as events that were happening somewhere else, in sufficiently distanced, separated, and remote *over theres*. Still, SARS and MERS were indicators of what could happen *elsewhere*, wherever that may happen to be. Put differently, SARS and

James M. Salvo: College of Education, Wayne State University, Detroit, United States of America

^{*} Corresponding author: Jasmine B. Ulmer, College of Education, Wayne State University, Detroit, United States of America, e-mail: jasmine.ulmer@wayne.edu

MERS were a caution that pandemics could happen *anywhere* and *everywhere*, and as public health experts had already warned, one did.

As we find ourselves during the pandemic time at the time of this writing, we pause to consider the possibilities and perils of post-pandemic life. As such, the first section of this article offers scientific perspectives on environmental pollution and airborne disease, especially as they relate to various forms of particulate matter. From there, the second section of this article offers philosophical perspectives on the fantasy of absolute fluidity, delving into time, identities, memories, routines, and imprecisions along the way. By juxtaposing discussions of scientific perspectives with philosophical and sociocultural perspectives, we illustrate how we might move from pandemic-related obsessions with death toward affirmations of life by avoiding the traps of nostalgia and reexamining our daily lives. In so doing, we put scientific discourse into dialogue with some of Luce Irigaray's thinking as an initial springboard in *The Forgetting of Air*.

2 Scientific Perspectives on Environmental Pollution and Airborne Disease

According to the World Health Organization (2022a, 2023), nearly every human on Earth is now potentially breathing unsafe air. Only 1% of people breathe air believed to be uncontaminated by high levels of pollutants. The remaining 99% of people live in a world in which it has been known that "outdoor and indoor air pollution cause respiratory and other diseases and are important sources of morbidity and mortality" (WHO, 2023, p. 2). Although air quality is often framed as a shared problem, the WHO acknowledges that air quality is a shared problem that is not shared equally.

Air quality is closely linked with health outcomes, as evidenced by growing bodies of literature on the many forms of air pollution and the myriad threats each presents to public health. Notably, some forms of air pollution come with recommended quantitative guidelines from nongovernmental health organizations and environmental groups; currently, there are other forms of air pollution that are not attached to similar regulatory suggestions. For instance, the WHO (2023) offers recommended guidelines for air pollutants such as carbon monoxide, nitrogen dioxide, sulfur dioxide, formaldehyde, polycyclic aromatic hydrocarbons, radon, and lead. Still, without establishing similar recommended guidelines for black carbon, ultrafine particles, and mold, the WHO more simply draws attention to each of these, instead. Black carbon, ultrafine particles, and mold are significant, however, in that they are each type of particulate matter. According to the U.S. Environmental Protection Agency (2022), particulate matter, also known as particle pollution, is "the term for a mixture of solid particles and liquid droplets found in the air" (par. 1).

Air pollution includes different types of ambient particulate matter. Particulate matter is measured in microns (or micrometers) and is often abbreviated as PM_{25} or PM_{10} , in reference to the particulate's diameter. Whereas PM_{10} includes larger, coarse particles from sources such as roads, construction sites, mining operations, farms, sawdust, pollen, and sea spray, PM_{25} includes fine particles emitted from the combustion of diesel fuel, gasoline, wood, oil, coal, and natural gas in home heating, transportation, and industrial manufacturing. PM_{25} is also produced indoors by burning candles, using common cleaning supplies, taking showers, and cooking food (such as when frying, sautéing, broiling, and more). This is beyond the carbon monoxide, nitrogen dioxide, and formaldehyde that can be released into the air when cooking with natural gas. The lists of PM_{25} and PM_{10} continue much farther than most would care to know. Dust, bacteria, and mold, which vary in size, are considered to be examples of both PM_{25} and PM_{10} .

It is $PM_{2.5}$ that has been of elevated concern from the standpoint of public health, as researchers continue to find that exposures to higher levels of indoor and outdoor $PM_{2.5}$ increase the risk of serious health effects. Because $PM_{2.5}$ can travel far into the lungs and even into the bloodstream, fine particles can contribute to acute and chronic respiratory diseases, heart diseases, lung cancers, strokes, and other health risks. Yet, these risks are not distributed evenly around the world, especially when it comes to the Global South. In one recent study, for example, Yang et al. (2023) modeled multiple potential future scenarios from 2015 to 2100 involving global patterns of warming and $PM_{2.5}$ -related deaths. In suggesting that existing inequalities in air quality and health

are likely to persist, Yang et al. (2023) predict that "64–69% of the global cumulative deaths [will be likely to] occur in only three regions; China, India, and Africa" (p. 60). However, as much as air pollution and ambient particulate matter represent planetary challenges, not everyone will experience these challenges to the same degree. Not unrelatedly, the same unequal distribution of effects has also been the case for COVID-19.

The relationships among air pollution, environmental health, and well-being have received increased attention amidst the COVID-19 pandemic, and the disproportionate effects of SARS-CoV-2 (or severe acute respiratory syndrome coronavirus 2) have been attributed in many areas, at least in part, to differences in the quality of air. As Wang et al. (2020) write:

Air pollution exposure can dysregulate the human immune response and make people more susceptible to infections, and affect infectivity. For example, in response to exposure to air pollution, angiotensin-converting enzyme 2 will increase, which is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This may increase the efficiency of viral infection. It is also possible that air pollution can facilitate SARS-CoV-2 spread by increasing the transmission, and potentially, SARS-CoV-2 can also survive longer when attached to a pollutant. (p. L416)

By way of example, Wang et al. turn to influential work early in the pandemic, in which Setti et al. (2020) found that "[t]he high concentration of dust and airflow conditions in northern Italy could promote SARS-CoV-2 viral transmission by forming clusters with PMs" (p. L419).

In other words, unsafe air has the potential to exacerbate the effects of COVID-19 and other future pandemics. Particulate matter offers infectious agents vehicles of sorts, which can enable them to survive longer, travel further, and cluster together. The forgetting of air, along with varying levels of awareness around the everyday and pandemic-related dangers of ambient particulate matter, raise urgent and collective questions about what to do and how humanity can better respond.

3 Philosophical Perspectives on the Fantasy of Absolute Fluidity

In cautioning against the forgetting of air, Irigaray (1999) writes: "Air does not show itself. As such, it escapes appearing as (a) being. It allows itself to be forgotten even by the perceptual ability of the nose. Except in cases where human activity has fabricated the air to begin with" (p. 14). Here, though not writing about pandemics explicitly, Irigaray's thought helps to remind us that in moments that are not of pandemic time, the air is a shared connection, the air is life, and the air is breath; the air is something that we as humans can all too easily forget. Amidst the business of our daily travels and routines, we can forget that air is what surrounds us, fluidly crossing geopolitical borders through wind currents, jet streams, weather patterns, and atmospheric circulations. We can forget that air is something we inhale approximately 12–20 times a minute, 22,000 times a day. And in this forgetting of air, we can remain largely unaware of what it is we breathe.

While the forgetting of air can be a failure of individuals, this forgetting can also be a collective action in matters of the politics. For instance, a utopian imagining of a peaceful world without national territories or the tensions pertaining to cultural borders, let us say, would nonetheless contain ontological beings who would be free only inasmuch as they are still constrained by air. Such beings would still be inescapably bound, not by the borders of nations or cultures, but by the boundaries of air. Just as the physicality of fluid ontic beings is nonetheless bounded, ontological fluidity in the absence of restrictive governance is similarly bound by physical constraints, including by the bounds of the ontological being itself.

And what are these bounds of ontological being, but the bounds of time when ontological beings are but beings-for-death? This boundedness to time does not make itself especially apparent when imagining utopic futures, but it does become salient when one imagines better times in the past, falling into the iterative traps of nostalgia. Nostalgia offers us a way to distinguish the time we typically experience from pandemic time and its infectious fluidity, much like the fluid air-bearing pandemic causing pathogens. However, pandemic time and pandemic air are fluid in the sense that there is a necessary forgetting. What is forgotten is that absolute fluidity is but a fantasy, for even the fluid itself, constitutes a boundary, and the temporal stretching of ontological beings between birth and death, while fluid, is indeed terminal. To be sure, ontological being in

any form is terminal for all mortal beings. It is only that pandemic time makes death more salient, whereas otherwise, death remains hidden.

3.1 Fluid Time

For Irigaray in *The Forgetting of Air*, philosophy is preoccupied with a revealing: the revealing of death. Death, as Irigaray notes, is "what remains, and what must remain, hidden: philosophy's fundamental method for causing death. But isn't it as a kind of lack of air, in all its various forms, that this method operates?" (Irigaray, 1999, p. 7). And why is this sort of death a lack of air, a suffocation? Again, Irigaray (1999) asks this:

Is not air the whole of our habitation as mortals? Is there a dwelling more vast, more spacious, or even more generally peaceful than that of air? Can man live elsewhere than in air? Neither in earth, nor in fire, nor in water is any habitation possible for him. No other element can for him take the place of place. No other element carries with it – or lets itself be passed through by – light and shadow, voice or silence. No other element is to this extent opening itself – to one who would not have forgotten its nature there is no need for it to open or re-open. No other element is as light, as free, and as much in the 'fundamental' mode of a permanent, available, 'there is.' (p. 8)

Air is indeed fluid, but our conception of fluidity is imprecise. By this, we do not mean that our definition of fluidity is vague, but that the way in which we often think of fluid is that it has the quality of being imprecise. Imprecision is not, of course, always a negative thing.

In a pandemic time, death is more salient because the air can also be literally filled with it. Death is in the air, so to speak, but death can also be literally in the air in the form of particulate matter. Whereas air, the medium of life for most non-marine creatures, is mostly forgotten, during the pandemic time, air is no longer forgettable as the medium through which death travels and comes to fall upon living beings.

Furthermore, pandemic time is a time of miniscule identity, the forgetting of our collective being- when we are overwhelmed by a concern for personal survival. In pandemic time, there is a nostalgia for what was pre-pandemic, as though in pre-pandemic times, ontological beings did not die. Obviously, this is not the case. It is only the case that pre-pandemic times allow us to disavow that life only moves toward death. Thus, the nostalgia for pre-pandemic times is but a type of anxiety where there is something lost – one knows not what – in the past. It may seem that what is lost is an immortality of sorts, but what is actually lost, when the panic of pandemics thrusts us into an "everyone for themselves" mentality, is that we forget that when we work together to govern ourselves for collective and shared benefit, it is possible, not to disavow death, but to collectively avow life.

As such, so long as it is not too late, we can collectively avow life. We can govern together so that we might survive mass extinction. We can remember that together, we are not miniscule beings as tied to death as deadly particulate matter. We can remember that pandemic time is not a durational time marked out by dates, but a world time wherein we orient our being, as being-for-death. We can change this, so long as we do not forget air.

3.2 Fluid Identities

Depending on the context, there are several ways in which the fluidity of identity is positive. Many discourses on identity, for instance, use the notion of fluidity as something that is empowering or liberating, ontologically speaking. Here, one is not necessarily locked into ideologies of imposed definitions that lock into particular subjectivities. However, one can imagine another side of this fluidity regarding identity goes too far in asserting that everything about all possible identities is absolutely fluid. Such a conception of absolute fluidity can instead make subjectivity aimless, or in other words, imprecise to the degree that no truth-telling about subjectivity can ever be spoken. For instance, a politician cannot identify as a champion of environmental causes and at the same time bend policy and law to favor polluting corporations. Herein one can see how imprecision might not always necessarily be positively valenced, which is of course not to say that it never can be.

Imprecision, for instance, can lead to errors when it comes to things we value, and it can further be the basis of legal loopholes or policies that can be exploited by those who are clever enough to do so for personal gain. In other words, the value of imprecision depends upon how we apply the imprecise to what we value. Imprecision, then, is instrumental, and instruments can be used for different purposes depending upon one's intention or inattention, either deliberate or indeliberate. However, imprecision is not a material instrument, such as the many instruments that make up our technologies.

Let us consider a pair of examples: First, perhaps motivated by an unconscious, nostalgic desire to escape one's own death by being remembered, many of us may document our otherwise aimless days through digital photographs and archive them on the internet. However, creating our own personal archives is neither necessarily historical documentation in the proper sense, nor is it methodologically scientific in terms of social science research. Still, what we do could be of value to social science or historical study. In this example, what is shown is that imprecision as a theoretical instrument has a value that has much to do with how precise our measurements need to be. Thus, whether or not the imprecision of fluidity is positively valued or negatively valued depends upon the context.

Second, moving from the example of the self-obsessive activities of Facebook to a more Levinasian philosophy, is it the case that one needs to know someone's name to be concerned about them, or does one only need to see their face, albeit an anonymous one? In the context of science, for example, do we need to make precise, laser-like calculations, such as in manufacturing, launching, and operating the James Webb Telescope? Or perhaps, like the science of topology that can account for the imprecise, fluid qualities of deformable objects, are our measures deliberately designed to allow room for the uncertainty of the random or stochastic, as we often do? Here, fluidity can be of much use when accounting for the will of ontological beings, a will that we presume to be free from the strictures of determinism, but not necessarily resistant to things beyond our control.

What is more paradigmatic of things being out of control than a pandemic where the air that we breathe, the air that constitutes our only habitat, is filled with a death that cannot be hidden? Just as the particulate matter causing the disease is too small to see, so too are our memories unresolvable, only perhaps rather than being too small, they are too large. While nostalgia might refer to a bounded duration of time, the iterative possibilities of memory make them infinite. Just as we become trapped in our routines, we can become trapped in our own archives. We can become trapped in the archives of scholarship, social media, and things we cannot forget. When we are trapped in our own archives, we are also trapped in an incongruity of measure, when the scale we are using to measure what needs to be known does not match how we need to know it. This can be especially dangerous when there is a forgetting of the plural object of "population" because there is an overactive remembering of "individuals," who only remember themselves in times of crisis. In truth, like the air which is atomic, molecular, and fluidly unified, populations are individually singular, collectively plural, and collectively one all at once. Thus, the remembering of sets of ontological beings must match the fluidity of that set. This fluidity cannot be forgotten, especially when there are threats to survival.

3.3 Fluid Memories

When we become trapped in our own archives, we turn our being into a miniscule, solitary being. When this happens, people become as microscopic as the particulate matter causing a pandemic. They are unseen and trigger death. If particulate matter can cause biological death, the anxious nostalgia of pre-pandemic routine, on an infinite loop, is but a re-living of a sort of second death, the death of an ontological being as a symbolic subject. When we become trapped in our archives as miniscule, solitary beings precisely cut off from being with, we are subjects no longer, but beings who mindlessly and lifelessly repeat like siloed robots, not ontological beings who live within the community of others.

Herein we might draw a distinction between imprecision and the precise. Imprecision, as we have noted, can be positively or negatively valenced when it comes to what we value. Precision, however, is typically valued when we work within the realm of the sciences that purport to be objective. The sciences, through their

precision, wish to cut off the subjective as a matter of practice. While we would not support an idea of subjective science in a way that would lapse into a dangerous relativism, we might point out that when the sciences become not just the dominant discourse during pandemics, but the only discourse, this precision – which literally means a cutting off – can also be inadvertently dehumanizing.

3.4 Fluid Routines

Fluid routines are articulated when humans become precise machines of routine that reproduce only their habits. The pandemic destroys the community. When we are cut off from the plurality of subjects that constitute a community, when we are miniscule, solitary beings, just as we cannot escape the air in the pandemic – for ceasing to breathe is death itself – we cannot hope to escape pandemic time, this iterative time wherein we are doomed to what Nietzsche (2001) called an eternal return. We might try to move places, to escape by moving beyond what we might think are spatial borders, but just as all habitable space is permeated with air infected with particulate matter, all space is permeated with pandemic time. Both air and time are inescapable in general, and when both air and time are filled with death as in the pandemic time, our mortality becomes all too salient, and this revealing is one that cannot go into hiding. Death cannot be disavowed, but then it becomes all too pervasive. And just as air knows no national borders, neither does the time of a pandemic.

The particulate matter is in the air, carried not only by traffic but also by wind patterns. Here is where the fantasy of absolute fluidity might be found, when it might be forgotten that the fluidity of air itself is not something that can never be solidified, like for instance dry ice. Air contains particulate solids, though it is not a magical vacuum that is at the same time something while containing nothing of itself. In the absence of the air-tight, air always leaks in, and is not itself insusceptible to leakage. This cannot be forgotten in an environmental context, though this forgetting is perhaps abetted by our literary philosophies of air. Something is in the air, always *in* the air as though the air is not itself an object, but a fluid container uncontained.

While people may be quarantined, the air itself cannot be governed into immobility, nor can time. Both air and time always flow. So, when Nietzsche (2001) speaks of "bad air," when he speaks of what he feels to be the life-negating aspects of European culture, what is bad about the air itself, other than the things that fill it?

Are pandemic air and pandemic time naught but an iteration of the air and time of the Anthropocene itself? Is this not only a crisis of climate, but a crisis of governance, at our inability to govern globally to save ourselves?

If there is indeed a forgetting of air, then there, too, perpetually lies a danger in the remembering of air while still forgetting that the air is not just an imprecise medium for whatever we need it to be, but a thing itself. Air is the only habitat of terrestrial animals, among them humans, who, through extractive practice, take not only from the land, but perhaps if things go as planned, also from the ocean – the other fluid being on our planet – through technological proposals such as marine cloud brightening. It is as though the air is matter that we are able to pass through, yet it never passes through us; as though the air is an unyielding resource that we can fill without overfilling; as though the air is the blank space where we can technologically project our will; as though it is an always welcoming container that can never exert pressure on us, though we know full well that this is far from true as we watch climate change create more and more severe hurricanes and extreme weather phenomena. The air carries the airborne particles of disease, and the science of 5 microns has been shown to have very little basis in fact other than something that was iterated as though it were a well-established measure (for example, Molteni, 2021).

3.5 Fluid Imprecisions

At the end of the day, though the air is indeed fluid, the fluid has only become the way through which we conceive of the imprecise, a metaphor that itself is easy to forget about as merely a metaphor. The fluid may be unpredictable, but there is microscopic precision regarding the air, one made especially salient during the

pandemic time. It is just not a precision we are able to keep at the forefront of our minds because we lack the resolution – both the will and sensory capacity – to do so. Metaphorically speaking, this microscopic precision can be a discursive trap when it is the precision that cuts off humanity from humans. We can and should value precision, but not at the expense of valuing it absolutely. Again, absolute fluidity is a fiction. No matter in extended space is absolutely fluid inasmuch as it is composed of matter, however small. Absolute fluidity would require a fictional substance made up of geometric points with no extension, things which are only a mathematical possibility. The mathematical can forget boundaries owing to its constitutive logic that allows for an infinitely precise symbolic proliferation, but this is but a Hegelian "bad infinity" (Hegel, 1969). This misunderstanding of the mathematical would have us also mistake air for absolutely fluid. The absolutely precise is but a human construct, but it is not the reality that is the human's medium.

Pandemic or not, fluid, yet always already bound, the fantasized forgetting of the boundaries of air presents a crisis for the dwelling of ontological beings, who may be unbounded by the structures of governance, but still ineluctably constrained by the concern of death. And what is worse? Pandemic air and pandemic time are now suffused with the specter of the Anthropocene. We seem to be unable to help but be caught in our temporal loop of filling the air and the time of our historical present with the microscopic pathogen of carbon, for the Anthropocene is a pandemic that infects our air. As the days continue to pass, what is ever more revealed is that this death will not only be unhidable, but also have the finality of mass extinction.

4 Carbon Pandemics and Pandemics Yet to Come

Even as we are still in the immediate aftermath of *this* pandemic, the COVID-19 pandemic, public health experts and nongovernmental organizations are increasingly warning of additional future pandemics to come. The range of pandemic types is expected to become more varied and more interrelated from this point onward. Climate change is expected to be a significant driver of future pandemics, and as pollutants and PMs continue to be emitted into the air, planetary boundaries and thresholds continue to be exceeded. Not only are black carbon and carbon dioxide contributing to rising temperatures, but also increasing temperatures are expected to contribute to a release of new disease vectors, such as ancient viruses that have been frozen in the now melting ice, an increase in zoonotic diseases, and the proliferation of mold and fungus.

In terms of the potential for additional pandemics, airborne pathogens are of particular concern to the WHO. In observing that fungal pathogens and infections should be recognized as an increasing global health concern, for example, the WHO notes that there has already been an increase in fungal infections associated with the COVID-19 pandemic (WHO, 2022b, p. 1). The people who have been most at risk for invasive fungal disease, or IFD, are people whose immune systems are already weakened. This includes people with viral respiratory tract infections, chronic lung disease, lung cancer, and chronic obstructive pulmonary disease. In short, some of the people who are most at risk of IFD include people whose immune systems have already been weakened by exposure to particulate matter. It is possible, then, that just as COVID-19 may increase vulnerabilities to IFD, IFD, in a mutually reinforcing cycle, may increase vulnerabilities to COVID-19. It is no wonder, then, that the WHO recognizes climate change as the greatest current threat to human health (WHO, 2021, p. 1), especially given that climate change is expected to create an increase in future pandemics.

Disruptions to the jet stream are contributing to extreme weather events, including record wildfires in Canada that are burning at the time of this writing. As the wildfires are adding more carbon emissions and pollutants into the air, scientists are attempting to calculate and keep track of the environmental toll. Although the peak of wildfire season has yet to be reached, scientists from the Copernicus Atmosphere Monitoring Service (CAMS) have indicated that in the first half of 2023 alone, "accumulated carbon emissions from wildfires across Canada total 290 megatonnes. This is already more than double the previous record for the year as a whole and represents over 25% of the global total for 2023 to date" (CAMS, 2023, p. 1). To say that the potential consequences are serious is an understatement. Increased carbon emissions will accelerate rising temperatures, shortening the timeline to effect change. Further, the resulting smoke (and pollutants that smoke

contains) has led to air quality alerts in Canada and beyond. As this has occurred, a weakened jet stream continues to threaten the health of biological life on this planet, carrying the smoke in unusual directions along the way. Whether from Canadian wildfires or from other sources, carbon emissions and airborne pollutants are creating and exacerbating public health hazards on a planetary scale. Separately and together, the ongoing challenges of carbon emissions and airborne pollutants raise pressing questions about what might possibly be done. These are questions that are intertwined not only with airborne disease, but with anticipated pandemics yet to come. For inasmuch as pandemics bring death, any situation of unsafe air is, in this sense, the time of a pandemic: if not viral, bacterial, or fungal, then of polluting particulate matter.

Without actively considering post-pandemic life amidst these challenges, we may be stuck in discourses that lose sight of the humanness of the human community. Without a collaborative approach to humanity, we can become stuck in a pandemic time and become isolated as precisely calculating beings that survive to reproduce iterative knowledge and maintain existing routines. As human ontological beings, we value producing the type of knowledge that allows us to avow our lives positively, to live not in the fantastical absolute fluidity as though we, too, were but miniscule pieces of particulate matter floating aimlessly in the air, but as humans with the purpose of communing and being together. We need to retain our humanity and clean our air so we might live together in this inescapably shared way. If not, we will cease to be human, because humanity itself will cease.

Acknowledgments: This article is part of the special issue "Cultures of Airborne Diseases" co-edited by Tatiana Konrad and Savannah Schaufler.

Funding information: Published with the support of the Austrian Science Fund (FWF): 10.55776/PUB1107. Research results from: Austrian Science Fund (FWF): 10.55776/P34790.

Author contributions: Both authors confirm the sole responsibility for the conception of the study, presented results, and manuscript preparation.

Conflict of interest: Authors state no conflict of interest.

References

Copernicus Atmosphere Monitoring Service. (2023, August 3). 2023 Canada wildfires emissions have already doubled previous annual record.

Copernicus Atmosphere Monitoring Service. https://atmosphere.copernicus.eu/2023-canada-wildfires-emissions-have-already-doubled-previous-annual-record.

Hegel, G. W. F. (1969). Hegel's science of logic. Humanity Books.

Irigaray, L. (1999). The forgetting of air in Martin Heidegger. University of Texas Press.

Molteni, M. (2021, May 13). The 60-Year-old scientific screwup that helped covid kill. Wired. https://www.wired.com/story/the-teeny-tiny-scientific-screwup-that-helped-covid-kill/.

Nietzsche, F. (2001). The gay science: with a prelude in rhymes and an appendix of songs. Cambridge University Press.

Setti, L, Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M., Palmisani, J., Di Gilio, A., Torboli, V., Fontana, F., Clemente, L., Pallavicini, A., Ruscio, M., Piscitelli, P., & Miani, A. (2020). SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. *Environmental Research*, *188*, 109754, 1–5. doi: 10.1016/j.envres.2020.109754.

U.S. Environmental Protection Agency. (2022). *Particulate matter (PM) basics*. U.S. Environmental Protection Agency. www.epa.gov/pm-pollution/particulate-matter-pm-basics.

World Health Organization. (2023, Feb. 1). Air quality and health: Overview. www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants.

World Health Organization. (2022a, Apr. 4). *Billions of people still breathe unhealthy air: new WHO data*. www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data.

- World Health Organization. (2022b, Oct. 25). WHO fungal priority pathogens list to guide research, development and public health action. www.who.int/publications/i/item/9789240060241.
- World Health Organization. (2021, Oct. 30). Climate change and health. www.who.int/news-room/fact-sheets/detail/climate-change-andhealth.
- Wang, B., Chen, H., Chan, Y. L., & Oliver, B. G. (2020). Is there an association between the level of ambient air pollution and COVID-19?. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319(3), L416-L421. doi: 10.1152/ajplung.00244.2020.
- Yang, H., Huang, X., Westervelt, D. M., Horowitz, L., & Peng, W. (2023). Socio-demographic factors shaping the future global health burden from air pollution. Nature Sustainability, 6(1), 58-68. doi: 10.1038/s41893-022-00976-8.