Abstract
Let A be a finite dimensional algebra over a field of characteristic zero graded by a finite abelian group G. Here we study a growth function related to the graded polynomial identities satisfied by A by computing the exponential rate of growth of the sequence of graded codimensions of A. We prove that the G-exponent of A exists and is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of A.
Received: 2009-01-16
Published Online: 2011-01-07
Published in Print: 2011-January
© Walter de Gruyter Berlin · New York 2011
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Ricci soliton solvmanifolds
- Rational normal scrolls and the defining equations of Rees algebras
- Classifications of linear operators preserving elliptic, positive and non-negative polynomials
- Graded polynomial identities and exponential growth
- Un théorème de la masse positive pour le problème de Yamabe en dimension paire
- Degenerate problems with irregular obstacles
- Twisted cyclic theory, equivariant KK-theory and KMS states
- A trace formula for varieties over a discretely valued field
Articles in the same Issue
- Ricci soliton solvmanifolds
- Rational normal scrolls and the defining equations of Rees algebras
- Classifications of linear operators preserving elliptic, positive and non-negative polynomials
- Graded polynomial identities and exponential growth
- Un théorème de la masse positive pour le problème de Yamabe en dimension paire
- Degenerate problems with irregular obstacles
- Twisted cyclic theory, equivariant KK-theory and KMS states
- A trace formula for varieties over a discretely valued field