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Abstract: The educational content of physical chemistry can be a burden for students who are classified as sensing
learners (SL). Therefore, for SL, the lecturer must adapt the educational material reflected in standardizing certain
procedures (for example, performing and proving similar expressions–differential changes of thermodynamic
potentials) and visualization of abstract concepts and expressions. Here is presented the connection of differential
changes of thermodynamic potentials in isentropic conditions with useful work (in the system, there is one
exothermic reaction in the quasi-static regime) and with the differential change of internal energy in an adiabatic
and isochoric composite system (reactive system + corresponding reservoir) as well as with the differential change
of internal energy in the isochoric composite system.Whendefining an isentropic process (or system), the change in
entropy that is a consequence of heat exchange and the change in entropy that is a consequence of a chemical
reaction is considered. Differential changes in thermodynamic potentials are also shown schematically, facilitating
SL’s mastery of the material.

Keywords: curriculum; higher education; reaction entropy; de Donder’s affinity; learning styles; thermodynamic
potential

1 Introduction

There are several divisions in terms of learning style; one division is sensing learners (SL) and intuitive learnings
(IL).1,2 It is believed that SL students prefer observation, collection of data, like to learn facts, and participate in
experiments. SL students prefer standard andwell-establishedmethods in solving problems. During their studies, IL
students apply indirect perception, prefer principles, innovation, new theories, and dislike similar and repetitive
tasks. IL students accept symbolsmore easily than SL students.1 Lectures on physical chemistry and thermodynamics
are full of symbols (mathematical equations) which favors IL students. However, psychological and statistical
analyses show that most chemical engineering students belong to the SL group.3,4 Therefore, it is desirable to adapt
lectures to SL students. Although the material is full of mathematical formulas, proving (i.e., deriving) equations can
be simplified by standardizing mathematical derivation (suitable for SL). Research in the psychology of learning
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indicates that using visual aids, such as pictures, is effective in helping students understand abstract concepts.5

Consequently, during lectures in physical chemistry, we focus on illustrating the processes represented by specific
equations. The standard approach to learning involves visualizing the processes described by these equations.

The goal is to relate the differential changes in thermodynamic potentials (internal energy, enthalpy,
Helmholtz free energy, and Gibbs compact energy) related to a system where one reaction occurs (reactive
system), considering different conditions in the reactive system. The desire is for students to have a visual
representation of differential changes in thermodynamic potentials and to show that if the goal is to obtain useful
work (isentropic conditions) – the portion of a chemical reaction’s energy changes that can be converted into
work usable for practical purposes, such as electrical work or other forms of energy transfer–then differential
changes in thermodynamic potentials are reduced to differential changes in the internal energy of a composite
system (a system in which the reaction takes place + the corresponding reservoir) that is adiabatic and isochoric
or to a composite system that is only isochoric. An identical approach is used for each thermodynamic potential,
standardizing the proof, which is convenient for SL students. The material presented in the discussion is suitable
for students who have previously completed the definitions of thermodynamic potentials and partial molar
quantities.

2 Discussion

2.1 Differential change in internal energy

Consider a closed reactive system in which only one reaction takes place to obtain useful work (analogously, the
supply of energy to perform some reaction can be observed).

In general, the differential change in the internal energy of a closed system (sy) – which only exchanges
energy with the environment (Figure 1) – can be the result of an infinitesimal change in entropy (dSsy), which is
related to the quasi-static transfer of heat between sy and the environment (δqsy = TdSsy); an infinitesimal change
in the volume of the system (dVsy) – i.e., the quasi-static differential pressure-volumework exchanged between sy
and the environment (δWV = -pdVsy); and the infinitesimal change in the amount of the i-th reactive component
(dnisy) due to the quasi-static reaction

6 – dWnonV = ∑μidnisy whereWnonV denotes the change in internal energy in
sy due to of a quasi-static chemical reaction, i.e., it represents useful non-pressure-volume work obtained from
the system.7,8

dU sy = TdSsy − pdVsy + ∑μidn
i
sy = TdSsy − pdVsy − Adξsy = δqsy + δWV + dWnonV⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟

δW

. (1)

In equation (1), T, p, and μ are intensive quantities from the system sy and are, respectively, temperature,
pressure, and chemical potential–which is defined for each component from the system. In sy, the change in the
amount (mol) of reactive components that belong to the same reaction can be expressed in one extensive quantity
(ξsy) – the degree of progress of the chemical reaction–extent of the chemical reaction.9,10 The extensive quantity
ξsy as an intensive quantity corresponds to De Donder’s affinity of a chemical reaction (Appendix A).11,12

A = ∑reactantsνiμi −∑productsνjμi (2)

νi denotes the stoichiometric coefficients of the reactive components in the observed reaction (∑reactionνii = 0)
from sy. Equation (1) is the total differential of internal energy in the system sy; therefore, it can be expressedwith
partial differentials of internal energy:

dU sy = ∂U/∂S( )Vsy , ξsydSsy + ∂U/∂V( )Ssy , ξsydVsy + ∂U/∂ξ( )Ssy ,Vsydξsy. (3)

Equations (1) and (3) obtain the definitions of intensive quantities using partial derivatives of internal energy:
∂U/( ∂ S)Vsy , ξsy = T , ∂U/( ∂ V)Ssy , ξsy = −p and ∂U/( ∂ ξ)Ssy ,Vsy = −A. Using the subscript sy for the differential

changes of extensive quantities and the partial differentials–especially at the beginning–makes it easier for
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students to relate the differential changes to physical space (the system where the changes take place) instead of
equations (1) and (3) being differential changes of an abstractmeaning (Figure 1). Callen7 to equations (1) and (3) as
the fundamental thermodynamic equation in differential form and energy representation. As Kandepudi and
Prigogine11 noted, this equation originally came from Gibbs. Equation (1) illustrates the first law of thermody-
namics, which students typically recognize through its definition of the products of intensive quantities and the
differential changes of corresponding extensive quantities as infinitesimal heat and work.

According to equation (1), the quasi-static exchange of infinitesimal heat between system sy and the envi-
ronment (δqsy) results in a differential entropy change in sy (dSsy):

dU sy
ξsyVsy

= δqsy = TdSsy → dSsy = dU sy
ξsyVsy

/T . (4)

However, there is also a differential change in entropy that is not covered by equations (1) and (3), which is a
differential change in entropy due to the infinitesimal progression of the chemical reaction from the system (dSξ).
So, the total differential change of entropy in sy is (Figure 2):

dST = dSsy + dSξ . (5)

Suppose in sy, i.e., in equations (1) and (3), entropy Ssy (entropy related to heat exchange) and volume Vsy are
constant (Ssy,Vsy = const.). In that case, i.e., the system is rigid (isochoric) and adiabatic (the system does not
exchange heat with the environment: dSsy = 0→TdSsy = δqsy = 0), the differential change of internal energy in
system sy is:

dU sy
SsyVsy = −Adξsy. (6)

Let reaction ∑iνii = 0 from sy occur quasi-statically and isentropically (approximations for a reversible
thermodynamic process),7,8,13,14 which implies that the differential change of the total entropy in the system is
zero (dST = 0). However, as the reaction proceeds in an adiabatic system (dSsy = 0), it follows that under isentropic
conditions–according to equation (5) – the equality dSξ = 0 must also apply (Figure 2). In other words, if equality5

holds, in sy without heat exchange with the environment under the isentropic conditions, the reaction ∑iνii = 0
does not change the system’s entropy. Under isentropic conditions in the case of dU sy

SsyVsy
< 0, the change in dU sy

SsyVsy

corresponds to the differential (useful) non pressure-volume work (dWnonV) – differential work of a reversible
process (δWrev), i.e., themaximum differential work that approaches the value of the differential work of a quasi-
static process -

Figure 1: A closed system sy in
which a chemical reaction takes
place: the differential change in
the internal energy of the
system.

M. Poša: Differential changes of thermodynamic potentials 435



dU sy
SsyVsy = −Adξsy = dWnonV = δW rev (7)

that can be obtained from system sy (Figure 3).
During the lecture, usually, a student, after the introduction of equations (6) and (7), asks the following

question: what if there is a change in entropy (dSξ≠0) during the quasi-static reaction∑iνii = 0 in a rigid adiabatic
(dSsy = 0) system? Answer follows from equation (5):

0 ≠ dST = dSξ . (8)

Suppose equation (6) is valid, and there is a chemical reaction–a thermodynamic process–in a systemwith dSξ≠0.
In that case, the thermodynamic process in system sy cannot be isentropic or reversible (in a reversible process, the
total entropy does not change). Namely, there is no possibility for dSξ compensation due to heat transfer between the
system and the environment. However, it should be emphasized to the students that even under conditions dSξ≠0, if
the observed reaction from sy is in thequasi-static regime, then equation (6) is still valid, and the sameamount ofwork
is obtained as when dSξ = 0, i.e., in the quasi-static regime, energy dissipation into heat is negligible. However, due to
equality,8 the reaction generally belongs to an irreversible thermodynamic process in the quasi-static regime. Students
from earlier lectures know that if a thermodynamic process is non-isentropic (irreversible), then a smaller amount of
useful work is obtained than when the same process is isentropic (reversible), for example, during isothermal
irreversible expansion of a system, the environment receives a smaller amount of work in absolute value than during
reversible isothermal expansion. This means that if system sy in which the reaction ∑iνii = 0

⃒⃒⃒⃒
: dSξ ≠ 0 takes place

would be isentropic (dST = 0), then by absolute value, a higher value of useful work should be obtained than

dU sy
SsyVsy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ = −Adξsy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒. Which is when the isochoric sy can quasi-statically exchange heat with the environment. Under

these conditions, according to equations (1) and (3), the total differential of internal energy for system sy is:

Figure 2: The change in entropy
of a system of constant volume is
a consequence of the heat
exchange between the system
(sy) and the environment or the
occurrence of a chemical
reaction in the system or both
processes simultaneously.
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dU sy
Vsy = ∂U/∂S( )Ssy , ξsydSsy + ∂U/∂ξ( )Ssy ,Vsydξsy = TdSsy − Adξsy. (9)

Of course, under isentropic conditions in sy, dSsy = -dSξ applies, so the total differential9 is:

dU sy
Vsy = −TdSξ − Adξsy. (10)

It follows from equation (10) that if it is dSξ>0, then under isentropic conditions, the inequality holds:

dU sy
Vsy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ST > dU sy

SsyVsy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ST = dU sy

SsyVsy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ST≠const.:quasi−static (11)

According to the inequality11 in the case of an isentropic thermodynamic process (chemical reaction) from sy,
under the conditions Vsy = const., a greater amount of useful work is obtained by the absolute value for the
quantity |-TdSξ|, i.e., for the amount of quasi-static heat required for dSξ>0 compensation, than under adiabatic-
isochoric (Ssy,Vsy = const.) conditions (Figure 4).

If the thermodynamic process at Vsy = const. conditions in sy is not isentropic and quasi-static (reversible), then
TdSsy formally represents the thermal energy supplied to syand represents the energy loss of theusefulwork -Adξsy (for
example, if the usefulwork from the chemical reaction is used to drive the piston and if friction occurswhen the piston
moves, then part of |-Adξsy| is lost as frictional thermal energy |TdSsy|, i.e., -Adξsy<0 and TdSsy>0 are valid, Figure 4).

2.2 Differential change of enthalpy

In general, from the function of internal energy (U = f(S,V,ξ)≡U(S,V,ξ)), enthalpy (H ) is defined by a partial
Legendre transformation7,14–16 – in the state function U, the independent variable (extensive quantity) V is
replaced by the intensive quantity pressure p (whose values are easily monitored by manometer):

Figure 3: A closed rigid and
adiabatic system sy in which a
chemical reaction takes place
under isentropic conditions
(A) and under non-isentropic
conditions (B).
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H ≡ U p[ ] = U S,V , ξ( ) + pV → H = f S, p, ξ( ) ≡ H S, p, ξ( ). (12)

Differentiation of equation (12) leads to the following expression:

dH = dU + pdV + Vdp. (13)

If equation (13) refers to the system sy from Figure 1 (dH = dUsy + pdVsy + Vdpsy), then by introducing the total
differential of internal energy1 we get:

dH = TdSsy − pdVsy − Adξsy + pdVsy + Vdpsy, (13a)

dH = TdSsy + Vdpsy − Adξsy. (14)

However, with equation (14), usually a student guesses: professor, you left out the subscript “sy” for the
symbol H. Then the professor says: let us wait a while longer; let the subscript be a mystery:

dH? = TdSsy + Vdpsy − Adξsy. (14a)

In equation (14), the term TdSsy comes from equation (1) and, therefore, represents the exchanged heat
between isochoric sy and the environment: δqsyVsy = ∂U/( ∂ S)Vsy , ξsydSsy. However, since equation (14) is the total
differential of enthalpy, the following expression applies to TdSsy: δqsy+surroundingwith p=const.

psy
= ∂H/( ∂ S)psy , ξsydSsy.

Therefore, the term TdSsy simultaneously corresponds to the exchanged heat between sy and the heat source both
at a constant volume of sy (Vsy) and at a constant pressure in sy (psy):

TdSsy = δqsyVsy = δqsy+surrounding with p=const.
psy

= ∂U/∂S( )Vsy , ξsydSsy = ∂H/∂S( )psy , ξsydSsy, (15)

TdSsy = (∂ U + pV/∂S( )psy , ξsydSsy = ∂U/∂S( )psy , ξsydSsy + p ∂V/∂S( )psy , ξsydSsy. (16)

Based on equation (15), it can be noted that during the heating of isochoric sy, the total supplied thermal
energy is spent on increasing the internal energy of the system, while when heating isobaric sy, a part of the heat
is spent on pressure-volume work (p ∂V/( ∂ S)psy , ξsydSsy) and the remaining part of the heat increases the internal
energy of the system ( ∂U/( ∂ S)psy , ξsydSsy). By introducing the total differential of the internal energy function
U(T,V): dU sy = Csy

V dT + πsy
T dV (Csy

V = heat capacity of the system at constant volume and πsy
T = internal pressure in

the system) into the partial derivative ∂U/( ∂ S)psy , ξsy, equation (16) changes to the form (Appendix B):

TdSsy = Csy
V dT + πsy

T Vα
sy
T dT⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟

part of heatwhich stay in sy

+ p ∂V/∂S( )psy , ξsydSsy
⏞̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅ ⏞part of the heat as pV work( ) that escapes to the surroundings

(16a)

Figure 4: An isochoric system
that is isentropic (A) or not
isentropic (B).
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From the above equation (αsyT = 1/( V) ∂V/( ∂ T)p is isobaric expansivity), it can be seen that part of the heat at
the constant pressure system (sy), which is not spent on pressure-volumework, remains in the system in the form
of the kinetic energy of particles (Csy

V dT) and the form of the potential energy of intermolecular interactions
(πsy

T Vα
sy
T dT = πsy

T dV). If the same amount of heat is supplied at the constant volume system, then the total amount
of heat is spent on the kinetic energy of the particles. At the same time, the potential energy of intermolecular
interactions does not change since the system’s volume does not change (πsy

T Vα
sy
T dT = πsy

T dV = 0). Considering

equation (16) δqsy+surroundingwith p=const.
psy

≡ δqsypsy , expression
14 for the isobaric condition is often written in the form

dHpsy = δqsypsy + δW sy
psy
, where δW sy

psy
represents the useful work (non-expansion work) obtained from the reaction

(i.e., themaximumwork under isobaric and reversible conditions), or theminimumwork required for some non-
spontaneous reaction to take place–for example, the electrolysis of water.17–19 Of course, under isentropic
conditions in the quasi-static regime of the thermodynamic process, i.e., in the case of an infinitely slow reaction,
the equalities apply: δqsypsy = TdSsy and δW sy

psy
= −Adξsy.

If the pressure in sy is constant and if sy does not exchange heat with the environment (sy is adiabatic), then
equation (14) is:

dH?
Ssypsy

= −Adξsy. (17)

However, as -Adξsy derives from the expression for the total differential of internal energy 1, then the
following applies:

dH?
Ssypsy

= −Adξsy = ∂H/∂ξ( )Ssy , psydξsy = ∂U/∂ξ( )Ssy ,Vsydξsy = dU sy
SsyVsy (18)

In order to understand equation (18) in more detail, it is necessary to return to the differential change in
enthalpy from equation (13a) under adiabatic conditions and constant pressure of the system:

dH?
Ssypsy

= −pdVsy − Adξsy + pdVsy (19)

If in expression,19 the two terms for pressure-volumework are not shortened, then it can be seen that thefirst
and second terms (-pdVsy-Adξsy) refer to the differential change of internal energy in sy, while the last term–as in
absolute value is equal to the first term, but has the opposite sign–it represents pressure-volume work in the
environment (i.e., the first term represents the work of the system on the environment, while the last term in
equation (19) is the work of the environment on the system). Furthermore, the environment can only change
volume at the expense of the system volume dVsy = -dVsurrounding; the environment and system sy have a constant
total volume (Vsy+Vsurrounding = const.). In a quasi-static change of the state of the system, in order for the system
and the environment to be inmechanical equilibrium in each infinitesimal step (volume change), the pressures in
sy and the environment must be equal, which is possible if the volume of the environment is multiple (infinitely)
more significant than the volume of sy (Vsurrounding≫Vsy). In this way, the change in volume in the environment
does not affect the pressure of the environment; therefore, the environment behaves as a reservoir of constant
pressure. TheR symbolwill be used as a subscript for physical quantities related to the reservoir (dVsy = -dVR). The
last term in equation (19), according to the total differential of internal energy,1 represents the differential change
in the internal energy of the reservoir when its composition does not change (there is no exchange of particles
with sy andwith the environment of the total system (i.e., composite system: sy + R ≡ Csy); also R is not a reactive
system, i.e., no chemical reaction takes place in R). According to equation (19), R does not exchange heat with the
system or with the environment of Csy, which means that R is an adiabatic system. Therefore, equation (19) is:

dH?
Ssypsy

= −pdVsy − Adξsy⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟
system

−pdVR
⏞̅̅̅⏟⏟̅̅̅⏞reservoir

= −pdVsy + dU sy
SsyVsy⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

system

−pdVR
⏞̅̅̅⏟⏟̅̅̅⏞reservoir

= dU sy
Ssy + dUR

SRξR
= dUCsy

SCsyVCsy . (20)

Therefore, dH?
Ssypsy

represents the differential change in internal energy in both sy and R, i.e., it defines the
differential change of internal energy in the entire composite system (sy + R ≡ Csy), which is adiabatic (isentropic)
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and isochoric (Figure 5). Therefore, instead of the question mark symbol in dH?
Ssypsy

, the composite system symbol
follows:

dHCsy
Ssypsy

= dUCsy
SCsyVCsy . (21)

It is important to emphasize that enthalpy as a functionH(Ssy,psy,ξsy) depends exclusively on the parameters
of system sy. In contrast, the differential enthalpy change (and the finite change) refers to the sum of the system
and the pressure reservoir, i.e., to the composite system. Of course, when students learn the properties of
enthalpy, in the course of further lectures, superscripts and subscripts for the symbol H are omitted (this also
applies to other thermodynamic potentials). Considering, equation (18) the above equality is:

dHCsy
Ssypsy

= dUCsy
SCsyVCsy = dU sy

SsyVsy ; (22)

moreover, it has the following equality: ∂H/( ∂ ξ)Ssy , psy = ∂U/( ∂ ξ)Ssy ,Vsy. Equations (17)–(22) refer to the
adiabatic system (dSsy = 0); therefore, for the chemical reaction in system sy to be an isentropic thermodynamic
process (dST = 0), the system’s entropymust not change during the progress of the reaction (dSξ = 0). It follows that
the observed reaction from the system is reversible (i.e., an infinitely slow quasi-static process), whichmeans that
in the case of an exothermic reaction (dU sy

SsyVsy < 0), the differential change in internal energy of sy is equal to the
useful work (dU sy

SsyVsy = δW rev) obtained from sy (from the chemical reaction). Let the same reaction from the
adiabatic isochoric system sy (Figure 5A) take place in the adiabatic isobaric system sy (which is in contact with
the pressure reservoir R). If, formally, in the adiabatic isobaric sy, the differential advancement of the chemical
reaction occurs first (dξsy>0) with a constant volume (Figure 5B) – which is allowed by the property of the total
differential,20 then the differential change of internal energy in sy is dU sy

SsyVsy , and after the dξsy change, the

Figure 5: An isochoric adiabatic
system (A) is placed in reservoir
R that provides a constant
pressure in sy; formally, first the
chemical reaction takes place in
the adiabatic and isochoric sy
(B) and only then the adiabatic
volume changes in sy (system
expansion, C) and R (reservoir
compression, C).
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differential change of volume follows (let dVsy>0, Figure 5C). After these two infinitesimal steps (which actually
take place simultaneously), the differential change in internal energy in sy is:

dU sy
Ssy = −pdVsy + dU sy

SsyVsy . (23)

If thedifferential changesof internal energyandvolumearedU sy
SsyVsy < 0 anddVsy>0, then dU sy

Ssy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ > dU sy

SsyVsy

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ is valid

according to equation (23). However, although the reduction of the internal energy of the adiabatic isobaric system is
more significant compared to the adiabatic isochoric system, the absolute value of the useful work is not greater than
that obtained from the adiabatic isochoric system. Namely, the pressure-volume work -pdVsy from equation (23) is the
differential internal energy that goes from sy to R (in the case of dVsy>0). At the same time, -pdVR = pdVsy is the
differential increase in internal energy inR so that in the composite system (Figure4C), thepressure-volumeworks in sy
and R are mutually compensated,20 i.e., in the composite system there has been a redistribution of internal energy
(pdVsy) which remains in the composite system. It follows that the differential change of the total internal energy of the
composite systemCsy (dUCsy

SCsyVCsy ) –which is equal to the differential change of enthalpy in the adiabatic isobaric system
(dHCsy

Ssypsy
) – according to equation (20) is dUCsy

SCsyVCsy= dHCsy
Ssypsy

= δW rev = dU
sy

SsyVsy
and represents the differential useful

work obtained from the adiabatic isobaric system (with an isentropic thermodynamic process)which is in the adiabatic
R of constant pressure and is equal to the change in the internal energy of the reaction from the adiabatic isochoric sy
(Figure 5).

If the isobaric sy is still located in the adiabatic reservoir of constant pressureR, but sy is no longer adiabatic,
then according to equations (14a) and (20) the differential change of enthalpy in Csy is:

dHCsy
psy

= TdSsy − Adξsy, (24)

dHCsy
psy

= TdSsy − pdVsy − Adξsy⏟̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅ ⏟
system

−pdVR
⏞̅̅̅⏟⏟̅̅̅⏞reservoir

, (25)

of course, as with equation (20), it applies dVsy = -dVR. Let the differential change of entropy be dSξ>0 during the
differential advancement of the reaction from sy (during the reaction, sy is formally adiabatic and isochoric). If
the thermodynamic process from sy is isentropic quasi-static (dST = 0 – the maximum useful work is obtained),
then in each infinitesimal step of the reaction advancement from sy, the change in entropy dSξ must be
compensated with the departure of heat q = ∂U/( ∂ S)Vsyξsy = TdSsy < 0 from sy (formally, the reaction takes place
first at adiabatic and isochoric conditions in sy and then heat exchange follows at isochoric conditions between sy
and the environment–the environment of the composite systemCsy, Figure 6). The differential change of internal
energy in the system due to these two thermodynamic processes (reaction and heat exchange) is
dUsy

Vsy
= −TdSξ − Adξsy, so equation (25) is:

dHCsy
psy

= dU sy
Vsy − pdVsy⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
system

−pdVR
⏞̅̅̅⏟⏟̅̅̅⏞reservoir

= dU sy
Vsy − pdVsy⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
system

+pdVsy
⏞̅̅̅ ⏟⏟̅̅̅ ⏞reservoir

. (26)

The reaction and heat exchange is followed by a change in the volume of the system and reservoir under
formally adiabatic and isobaric conditions. Since the total volume of the composite system (Csy) is constant, when
the volume of sy and R changes, the pressure-volume work compensates each other, meaning that equation (26)
turns into equality:

dHCsy
psy

= dUCsy
STVCsy= dU sy

Vsy = δW rev. (27)

As the total entropy change is zero in the isobaric thermodynamic process (27), it follows that the internal
energy change of the composite system (enthalpy change at isobaric conditions) is equal to the maximum useful
work (δWrev). From equation (27), it can also be concluded that the same amount of work is obtained (at isentropic
conditions) when the reaction takes place at isochoric conditions (dU sy

Vsy
) or when the reaction takes place at

isobaric conditions (dHCsy
psy

) (Figure 6).
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2.3 Differential change of helmholtz free energy

Legendre’s definition of Helmholtz free energy is7,14–16

F ≡ U T[ ] = U S,V , ξ( ) − TS (28)

Therefore, the Helmholtz free energy is a function F = f(T,V,ξ)≡F(T,V,ξ). By differentiating equation (28) and
introducing the total differential of internal energy related to system sy, the following equation is obtained:

dF = TdSsy − pdVsy − Adξsy − TdSsy − SdT sy, (29)

and if the volume and temperature in sy are constant, i.e., isochoric and isothermal sy is observed, then it is:

dF = TdSsy − Adξsy⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
system

−TdSsy
⏞̅̅ ⏟⏟̅̅ ⏞reservoir

= TdSsy + dU sy
SsyVsy⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

system

−TdSsy
⏞̅̅ ⏟⏟̅̅ ⏞reservoir

= −Adξsy = dU sy
SsyVsy

= ∂F/∂ξ( )Tsy ,Vsydξsy = ∂U/∂ξ( )Ssy ,Vsydξsy. (30)

Equation (30) corresponds to a chemical reaction duringwhich the entropy of sy does not change (dSξ = 0). Similar
to equation (20), in equation (30), the first and second terms refer to the differential change of internal energy in
the isochoric system sy: dUsy

Vsy
= TdSsy − Adξsy. In each infinitesimal step of the quasi-static thermodynamic

process (reaction) accompanied by thermal fluctuation, the differential heat (TdSsy) is exchanged with the
thermoreservoir (R), which is isothermal, isochoric, and non-reactive. If R exchanges heat exclusively with sy,
then heat compensation (-TdSsy = TdSR) occurs in the composite system (Csy = sy + R), and Csy remains an
isentropic system. Therefore, the last term in equation (30) is the differential change in the internal energy of the
thermoreservoir. So, according to equation (30), dF is equal to the differential change of internal energy in the
composite system Csy under isothermal and isochoric conditions:

= 0

Figure 6: The reaction in the
isochoric (A) and isobaric
(B) system sy, the isobaric system
and the reservoir R form the
composite system Csy.
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dFCsy
Tsy ,Vsy = dU

sy

Vsy
+ dUR

VRξR
= dU sy

SsyVsy = dUCsy
SCsyVCsy . (31)

Considering equations (18) and (30), the equality follows:

δW rev = ∂H/∂ξ( )Ssy , psydξsy = ∂U/∂ξ( )Ssy ,Vsydξsy = ∂F/∂ξ( )Tsy ,Vsydξsy = dUCsy
SCsyVCsy , (32)

or

−A = ∂H/ ∂ ξ( )Ssy , psy = ∂U/ ∂ ξ( )Ssy ,Vsy = ∂F/ ∂ ξ( )Tsy ,Vsy
. (32a)

Equation (32) can be interpreted in two ways. Indeed, during the progression of the exothermic reaction (if the
goal is to obtain useful work) from sy, the entropy of the isochoric and adiabatic system does not change (dSξ=0). In
each infinitesimal step of the reaction progress, differential useful work is obtained δW rev = ∂U/( ∂ ξ)Ssy ,Vsydξsy,
which is also obtained if sy is in contactwith the thermoreservoir or reservoir for pressure–the composite systemas
the entire system (sy+R) is adiabatic and isochoric. Internal energy equivalent to an infinitesimal amount of heat or
infinitesimal pressure-volume work is differently distributed within the composite system. Another interpretation
of equality (32) is that during the progress of the reaction, not only does the entropy of sy not change, but neither
does the volume change nor does it exchange heat with R, i.e., sy has constant temperature, pressure, and volume.

A reaction whose progress results in a change in the entropy of the system (dSξ≠0). If, for example, an
exothermic reaction occurs in an isothermal and isochoric system, then in some infinitesimal step of the quasi-
static reaction progress −Adξsy= dUsy

SsyVsy
< 0 is valid, whereby each differential step of the reaction progress can

be formally considered to take place in an isochoric and adiabatic system (Figure 7A), the environment of Csy (the
global environment) from system sy receives the differential change in the internal energy of the reaction dU sy

SsyVsy

(in the case of an isentropic reaction, the equality dUsy
SsyVsy

= δW rev applies). If during the progress of the reaction

Figure 7: A formal illustration of
the differential change in
Helmholtz free energy: first,
under adiabatic and isochoric
conditions, the chemical reaction
(A) progresses infinitely, and the
entropy of the system increases
infinitely, which is then
compensated by the departure
of differential heat (in the form of
useful work) from sy to the global
environment at isothermal and
isochoric conditions (B), the lost
heat from sy is compensated
from the thermoreservoir (C).
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is dSξ>0 and if the quasi-static thermodynamic process in sy is isentropic (dST = 0), then according to equation (5),
the equality dSsy = -dSξ is valid, so that equation (30) is:

dFCsy
TsyVsy = −TdSξ

⏞̅̅ ⏟⏟̅̅ ⏞(leav sy to sur. of Csy)
+TdSξ
⏞̅̅ ⏟⏟̅̅ ⏞(enter to sy fromR)

−Adξsy⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
system

−TdSξ
⏞̅̅ ⏟⏟̅̅ ⏞leavR to sy

. (33)

Namely, in equation (30), TdSsy = ∑δq can represents the exchanged heat between sy and other compart-
ments of the global environment, whichmeans that the first term in equation (33) represents the heat leaving the
isochoric and isothermal sy (after the infinitesimal progress of the reaction in a formally adiabatic and isochoric
system, Figure 7A) to compensate for the infinitesimal increase in entropy (dSξ>0) during the progress of the
reaction (Figure 7B). However, since sy is isothermal, heat TdSξ enters the system from the thermoreservoir
(Figure 7C). At the same time, the same amount of heat leaves R (-TdSξ) so that the heat that compensates for the
entropy of the reaction from sy comes from the thermoreservoir. It follows that equation (33) is equal to equation

(10), i.e., the differential change dFCsy
TsyVsy

is equal to the differential change in the internal energy of the isochoric

system:

dFCsy
TsyVsy = −TdSξ − Adξsy = dU sy

Vsy = δW rev = dUCsy
VCsy

⃒⃒⃒⃒
⃒ : dST = 0. (33a)

Based on equation (33a), it can be concluded that if dSξ is > 0 in the observed reaction from sy, then in each
infinitesimal step of the reaction progress, a higher differential useful work is obtained in absolute value than the
differential change in internal energy of formally adiabatic and isochoric systems (due to differential progress
reactions). On the contrary, if dSξ < 0, the differential useful work is smaller in absolute value than -Adξsy since
part of -Adξsy goes to R as heat to compensate for the decrease in reaction entropy in system sy.21 If expressions
(10) and (24)–(27) are compared with expression (33a), then the equality follows:

δW rev = dFCsy
TsyVsy = dHCsy

psy
= dU sy

Vsy = dUCsy
VCsy

⃒⃒⃒⃒
⃒⃒ : dST = 0. (34)

Namely, if sy is in contact with the corresponding reservoir, then the exchanged energy (heat or pressure-
volume work) between the system and the reservoir is mutually compensated, i.e., the net effect is to move some
of the internal energy from one part of the composite system to another part. In each infinitesimal step of the
progress of the reaction, regardless of the presence of R, the system sy from the composite system behaves as an
isochoric system without R and with an infinitesimal change in internal energy: dU sy

Vsy = −TdSξ − Adξsy. This
change in dU sy

Vsy in the global environment Csy represents the differential useful work.

2.4 Differential change of gibbs free energy

The definition of the Gibbs free energy from the internal energy U(S,V,ξ) based on the Legendre transformation
is7,14–16

G ≡ U T , p[ ] = U S,V , ξ( ) + pV − TS, (35)

whichmeans thatG is a function:G = f(T,p,ξ)≡G(T,p,ξ). We arrive at the expression (36) by differentiating equation
(35) and introducing the total differential of the internal energy related to the system sy where one reaction
occurs:

dG = TdSsy − pdVsy − Adξsy − TdSsy − SdT sy + pdVsy + Vdpsy, (36)

If sy is isotherm and isobar, then the above equation is:

dGCsy
psyTsy

= TdSsy − pdVsy − Adξsy⏟̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅ ⏟
system

−TdSsy + pdVsy
⏞̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅⏞reservoir

= −Adξsy

= ∂G/ ∂ ξ( )Tsy , psy
dξsy= dU sy

SsyVsy = dU sy + dUR
ξR
= dUCsy

SCsyVCsy . (37)
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In equation (37), the first three terms represent the differential internal energy change in sy. As the H and F
functions (thermodynamic potentials) show, appropriate reservoirs of intensive state quantities were required to
maintain the system’s constant pressure and temperature. Similarly, with the thermodynamic potential G, a p, T-
reservoir (R) is needed to maintain the constant temperature and pressure in sy. The last two terms in equation
(37) correspond to the differential internal energy change in R. Since the first term (TdSsy) and the fourth term
(-TdSsy) in equation (37) are equal in absolute value, it means that R exchanges heat exclusively with sy (anal-
ogously, sy can exchange heat exclusively with R). Similarly, the second term (-pdVsy) and the last term (pdVsy) in
absolute value are equal to each other and represent the pressure-volume work exchanged between sy and R. It
can be concluded that the differential change of Gibbs free energy (37) under isothermal and isobaric conditions
represents a differential change of internal energy in the composite system Csy = sy + R (dGCsy

psyTsy
= dUCsy

SCsyVCsy ).
Suppose the composite system Csy is adiabatic and isochoric. In that case, it follows that the entropy change of the
system (sy) during the reaction progress is zero–so that the thermodynamic process as a whole would be
isentropic–and the differential change in the internal energy of Csy, according to equation (37), is equal to the
change in the internal energy of the system (sy) itself (dGCsy

psyTsy
= dUCsy

SCsyVCsy = dU sy
SsyVsy ). Energy fluctuations,

i.e., thermal and pV fluctuation between sy and R, compensate for each other (if they exist). Therefore, the
differential change dGCsy

psyTsy
equals the differential change in internal energy of a formally adiabatic and isochoric

system. Suppose a change in the volume of sy and thermal fluctuation does not accompany the progress of the
reaction from sy. In that case, the isobaric-isothermal system is also isochoric-adiabatic (Figure 8). Considering
the expression (37) and equality (32), it follows the expansion of equality (32) with the term related to the Gibbs
free energy:

Figure 8: Suppose the reaction
progress from sy is not
accompanied by a change in the
system’s volume and a thermal
fluctuation with R. In that case,
every system from the composite
system is also an isochoric-
adiabatic sy and is equivalent to
an isochoric-adiabatic system
without R.
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δW rev = ∂U/∂ξ( )Ssy ,Vsydξsy = ∂H/∂ξ( )Ssy , psydξsy= ∂F/∂ξ( )Tsy ,Vsy
dξsy = ∂G/∂ξ( )Tsy , psy

dξsy = dUCsy
SCsyVCsy , (38)

or

−A = ∂U/∂ξ( )Ssy ,Vsy = ∂H/∂ξ( )Ssy , psy = ∂F/∂ξ( )Tsy ,Vsy = ∂G/∂ξ( )Tsy , psy
. (38a)

Let us now study the system (sy) with a p,T-reservoir when the reaction’s progress changes the system’s
entropy (dSξ≠0). If, formally, the infinitesimal progression of the exothermic reaction occurs first in a system that
is adiabatic and isochoric, then the differential change in internal energy of sy is: δW rev = dUsy

SsyVsy
=

∂U/( ∂ ξ)Ssy ,Vsydξsy (Figure 9A). For example, during the reaction’s differential progress, the system’s entropy
increases infinitesimally (dSξ>0). For the thermodynamic process to be isentropic, differential heat (-TdSξ) leaves
sy to the global environment (in the form of useful work), whereby the reaction entropy in a formally isochoric
and isothermal system is compensated (Figure 9B). Since sy is an isothermal system, the lost heat is compensated
by the input of differential heat from the p,T-reservoir (Figure 9C). If, during the differential progress of the
reaction, the volume of sy decreases infinitesimally (dVsy<0) under isobaric and isothermal conditions (formally,
after the infinitesimal progress of the reaction and the process of infinitesimal heat exchange), then sy gains

=

Figure 9: A formal illustration of
the differential change in
equation (39).
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differential energy in the form of pressure-volume work (-pdVsy>0) from R (at the same time, R loses differential
energy in the form of pressure-volume work (pdVsy<0); Figure 9D), but as sy is isothermal, this differential excess
of internal energy (dUex = pdVsy<0) from sy goes to the global environment as useful work (Figure 9E):

dGCsy
psyTsy

= −TdSξ
⏞̅̅ ⏟⏟̅̅ ⏞leav sy to surr. of Csy( )

+TdSξ
⏞̅̅ ⏟⏟̅̅ ⏞enter to sy fromR( )

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
0

−pdVsy
⏞̅̅ ⏟⏟̅̅ ⏞enter to sy fromR( )

+ dUex = pdVsy( )⏞̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅ ⏞leav sy to surr. of Csy( )
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

0

−Adξsy
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

system

−TdSξ⏟̅̅ ⏞⏞̅̅ ⏟
leav R to sy( )

+pdVsy⏟̅̅⏞⏞̅̅⏟
leavR to sy( )

⏞̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅ ⏞reservoir

=−Adξsy⏟̅̅⏞⏞̅̅⏟
system

−TdSξ +pdVsy
⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞reservoir

=−Adξsy−TdSξ +pdVsy=dUCsy
VCsy =δWmax

rev =dHCsy
pT −TdSξ

⃒⃒⃒⃒
⃒ :dST=0. (39)

In the above expression, the differential enthalpy change appears, which differs from the differential
enthalpy changes introduced by equations (22) and (27) (Figure 10):

Figure 10: Absolute values of differential changes of
thermodynamic potentials.
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dHCsy
Ssypsy

≠ dHCsy
psy

≠ dHCsy
pT . (40)

Based on the expression (39), it can be concluded that the global environment of the composite system from
Csy receives the differential useful work partly from the system (-Adξsy) and partly from the p,T-reservoir
(-TdSξ+pdVsy) (Figure 9). If it is dU sy

SsyVsy
= ∂U/( ∂ ξ)Ssy ,Vsydξsy = −Adξsy < 0; dSξ>0; dVsy<0 and dST = 0, then in

relation to the other isochoric composite systems discussed so far (Csy where R is a thermal reservoir or a
pressure reservoir and Csy = sy–isochoric system without R, Figure 10), from the composite system with the p,T-
reservoir, the highest value of useful (non-pressure-volume) work is obtained by absolute value. Therefore, this
work is also called maximum non-expansion work (δWmax

rev ), and it is valid (Figure 10):

dGCsy
psyTsy

= δWmax
rev ≠ δW rev = dF

Csy

TsyVsy
= dHCsy

psy
= dU sy

Vsy = dUCsy
VCsy

⃒⃒⃒⃒
⃒⃒⃒ : dST = 0, (41)

and

δWmax
rev

⃒⃒⃒⃒ ⃒⃒⃒⃒
> δW rev| |. (42)

Let the goal be the carry-out of a non-spontaneous chemical reaction in the isentropic and quasi-static regime,

and let the differential changes be: dHCsy
pT > 0, dGCsy

psyTsy
> 0 and dSξ>0. Then, according to equation (39), the dif-

ferential change of enthalpy in some infinitesimal step of the progress of a non-spontaneous reaction is:17

dHCsy
pT = dGCsy

psyTsy
+ TdSξ = δWmin

rev + TdSξ . (43)

The differential change in Gibbs free energy represents theminimumwork (δWmin
rev ) thatmust be provided to

the system for the infinitesimal progression of non-spontaneous reactions. Because the system is isentropic, the
value of the infinitesimal change in enthalpy is compensated by the differential amount of heat from the reservoir
(surroundings): TdSξ = -TdSR.

2.5 Reaction entropy

One more comment remains. Sometimes, during lectures, students ask what precisely the entropy change of a
reaction is. It is clear to the students that in exothermic reactions, chemical bonds of different energies are broken
and created, and the excess energy can be used as useful work or dissipated in the environment in the form of
heat. However, the entropy change during the reaction is quite mysterious for them. In the teaching of physical
chemistry and thermodynamics, there is a direction that tends to explain thermodynamic functions (i.e., their
changes), if possible (or at least to try) at the molecular (microscopic) level,22,23 which we will also try. Let the
entropy change in the system (where the reaction occurs) with p,T-reservoir be followed, and for simplicity, let
the reactionmixture in the system (sy) behave as an ideal gas (IG). The partial molar entropy of some components
in the IGmixture at pressure p and temperature T and composition x = (x1…xi…) - the vector of mole fractions in
sy–is24,25

Si p, T ,x( ) = S– i p, T( ) − R ln xi, (44)

where Si p, T( ) corresponds to the molar entropy of the observed component in its pure state at a pressure and
temperature identical to the sy mixture’s pressure and temperature; at p,T = const. conditions, the entropy of a
mixture containing C components is (n = amount of components):

S p, T ,x( ) = ∑
C

i
niSi p, T ,x( ). (45)

Since the system contains a reactive mixture, the vector x changes as the reaction progresses. Every
component in the system is either a reactant or a product of the studied reaction, and no inert components are
present. If the amount (mol) of each component from the reactive mixture is expressed using the stoichiometric

448 M. Poša: Differential changes of thermodynamic potentials



coefficient and the degree of progress of the reaction, then taking into account expression (44), equation (45) is
(xi(ξ)≡xi = f(ξ)):

S p, T ,x = f ξ( )( ) = ∑
C

i
n0i + νiξ( ) Si p, T( ) − R ln xi ξ( )( ), (46)

S p, T ,x = f ξ( )( ) = ∑
C

i
n0
i Si p, T( ) +∑

C

i
νiSi p, T( )ξ − R∑

C

i
n0
i + νiξ( )ln xi ξ( ). (46a)

The last term in the above equation represents the entropy of mixing depending on the degree of progress of
the reaction. As the values of themole fractions in themixture are less than unity, lnxi(ξ)<0 follows; therefore, it is:

ΔSmix p, T ,x = f ξ( )( ) = −R∑
C

i
n0
i + νiξ( )ln xi ξ( ) > 0 (47)

The second term (∑C
i νiSi p, T( )ξ)) in equation (46a) represents the entropy change at ξ = 1 when the reactants

and products are in a pure state, i.e., a hypothetical reaction without mixing. If the constant pressure of the
reactionmixture is equal to the standard pressure, then the second term of the equation is the standard change of
reaction entropy:

ΔS0ξ T( ) = ∑
C

i
νiSi p0, T( ), (48)

or more generally at some constant pressure:

ΔSξ p, T( ) = ∑
C

i
νiSi p, T( ). (48a)

The first term (∑C
i n

0
i Si p, T( )) from equation (46a) represents the entropy of the reactants of the observed

reaction in its pure state when it is ξ = 0. The change in entropy during the progress of the reaction at a particular
value ξ relative to the entropy of the state ξ = 0 is (Figure 11):

ΔSξ p, T ,x = f ξ( )( ) = ∑
C

i
n0
i Si p, T( ) + ∑

C

i
νiSi p, T( )ξ − R∑

C

i
n0i + νiξ( )ln xi ξ( ) −∑

C

i
n0
i Si p, T( ),

ΔSξ p, T ,x = f ξ( )( ) = ∑
C

i
νiSi p, T( )ξ − R∑

C

i
n0
i + νiξ( )ln xi ξ( ), (49)

that is, taking into account expressions (47) and (48a):

Figure 11: The change in entropy of the system during the
reaction progress in case ΔSξ(p,T) < 0; reactants at time t = 0 are
in stoichiometric amount.
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ΔSξ p, T ,x = f ξ( )( ) = ΔSξ p, T( ) − ΔSmix p, T ,x = f ξ( )( ). (50)

If the first term in equation (50) is zero (ΔSξ(p,T) = 0) or |ΔSξ(p,T)<0|<ΔSmix(p,T,x = f(ξ)), then the increase in
entropy to the equilibrium state (ξ = ξe) in the chemical reaction through a series of quasi-static changes of state
between ξ = 0 and ξ = ξe (Figure 11) is a consequence of the entropy of mixing (ΔSmix(p,T,x = f(ξ))>0), which is
compensated by the departure of heat from the composite system–an isentropic process–into the global envi-
ronment as useful work that is superimposed on the useful work that originates from the change in the internal
energy of the exothermic reaction (Figure 9). During the quasi-static change of the system’s state during the
reaction progress to the equilibrium state,6 in each infinitesimal step of the progress of the exothermic reaction,
the infinitesimal change in the system’s internal energy enters the differential useful work–isentropic process. Of
course, if ΔSξ(p,T)>0 and this is the case when the energy is distributed over a more significant number of the
product’s quantum states than there are reactant’s quantum state numbers–the partition function of the product
increases concerning the partition functions of the reactants–or by in classical mechanics, energy is distributed
over a more significant number of product’s degrees of freedom, then ΔSξ(p,T) is superimposed on
ΔSmix(p,T,x = f(ξ)) and the entropy of the reaction increases to ξ = ξe>ξ = 0.5ξ = ξe>ξ = 0.5 (Figure 12).21,26

3 Conclusions

Here, differential changes of internal energy and other thermodynamic potentials in a system in which an
exothermic reaction takes place are discussed with the aim of obtaining differential useful work. Equations and
symbols are derivated for SL students, who, when mastering the material, can follow and analyze in detail every
step of a given teaching unit.

What is necessary for every student to take away from this teaching unit is that the differential changes
in thermodynamic potentials refer to the differential change in the internal energy of the composite system
(system + reservoir). If the composite system is adiabatic and isochoric and the thermodynamic process in the
system is isentropic, then the reaction’s progress does not accompany the system’s entropy (reaction entropy)
change. The composite system’s differential change in internal energy is equivalent to an adiabatic and

isochoric system’s (without a reservoir) differential change in internal energy: δW rev = ∂U/( ∂ξ)Ssy ,Vsydξsy =
∂H/( ∂ξ)Ssy , psydξsy= ∂F/( ∂ξ)Tsy ,Vsy

dξsy = ∂G/( ∂ξ)Tsy , psydξsy = dUCsy
SCsyVCsy

(Figure 10).

Suppose the entropy of the system increases during the reaction progress. In that case, in order for the
thermodynamic process to be isentropic, the reaction entropy must be compensated by the departure of heat

Figure 12: The change in entropy of the system during the
reaction progress in case ΔSξ(p,T) > 0; reactants at time t = 0 are
in stoichiometric amount.
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from the composite system to the global environment where it contributes to useful work so that the composite
system is only isochoric (not adiabatic). The differential change in the internal energy of an isochoric composite
system (due to the infinitesimal progress of the reaction from the system) with a pressure reservoir or a
thermoreservoir is equal to the differential change in the internal energy of an isochoric reactive system (without

a reservoir) δW rev = dFCsy
TsyVsy

= d HCsy
psy

= d Usy
Vsy

= dUCsy
VCsy

⃒⃒⃒⃒
⃒⃒ : dST = 0.

The isochoric composite system, in which the reactive system is simultaneously in contact with a pressure
reservoir and a thermoreservoir, deserves special attention. Namely, in this case, themost significant differential
change in internal energy in absolute value (isentropic conditions) is obtained from the composite system, i.e., the
highest absolute value of the differential useful work (maximum non-expansion work) if the entropy of the
system increases during the progress of the exothermic reaction, and the volume of the system decreases at the

same time dGCsy
psyTsy

= dUCsy
VCsy

= δWmax
rev ≠ δW rev = dF

Csy

TsyVsy
= dHCsy

psy
= dU sy

Vsy
(Figure 10). In this case, the differential

change in the internal energy of the isochoric composite system (dGCsy
psyTsy

= dUCsy
VCsy

) is not equal to the differential

change in the internal energy of the isochoric system, i.e. system without p,T-reservoir (dU sy
Vsy
). For students,

Figure 10 can show the importance of setting (i.e., choosing) conditions in the composite system (in which sy the
observed reaction takes place) to obtain maximum non-expansion work.
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Appendix A

The extent of reaction ξ, considering the reaction equation as it is written, may be calculated by dividing the
number of times the chemical transformation occurs by the Avogadro constant, which means that it has the
dimension of mol (sometimes denoted by mol-rxn).9 The extent of a chemical reaction is an extensive variable
whose value ranges from zero to the theoretical maximum value. The amount of some reactant r and some
product p belonging to the same reaction in time t if the extent of reaction has the value ξ(t) is:

nr t( ) = nr t = 0( ) − νr| |ξ t( ) (A1)
np t( ) = νpξ t( ) (A2)

In the above equations, νr<0 and νp>0 are the stoichiometric coefficients of the selected reactant and product
in the observed reaction. Before the start of the reaction, the amount of reactant r is nr(t = 0); this amount of the
observed reactant decreases with the progress of time during the reaction. Equations (A1) and (A3) follow the
definition of the extent of reaction:

ξ t( ) = nr t = 0( ) − nr t( )( )/ νr| | = (A3)

ξ t( ) = np t( )/νp (A4)

If the initial amount of each reactant is equal to the stoichiometric coefficient, then the extent of the chemical
reaction if the total stoichiometric amount of reactants is converted into the stoichiometric amount of products
(i.e., one mole of the observed reaction takes place), according to equations (A3) and (A4), is:

ξ t( ) = ξmax = νr| | − 0( )/ νr| | = 1 and ξ t( ) = ξmax = νp/νp = 1
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Suppose the reactants are in a non-stoichiometric relationship. In that case, a normalized extent of reaction
can be introduced (normalization to a value of 1), which is explained in detail in the literature references.9,10

The change in Gibbs free energy of a reaction at constant temperature and pressure is:

dG = ∑μidni = ∑μiνidξ (A5)

∂G/∂ξ( )T , p = ΔrG = Δrμ = ∑μiνi (A6)

The slope of the Gibbs free energy function from the extent of the chemical reaction according to De Donder’s
equation (2) is:

∂G/∂ξ( )T , p = ΔrG = Δrμ = −A (A7)

Appendix B

∂U/∂S( )psy , ξsy = ∂ Csy
V dT + πsy

T dV( )/∂S( )psy , ξsy = Csy
V ∂T/∂S( )psy , ξsy + πsy

T ∂V/∂S( )psy , ξsy
= TCsy

V /Csy
p + πsy

T ∂V/∂T( )psy , ξsy/ ∂S/∂T( )psy , ξsy = TCsy
V /Csy

p + Tπsy
T Vα

sy
T /Csy

p

Multiplying the above equation by dSsy gives:

∂U/∂S( )psy , ξsydSsy = δq = Csy
V /Csy

p( )TdSsy + πsy
T Vα

sy
T /Csy

p( )TdSsy = Csy
V δq/Csy

p( ) + πsy
T Vα

sy
T δq/Csy

p( )
= Csy

V dT + πsy
T Vα

sy
T dT .
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