Home Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents
Article
Licensed
Unlicensed Requires Authentication

Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents

  • Christopher Deninger
Published/Copyright: December 20, 2010
Become an author with De Gruyter Brill
Journal für die reine und angewandte Mathematik
From the journal Volume 2011 Issue 651

Abstract

For an ergodic measure preserving action on a probability space, consider the corresponding crossed product von Neumann algebra. We calculate the Fuglede–Kadison determinant for a class of operators in this von Neumann algebra in terms of the Ljapunov exponents of an associated measurable cocycle. The proof is based on recent work of Dykema and Schultz. As an application one obtains formulas for the Fuglede–Kadison determinant of noncommutative polynomials in the von Neumann algebra of the discrete Heisenberg group. These had been previously obtained by Lind and Schmidt via entropy considerations.

Received: 2008-10-08
Revised: 2009-09-01
Published Online: 2010-12-20
Published in Print: 2011-February

© Walter de Gruyter Berlin · New York 2011

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle.2011.012/html
Scroll to top button