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Orderings on measures induced by
higher-order monotone functions

By Zsolt Pdles at Debrecen and Tomasz Szostok at Katowice

Abstract. The main aim of this paper is to study the functional inequality

/ f((l—t)x—{—ty)d,u(t)zo, x,y €l withx <y,
[0.1]

for a continuous unknown function f: 1 — R, where [ is a nonempty open real interval and p
is a signed and bounded Borel measure on [0, 1]. We derive necessary as well as sufficient con-
ditions for its validity in terms of higher-order monotonicity properties of f. Using the results
so obtained, we can derive sufficient conditions under which the inequality E f(X) < E f(Y)
is satisfied by all functions which are simultaneously k1 -increasing (or decreasing), k»-increas-

ing (or decreasing), ..., k;-increasing (or decreasing) for given nonnegative integers k1, . . ., k;.
This extends several well-known results on stochastic ordering. A necessary condition for the
(n,n +1,...,m)-increasing ordering is also presented.

1. Introduction

In recent years, stochastic ordering tools were successfully applied to obtain new results
in the theory of functional inequalities; see, for example, [7, 12, 15] for the application of the
Ohlin lemma and [9, 10, 13] for the application of Levin—Stechkin theorem. In addition, the
orderings involving higher-order convex functions (see [4]) were used among others in [16,17].
See also [6] for recent applications of higher-order convex orderings in economics and [3] for
the application in queueing systems.

In this paper, we will use the notion of n-increasing (n-decreasing) function instead of
n-convex (n-concave) since we intend to cover the cases of f being positive (negative) or
increasing (decreasing) as well. To this end, we need to recall the notion of higher-order divided
differences. Let / C R be a nonempty open interval throughout this paper. Then, for a function
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f:1 — R, forn € N U {0} and for all pairwise distinct elements xg, ..., x, € I, we define

flxo..ox) =) f(x)

n b
=0 M=o,k () — xk)

which is called the nth-order divided difference for f at xg, ..., x,. Itis easy to see that the nth-
order divided difference is a symmetric function of its arguments. We say that f is n-increasing
if, for all pairwise distinct elements xo, ..., x, € I, we have that f[xo,...,x,] > 0. Observe
that O-increasingness means nonnegativity, l-increasingness is equivalent to increasingness,
and 2-increasingness coincides with convexity. Analogously, we say that f is n-decreasing
if (—f) is n-increasing, i.e., for all pairwise distinct elements xo, ..., x, € I, we have that
flxo0,...,xn] <0. In this case, 0-decreasingness means nonpositivity, 1-decreasingness is
equivalent to decreasingness, and 2-decreasingness coincides with concavity.

In the following theorems, we present the characterizations of n-increasingness due to
Popoviciu [11], which may also be found in Kuczma’s book [5] stated as [5, Theorems 15.8.4,
15.8.5, and 15.8.6], respectively (cf. [8, Theorem 2.6.8]).

Theorem 1. Letn € N\ {1}. Then a function f:1 — R is n-increasing if and only if
it is (n — 2)-times continuously differentiable and f™=2 is convex on I.

Theorem 2. Letn € N and let f:1 — R be (n — 1)-times continuously differentiable.
Then f is n-increasing if and only if f @~V is increasing on I.

Theorem 3. Letn € N U {0} and let f:1 — R be n-times continuously differentiable.
Then f is n-increasing if and only if £ is nonnegative on I.

Furthermore, given n € N U {0}, the symbols M, + (/) and M,-(I) will represent the
set of all n-increasing and n-decreasing functions defined on 7/, respectively.

Let now X, Y be two random variables that take values in /. We say that X is smaller
than Y in the n-increasing order if, for all f € M, + (1),

(1. E(f(X)) =E(f(Y))

provided that the expectations exist (see [14]).

In [14] and also in [12], one can find necessary and sufficient conditions for the n-
increasing order. That is, (1.1) is satisfied if and only if the following two conditions are
satisfied:

{ Ex* = EY*, ke{l,....n—1},
(1.2)

EX -0t ' <EY -0t tel

Note that, here and in the sequel, the symbols u_ and u represent the negative and positive
parts of a real number u, respectively, defined as

Jul — and uy = max(0,u) = |u|2+u

In practice, the functions satisfying inequality (1.1) may possess several higher-order
convexity properties. We give a simple example of such a situation.

u—_ := max(0, —u) =
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Example 1. For a function f:/ — R, consider the functional inequality

(13 3 (P w3 () < o ar (PR E) + o

which is supposed to be valid for all x, y € I with x < y. At the end of the introduction, we
will show that every continuous solution of (1.3) has to be 2-increasing, that is, convex. On
the other hand, we prove now that convexity is not sufficient for the validity of (1.3). Indeed,
dividing the inequality by 6 side by side, we can rewrite it in the form (1.1). Let x, y € I with
x < y be fixed and consider the random variables X and Y defined by

p(x =200y p(x =) L

IP’(Y:x):IP’(Y:y):é, P(Y:

X+ y) 2
2 /3

Then the normalized form of inequality (1.1) is equivalent to (1.3). The first moments of X and

Y are equal to % Therefore, the first condition in (1.2) holds for n = 2. On the other hand,

we have

X +y 1 1 x+y

E(x - ), =0-0> = -x)=E(Y- ).
PR A R T 2 4+

This shows that the second condition in (1.2) is violated. Therefore, we can conclude that not

all convex functions satisfy (1.3). (In particular, the convex function u +— (u — %)4_ does

not satisfy (1.3).)

This paper aims to provide tools that can be used to deal with inequalities of that kind. The
inspiration for our approach may again be found in the monograph [14], where it is mentioned
[14, Theorem 4.A.2] that inequality (1.1) holds for all increasing and convex functions f, i.e.,
forall f e M+ (I)NMy+(I),ifand only if E(X —7)4+) <E((Y —1t)4) forallz € R. As
we can see, even if an inequality is not satisfied by all functions that are monotone of some
order, it may be satisfied if we add additional monotonicity properties of some different orders.

We will collect all terms to one side of the inequality and consider only a bounded and
signed measure u, defined on the Borel subsets of the interval [0, 1]. Thus, our main purpose is
to study the functional inequality

(1.4) / F((A=0)x +1y)du(t) =0, x,y el withx <y,
[0,1]

for a continuous unknown function f:/ — R, and to derive necessary as well as sufficient
conditions for its validity in terms of higher-order monotonicity properties of f.

In order to formulate our main results, for kK € N U {0} and for a given bounded and
signed measure p on the o-algebra of Borel subsets of [0, 1], we introduce the functions
pi: R — Rand up, ,u,‘c": [0,1] — R by

i (1) 1= /[0’

W (@) = f[o =0 du)

(t — 0% du),
1]

W@ = [ =0k du.

,1
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Here, in the definition of f1z, when k = 0 and t = 7, we adopt the convention 0° := 1. Observe
that 11, (0) = “lj (1) = 0. Furthermore, ux (0) equals the kth-order moment of the measure jt.
A relationship among these functions will be established in Lemma 5 in the next section.

The main result of [2] is recalled in the following theorem.

Theorem 4. Let yu be a nonzero bounded signed Borel measure on [0, 1]. Assume that n
is the smallest nonnegative integer such that (1, (0) # 0. If f: 1 — R is a continuous function
satisfying the integral inequality (1.4), then ,(0) - f is n-increasing.

Remark 1. Considering a measure & = §o — 381 + 481 — 363 + §;, we may rewrite

inequality (1.3) in the form (1.4). Since we have 1o(0) = ©11(0) = 0 and u,(0) = %, accord-

ing to Theorem 4, we find that every continuous solution of (1.3) is a 2-increasing (i.e., a con-
vex) function. As we remember, not all convex functions satisfy (1.3). Thus we need to find
some additional conditions to the convexity to obtain a class of functions that satisfy (1.3). We
will return to this inequality in the last part of the paper.
2. Auxiliary results
The following lemma establishes a recursive formula for the sequences of functions
(43 )k=0 and (/L]j)kzo. In what follows, the characteristic function of a set A C R will be

denoted by y4.

Lemma 5. Let y be a nonzero bounded signed Borel measure on [0, 1]. Then, for all
k € N and t € [0, 1], we have

@ pe =k [ e, @t
1
(2.2) i)y =k / i (0.

Proof. We are going to prove equality (2.1) for k = 1 and for t € [0, 1]. Applying
Fubini’s theorem and the Newton—Leibniz formula, we obtain

/ "y di = / ( /[o,t)ld’”‘(s)) ar= [ ( /[0’1] X0 (©) dM(S)) 1
= [ ([ ronear)auw = [ ([ xenoar) due

~ [ =9 = [ 6-0u6 = -ni .
[0,1] [0,7)

For k > 1 and for t € [0, 1], using Fubini’s theorem again, we get

T B T ke
/O,uk_l(t)dt—/o (/[O’t)(s t) d,u(s))dt
- ( [ =00 ) ) ar
o \Jio,1]
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-/ ( / t(—(r—s>+>"—1dz) dyu(s)
[0,11\Jo
. 1 k t=t1
= [, [Fpee= o] ane
_ PN S PSRN
—/[O’l]( L@ =)0k + (0= 5)0k) diats)
1
= [ =90k du)
[0,1]
—— [ —p= 0 duts) =~ @
0.0) X M Mk
which completes the proof of equality (2.1) for k > 1.

To prove equality (2.2) for k = 1 and for t € [0, 1], using Fubini’s theorem and the
Newton—Leibniz formula, we obtain

1 . 1
+ = J—
/r Mo () dt = /r (/(t’l] ldM(S)) dt = /r (/[.0’1] X 11(8) du(s)) dt
! 1
- /[0,1](/1: X)) dt) dps) = /[0’1](/1 X10,5) (1) dt) dp(s)

— [ 60w = [ -6 =i ©.
[0,1] (t,1]

For k > 1 and for t € [0, 1], using Fubini’s theorem again, we get

[ wiwar=[( [ =0t duw)ar = | ( [, =0t du ) a
- /[0’1]( / 1(s—z)’f;ldt) dpuls) = /[0,1][——@—0’“] dyu(s)

B /[0 1](_%6 a 1)1'1 * %(S - I)ﬁ) as)

= [, 20— o) = .

which completes the proof of equality (2.2) for k > 1. ]

Before presenting sufficient conditions, we will need a lemma connected to a smoothing
technique that will be used later. We use here a similar approach to that used in the paper [2].
Namely, let #: R — R be a fixed nonnegative function of class C°° such that s(u) = 0 for

u ¢ (—1,1) and .
/ h(t)dt = 1.
-1

Then, for a given & > 0, define the function #,: R — R by

1, /t
he(t) i= —h(-), t €R.
e \g
Let f: I — R be a given continuous function. Put

=U—-e)N +¢)
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and define f¢: I, — R as the convolution of f with & as follows:
&
(2.3) fe(t) == f(t—s)h(s)ds, tel,.
—&

It is well known (see, for example, [18, §18.14]) that such function is of the class C *° and tends
to f as ¢ tends to zero (moreover, the convergence is uniform) on any compact subinterval of
the interior of /. In the following lemma, we will establish that f, also inherits the monotonicity
properties of the function f.

Lemma 6. Let f:1 — R be a continuous function. If f is n-increasing on I for some
n € N U {0}, then for all ¢ > 0, the function f, given by (2.3) is n-increasing on I.

Proof. Assume that f is n-increasing on [ for some n € N U {0}. Let x¢,...,x, be
pairwise distinct elements of /.. Then, by the n-increasingness of f, for all s € (—e¢, ¢), we
have that f[xo —s,...,x;, — 5] > 0. Therefore, using the defining formula of nth-order divided
differences, the definition of f, and the nonnegativity of s, we get

Jelxo, ... Xn]—zl_[ Se(xi)

j=0.j#i (Xi = X))
S 1
B t he(s)d
ig(:)n;;O,j;éi(xl X;) _gf(x — 8)he(s) ds

N f(xi—s)
/_81201_[1 —0,ji (Xi = X)) o

[t Sf(xi —s)

B /;‘%—ZO l_[;'l:o,j;éi ((xi —5) — (x; _S))

&€
flxo—3s8,....x5 —slhe(s)dv > 0.
—&

he(s)ds

This completes the proof of the n-increasingness of f; on /. m)

3. Sufficient conditions for inequality (1.4)
The next theorem presents one of the main results of this paper.

Theorem 7. Let n € N, let i be a bounded signed Borel measure on [0, 1], and let
A € [0, 1]. Assume that f: 1 — R is a continuous function possessing the following properties.

(@) Forallk €{0,...,n — 1}, the function i (A) - f is k-increasing.
(b) We have one of the following two possibilities.

(i) Either f is n-increasing and the following inequalities hold:

Hp_1(t) <0fort €[0,A) and ,u;;_l(r) > 0fort e (A, 1].
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(i) Or f is n-decreasing and the following inequalities hold.:
Hy_1(r) > 0fort €[0,A) and ;L;L_l(t) <O0fort e (A,1].
Then f satisfies inequality (1.4).
Proof. Take x < y from the interior of /. First we assume that f € C°°([x, y]). Then,

using Taylor’s theorem at the point p := (1 — A)x 4+ Ay with the integral remainder term, for
every u € [x, y], we have

k) u (n)
f()—Zf D=t [T @t
D !

Therefore, substituting u := (1 — ¢)x + ty into the above equality and then integrating it with
respect to u, we get

(3.1) /[O’I]f((l —1)x +ty) du(r)

Lok
- Z / k'(p) o 1]((1 — )X +1y — p)kd,u(t)
k=0 ’ ’

(1=t)x+ty f(n)(s) -
i [[0,1]([17 (n—1)! (A =0)x+1y —s) ds) dp(r).

Letk € {0,...,n — 1} be fixed. Then
/ (1 =0)x + 1y — p) du(r) = / (1= 1)x + 1y — (1 = M)x + ) du(t)
[0,1] [0,1]

=@y —x)F /[O H(r — V5 du) = (v — 0% ).

Combining condition (a) with Theorem 3, we obtain that (1) - f®)(p) > 0. Thus we con-
clude that

n—1
F®p)
Z k! [0,1]((

n—1 03]
= k) 2o

!
= k!

(3.2) 1 —t)x +ty— p)k du(t)

k=0

To obtain the nonnegativity of the second term on the right-hand side of (3.1), we will
use condition (b). Without loss of generality, we assume that condition (i) holds. Then, by
Theorem 3, we have that f ) is nonnegative on /. We split the second term on the right-hand
side of (3.1) as follows:

(A-t)x+ty f(”)(s) 1
(3.3) o (fp T (A=0)x +1y —3s) ds) du(t)

(1=Dx+ty r(n)
B /[o,x] (/p ({1 _ (IS))! (Q=1t)x +1y— s)"_1 ds) du(t)

(im0t f00(s) -
+/(A,1](/p (n—1)!((1_t)x+’y—s) dS) du(t).
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Now, we compute the two integrals on the right-hand side separately. For ¢ € [0, A], we have
that x < (1 —¢)x +ty < (1 — A)x + Ay = p; therefore, by using Fubini’s theorem, we get

(A=)x+ty (@)
/[o,x] (/p (J; _(ls))! (Q=0)x +1y — s)"_1 ds) du(r)
(n)
N [[o Al (_ /(p /) (A=t)x +1y — s)n_1 ds) du(t)

1—t)x+1y (n—1)!

p (n) ~
- /[o,u (/x K=y, (5): (J; —(1S))! (A=0x+1y—s) lds) dp(t)

r (n) .
N _/x (/[o,,x] X(Q=0)xtey,p) () (J; _(1S))! (I =0)x +1y —s) ! d/i(t)) ds

(n)
= _/.p(/ f (S) ((1 —t)x Tty _S)n—l dﬂ(l‘)) ds
x \Jp

0,5=%) (n—1)!

i f(n)(s) n—1 s —x\n—1
x (n— 1)!(y_x) (_/[o,;:);)(t_ y_x) du(t)) ds

P fmes) e B
= | i o e

To see that the last inequality is valid, observe that, for s € [x, p), the ratio 7 :=
to [0, 1), and hence, by condition (i), we have that 1, () < 0.

For t € (A,1], we have p = (1 — A)x + Ay < (1 —¢t)x + ty < y; therefore, by using
Fubini’s theorem again, we obtain

(1—t)x+ty (n) ~
/(\A,l](/p: gl_gs))!((l—l)x+fy—S)n ldS) d/,L(l‘)

Y (n) ~

y f(n)(S) -
- /p (/u,u Hip.a=nxren () - G (=0 1y =) du(t)) ds

y (n)
:/p (/( f (S) ((1 —t)x Tty _S)n—l d,bb(l)) ds

s=x ) (n—1)!

_ 7 f(n)(s) n—1 s —x\n—1
“p =i (/(;—_;C,l]("m) ) ) ds

V4
Y f0s) . s—x
pr PSR l-u;f_l(y_x)dszo.

Observe that, for s € (p, y], the ratio 7 := y—x belongs to (A, 1] and hence, by condition (i),
we have that u: _1(7) = 0. This validates the last inequality above.
Given the two inequalities obtained and (3.3), it follows that

-t x+ty r(n)
/[0 1] (/p (J,: _(1s))! (A—t)x 41y — s)n_1 ds) du(r) > 0.

This inequality, together with (3.2) used in (3.1), yields that inequality (1.4) is valid.

S —X

)dszo.

y—Xx

S—X

belongs
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To finish the proof, we need to consider the case when f is not necessarily of the class
C . First chose g9 > 0 so that [x, y] C I,. Then, forall ¢ € (0, &9), we have that [x, y] C I,.
On the other hand, according to Lemma 6, conditions (a) and (b) imply that g (L) - fe is
k-increasing for all k € {0,...,n — 1}, and f; (or — f¢) is n-increasing on I,. Since f; is
infinitely many times differentiable on I, it is also infinitely many times differentiable on
[x, y] if & € (0, &9). From the first part of the proof, it follows that

/ fe(U=0)x +ty)du(t) = 0
[0,1]

holds for all ¢ € (0, &9). Now, using that f, uniformly converges to f on [x, y] as &€ — 0, upon
taking the limit, we get that (1.4) holds for x < y belonging to the interior of /. Using the
continuity of f at the endpoints of I if necessary, we can see that the inequality is also valid
forall x < y from /. o

4. Necessary conditions for inequality (1.4)

To derive the necessary conditions for inequality (1.4), we consider the following families
of the test functions.
For fixed p €e R, n € N, and u € I, define
o) =W —p)". o) i=@w—-p. ¢,,W):=@u—-p"
and, additionally, let

¥p,0 ‘= 1, (p;:O = X(p,o0)NI» §0;,o ‘= X(—o0,p)NI -

Lemma 8. Let p € R andn,k € N U{0}. The following assertions hold.
(i) If0<k <nand p <infl, then ¢p, € M+ (1) \ Myx—(I).
(i) If0<k <n,n—kisevenand p € I, then ¢p € My+(I)\ My—(I).
(iii) If 0 <k <n,n—kisoddand p € I, then ¢p n & M+ (1)U My—(1).
(V) If 0 <k <nandsupl < p, then (—1)”_k<pp,n € My+(I)\ My—(1).
(V) If k = n, then ¢p € Mp+(1)\ Myx—(1).
(vi) If k > n, then ¢pn € M+ (1) N My—(I).

Proof. The function ¢, , is infinitely many times differentiable; therefore, for the proof

of the assertion, we can use Theorem 3. For all u € I, we have that

Myt if0 <4
—w—p) " 0 =~£=mn,

epn) = § (= 0)!

0 if £ > n.
By analyzing the positivity and the negativity of the kth order derivative over /, the assertions
follow straightforwardly. |

Lemma9. Letp €l andn,k € N U{0}. The following assertions hold.
() If 0 <k <n+1,then g, € M+ (I)\ M—(1).
(ii) If k > n + 1, then ‘/’I;L,n ¢ M+ (1)U Mp—(1).
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Proof. It n = 0, then 90;, o 1s a nonnegative (but not nonpositive) and increasing (but not
decreasing) function which is discontinuous at p. Therefore, assertion (i) holds for k € {0, 1}.
Observing that <p; o is discontinuous at p, by Theorem 1, we get that it cannot be k-monotone
if k > 1, which shows that assertion (ii) is also valid in this case. Thus, from now on, we can
assume thatn > 1.

The function (pl‘,’: ,, 1s infinitely many times differentiable on R except at u = p. At this
point, it is differentiable only » — 1 times. In addition, for all ¥ € I, we have that

()P =

e i'g)!(u ot o<t <n—1.
First, we verify assertion (i).

For k = 0, the assertion in (i) is obvious. If | <k <mn,then 0 <k —1<n—1, and
hence the (k — 1)th-order derivative of <p;: , €xists, and it is an increasing (but not decreasing)
continuous function. Therefore, according to Theorem 2, the function (pl‘,’: ,, 1s k-increasing but
not k-decreasing on /.

If k =n+1, then ¢, is k =2 =n — 1 times differentiable and its (n — 1)th-order
derivative equals 7! (p;f 1> Which is a convex (but not concave) function. In view of Theorem 2,
it follows that <p1j: . 18 (n + 1)-increasing but not (n + 1)-decreasing on /.

Finally, if k > n + 1,1, k > n + 2 and if .7, € My+ (1) U My~ (1) was valid, then
by Theorem 1, we get that f is k —2 > n times continuously differentiable on I, which is
a contradiction. This completes the proof of assertion (ii). ]

Lemma 10. Let p € I andn,k € N U {0}. The following assertions hold.
() If 0 <k <n+1, then (~1)*g,, € My+(I)\ My—(I).
(i) If k >n+ 1, then g, , & My+ (1)U My—(1).

Proof. The proof is entirely analogous to that of Lemma 9; therefore, it is omitted. ©

Lemma 11. Let p € R and n € N U{0}. Then f := @p, satisfies inequality (1.4) if
and only if iy (A) = 0, A € J(p), where

—inf/
(—oo,i)g(—oo,()) if p <infl,

sup I —inf/

— 1
(l-i-&,oo)g(l,oo) if p>supl.

supl —inf/

Analogously, f := —p n satisfies inequality (1.4) if and only if 1y (A) <0 (A € J(p)).

Proof. Inequality (1.4) with f := ¢, , reads as follows: for all x, y € I withx <y,

0< / ((1 —t)x +ty— p)n du(t)
[0,1]
P —Xx\" pP—X
== [ (=22 4w = 0 -0 (25),
[0,1] y—=x y=x
Therefore, validity of inequality (1.4) with f = ¢, , is equivalent to the property that

MUn(A) =0
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for all A belonging to the set

S(p) := {i:;c :x,ye],x<y}.

An elementary computation shows that S(p) coincides with the open interval J(p) defined in
the assertion, completing the proof. m|

Lemma 12. Let p € [ and n € N U {0}. Then f := (p’j’:n satisfies inequality (1.4) if
and only if

(4.1) fy () =0 (Ae[0,1]) and pp() =0 (A€ (—00,0].
Proof. 1Inequality (1.4) with f := <p;: ,, reads as follows: for all x, y € I withx < y,
0< /[ ]Q"In (A =0)x +1y)du(t).
0,1

Observe that, according to its definition, (pl‘,t ,(u)=0ifu < pand <pl‘,'f L) >0if p <u.
If x <y < p,then (1 —t)x + ty < p; therefore,

o (1 =0x +1y) =0 forallz € [0,1].

Thus the above inequality is trivially valid.
Ifx <p<y,then(l—1t)x +1ty > p,ie., (plj:n((l —t)x + ty) > 0 holds if and only if

t € (5%;, 1]. Therefore,

< + _ _ B Y
0—/[0’1]%,;1((1 Hx +1ty) du(t) f( (1= t)x + 1y — p)" du()

pP—X
y—x’

) G K0

=(y —X)”MI(I;:X)-

X

Now, we can conclude that (1.4) holds with f := (p; , forall x,y € [ satisfyingx < p <y
if and only if the first inequality in (4.1) is valid.

If p<x<y,then (1—1)x +ty > p,ie., 901',':”((1 —t)x +ty) >0 forall r €[0,1].
Therefore,

< + — — _ _ )\
0_/[0’1] (pp’n((l 1)x +ty) du(t) /[ ]((1 1)x + 1ty —p) du(r)

s

=(y—x)" Ao’l](z — %)n du(t)

=(y —x)"un(i _;C)

Thus inequality (1.4) holds for f := (pl‘f, , and p < x < y if and only if p,(A) > 0 for all A
belonging to the set
ST(p) = {u x,yvel, p<x< y} = (—00,0).
y
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Since p,(A) is a polynomial of A, therefore, i, is continuous and, consequently, i, is non-
negative on (—oo, 0) if and only it is nonnegative on (—oo, 0]. This proves that the second
inequality in (4.1) is also a necessary and sufficient condition for inequality (1.4) to be valid
with f = gol‘,tn and for all x, y € I satisfying p < x < y. O

Lemma 13. Let p € I and n € NU{0}. Then [ := ¢, , satisfies inequality (1.4) if
and only if

D", (M) =0 (A €[0.1) and (=1)"ua(d) =0 (4 €[1,00)).

The proof of this lemma is completely analogous to that of Lemma 12; therefore, it is
omitted.
Now, we give a necessary condition for the (m™, (m + 1)*,...,n™")-monotone ordering.

Theorem 14. Let 0 < m < n be positive integers and let | be a bounded signed mea-
sure on [0, 1]. Assume that the interval I C R is bounded from below. Then inequality (1.4)
holds for all f € M+ (m+1)*,...n+ (1) if and only if the following conditions are satisfied:

@) po(0) =+ = um-1(0) =0,
(i) 1 (0) = 0 holds forallk € {m,...,n—1)},
(i) w_,(r) > 0forall T € (0,1].

Proof. To prove the sufficiency part of this theorem, assume that

f € Myt m+vy*,..nt (1)

and conditions (i)—(iii) are satisfied. Then, in view of conditions (i) and (ii), we trivially have
that uz (0) f is k-increasing for k € {0, ...,n — 1}. Using also condition (iii), we can see that
assumptions (a) and (b) (i) of Theorem 7 with A = 0 (even without using that / is bounded
from below) are satisfied. Thus the conclusion of this theorem is valid; hence f fulfills inequal-
ity (1.4).

In what follows, we verify the necessity of conditions (i)—(iii). Assume that inequality
(1.4) holds for all f € Mpy+ m+1)*+,...nt(1).

To see that condition (i) is necessary, letk € {0,...,m — 1} and let p € [ be fixed. Then,
according to Lemma 8 (vi), forall £ € {m,...,n — 1}, we have that ¢, x € M+ (1) N My—(1),
and hence ¢, r € M+ (m+1)+,...,n+ (1) holds. Thus, by our assumption, these two functions
satisfy (1.4). Applying Lemma 11, it follows that pz (A1) and —pug (1) are nonnegative for all
A € R. In particular, for A = 0, which shows that condition (i) has to be valid.

To prove the necessity of condition (ii), take p :=inf/ > —oco andletk € {m,...,n —1}.
Then, by assertions (i), (v) and (vi) of Lemma 8, the function f := ¢, € M+ (1) for all
¢ € N U{0} and hence f € M+ (m+1)*,....n+ (1) holds. Thus, by our assumption, this func-
tion satisfies (1.4). Using Lemma 11, it follows that puj is nonnegative on J(p) = (—o¢, 0).
By the continuity of j, it follows that jtf (0) > 0, which validates condition (ii).

Finally, we proceed to prove the necessity of (iii). Fix p € I. Then, by Lemma 9, the func-
tion f := <p;r, a1 belongs to Mo+ . ,+ (/). Thus, by our assumption, it should satisfy (1.4).
Using now Lemma 12, with this function f, we can obtain that u,‘l’_l is nonnegative on [0, 1],
that is, condition (iii) must hold. m)
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Remark 2. Observe that we used the assumption inf / > —oo only in the proof of the
necessity of condition (ii). Thus the other two conditions are necessary without this assumption.
It is an open question whether Theorem 14 (ii) is necessary if the interval I is not bounded
below.

A counterpart of Theorem 14 is contained in the following result.

Theorem 15. Let 0 < m < n be positive integers, and let | be a bounded signed mea-
sure on [0, 1]. Assume that the interval I C R is bounded from above. Then inequality (1.4)
holds for all

fe (D" M)
k=m

if and only if the following conditions are satisfied:

@) po(l) =+ = pm-1(1) =0,
(i) (=1)"*ur(1) = 0 holds for allk € {m,...,n—1},
(iii) p,_;(zr) <O0forall T €0, 1).

Proof.  To prove the sufficiency part of this theorem, assume that

fe ()" M)

k=m

and conditions (i)—(iii) are satisfied. Then, by conditions (i) and (ii), we can see that g (1) - f
is k-increasing for k € {0, ...,n — 1}. Using also condition (iii), it follows that assumptions
(a) and (b) (i) of Theorem 7 are satisfied with A = 1. Thus the conclusion of this theorem holds,
and hence f fulfills (1.4).

Next, we verify the necessity of conditions (i)—(iii). Assume that inequality (1.4) holds
forall f € (i, (—=1)" KM+ (D).

To prove the necessity of condition (i), let k € {0,...,m — 1} and let p € I be fixed.
Then, according to assertion (vi) of Lemma 8, for all £ € {m,...,n — 1}, we have that

Cpk € My (1) N My—(1),

and hence £¢, & € (f=pm (—1)”_ZM5+ (1) holds. Thus, by our assumption, these two func-
tions satisfy (1.4). Applying Lemma 11, it follows that (1) and —ux (A) are nonnegative for
all A € R. In particular, for A = 1, which shows that condition (i) must hold.

To prove the necessity of condition (ii), take p := sup I < ooandletk € {m,...,n — 1}.
Then, by assertions (iv), (v) and (vi) of Lemma 8, we have

fi= (1", € (1"t My+(I) forall £ € N U {0}

and hence f € (j_,, (=) tMm, ¢+ (1) holds. Thus, by our assumption, this function satisfies
(1.4). Using Lemma 11, it follows that (—1)" % 1, is nonnegative on J(p) = (1, c0). By the
continuity of pug, it follows that (—1)" % u (1) > 0, which shows that condition (ii) is also
necessary.
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In the last step, we verify the necessity of (iii). Fix p € I. Then, by Lemma 10,

f=ED" 0
belongs to (7= (- tMm ¢+ (1). Thus, by our assumption, it fulfills (1.4). Using now Lem-

ma 13, with this function f, we can obtain that (—1)"(—=1)""'u> | = —p,_, is nonnegative
on [0, 1], that is, condition (iii) must hold. O
5. Examples

Example 2. For a function f: 1 — R, consider the functional inequality

51) () = o0,

which is supposed to be valid for all x, y € I with x < y. Let the measure u be given by

n = —5% + 61.

Then (5.1) is equivalent to (1.4). We have that wo(0) = 0 and ©1(0) = % > 0. Therefore,
according to Theorem 4, the continuous solutions of (5.1) have to be increasing. For 7 € (0, 1],
we have that

0 ifz € (0,3),

o 10 — =
ITh (T)_/;r,1](t ) du(r) = p((r, 1)) {1 ifre[%,l],

which shows that /L(J{ is nonnegative on (0, 1]. Thus, applying Theorem 7 with A = 0 and
n = 1, it follows that every 1-increasing function is a solution to (5.1).

The next example is a continuation of Example 2 from the introduction.

Example 3. Let the measure 1 be given by u = 8o — 381 + 481 — 383 + &;. We will
show that inequality (1.3) is satisfied by all f € M+ 3+ (/). Indeed, 1o(0) = 11(0) = 0 and
u2(0) = %, i.e., in view of Theorem 4, the set of all solutions of (1.3) is contained in M5+ (1).

Now, we use Theorem 7 with A = 0. The function /Li'_ changes its sign in the inter-
val [0, 1] (Figure 1 (a)). This means that not all 2-increasing functions satisfy (1.3). On the
other hand, the function M; is nonnegative on [0, 1] (Figure 1 (b)). Therefore, every function
belonging to M»+ 3+ (1) satisfies inequality (1.3).

Surprisingly, this inequality is also satisfied for f € M+ 3—(/). Indeed, using Theo-
rem 7 with A = 1, it is enough to observe that puo(1) = pn1(1) =0, u2(1) = % and p3 is
nonnegative on [0, 1] (Figure 2 (a)).

We also have that j1o(1/2) = p1(1/2) = p3(1/2) = 0 and p2(1/2) = 1/8 and that p3
is nonpositive and ,u;r is nonnegative on [0, 1] (Figure 2 (b) and (c)).

Thus, applying Theorem 7 with A = 1/2, it follows that every function belonging to
M5+ 4+ (1) also satisfies inequality (1.3).

Due to the linearity of inequality (1.3), we finally can obtain that every function f
belonging to the convex cone

Mo+ 3+ (1) + Mo+ 3=(1) + Mo+ 4+ (1)

is a solution to (1.3).
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Figure 1. The graphs of the functions ;Li", /,L;— , 7 related to inequality (1.3).

In the next example, we present an inequality where three orders of increasingness must
be used to ensure that a given function satisfies this inequality.

Example 4. To deal with the inequality
x + 9y Ox +y
3/
10 ) +3/ 10

xX+y
s ) =2 +2f (F5) +2/00).
we consider the measure
n= 280 — 35% + 25% — 35% + 261.

We have 1o(0) = n1(0) = 0 and u2(0) = 2—15 As in the previous example, every solution of
(5.2) must be 2-increasing. However, this time, both functions ;L;r and M; change their signs
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Figure 2. The graphs of the functions u;, uz, ,u,;' related to inequality (1.3).

in [0, 1] (Figure 3 (a) and (b)). Therefore, we examine /L;_, and it turns out that it is positive
(Figure 3 (¢)). This together with u;r 0) = 5—30 > () means that (5.2) is satisfied by all functions
S from Mo+ 3+ 4+(1).

Remark 3. In view of Lemma 5, it is clear that if ,u,i" is nonnegative for some k¢ and
A € [0, 1] on the interval [A, 1], then it will be nonnegative for all k > k¢ on the interval [A, 1].
This will, however, bring no improvement since all classes of functions obtained in this way
will be contained in the previously received. Thus the procedure is to find the smallest k for
which /,L]_: does not change its sign on the interval [A, 1].
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Figure 3. The graphs of the functions ;Li", /,L;_ and /,L;_ related to inequality (5.2).

In the previous two examples, the inequalities were symmetric, resulting in relatively
symmetric classes of solutions. Now, we present an example of a nonsymmetric inequality that
will be satisfied by all functions from M~ >+ (/) and from M- 3+(I).

Example 5. Consider the inequality

2x +y
(53) of (F57) <8/ + /)
and the associated measure pu = 889 — 951 + 1. We have 110(0) =0, ©1(0) = —2 which
implies that all solutions of (5.3) are decreasing. The function ,u(J)r changes its sign, meaning
that not all decreasing functions satisfy (5.3). Further, the function ,ui" changes sign in [0, 1]
but 1] is nonpositive. (See Figure 4 (a) and (b).) Moreover, we have j1o(1) = 0, u1(1) = —2;
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Figure 4. The graphs of ;L'l", ;L2+ , iy related to inequality (5.3).

consequently, applying Theorem 7 with A = 1, we can see that every function from M- >+ (/)
satisfies (5.3). On the other hand, the function ;L;r is nonnegative and 5 (0) = 0. Therefore,
applying Theorem 7 with A = 0, we obtain that every function from M- 3+ ([) also satisfies
(5.3). In conclusion, by the linearity of the functional inequality, it follows that every function
from the convex cone M- 2+ (1) + M- 3+ (1) fulfills (5.3).

Observe that, until now, the only class of solutions obtained with the use of A different
from numbers O or 1 was M>+ 4+ from Example 3, where A = % was used. However, even in
that example, the functions /L;r, W5 were positive, resp. negative on the whole interval [0, 1].
Observe that the assumption of Theorem 7 is weaker. In the next example, we will use that
theorem in its full strength.
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Figure 5. The graphs of the functions //Li’_, u; and u;, connected with inequality (5.4).

Example 6. Consider the inequality

2x +y
3

(5:4) o () =2/@) + 7/ ()

and the measure ;1 = 289 — 981 + 781. Here we have 119(0) = 0 and 11(0) = 4. This means
that every solution of (5.4) is increasing. The positivity of u; implies that every function from
M+ o satisfies (5.4).

The function ., on the other hand, changes its sign on [0, 1], and therefore, we cannot
use here Theorem 7 with A = 1. We will use here A = %. We have Mo(%) =0, Ml(%) = 4,
Mz(%) = 0. Further, we have

My (t) <0fort €[0,3/4) and M;(r) >0fort e (3/4,1];
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see Figure 5 (b) and (c). Therefore, using Theorem 7, we get that (5.4) is also satisfied by all
f € M+ 3+. In conclusion, by the linearity of the functional inequality, it follows that every
function from the convex cone M+ >+ (1) + M+ 3+ (1) fulfills (5.4).

Remark 4. As we can see, if we are given a functional inequality of the form
(5.5) alf(ozlx + (1 —al)y) + o+ anf((xnx + (1 —an)y) >0,

then using Theorem 7, we can find a class of functions that satisfy this inequality. Interestingly,
if the classical condition needed for an n-increasing ordering is satisfied, we get only one class
of solutions. Still, if this is not the case, then different classes of functions may satisfy that
inequality.

Given the above remark, we may say that the results obtained in this paper yield a step
toward a complete solution of inequality (5.5). However, the applications of our results are not
limited to dealing with inequalities of that kind. For example, it is well known that the Bullen
inequality

1 + 1
L= e+ (S5 + o
y — 4
holds for all 2—increas1ng (1.e., convex) functions f and that
1 + 1
[ rwar= g+ 3 (550) + oo
y — 6

is satisfied by all 4-increasing functions (cf. [1]). The right-hand side of the above inequalities
is of the form

af )+ =20/ (*52) +af ).

with a = %, %. It is natural to ask what happens for other values of . We will consider such
a situation in the following example.

Example 7. The inequality

1 1
(5.6) - f(t) ar= o f@+ 327 (F52) + 2o
y— 5
is satisfied by all
(5.7) S € Ma+ 3+ (1) + Mo+ 3~ (1) + Ma+ a4+ (1)

forall x,y € I with x < y. Indeed, consider the measure
1 3 1
= -6 =81+ =61 — ¢,
2 500 + 5% + 501

where £ is the Lebesgue measure restricted to the measurable subsets of [0, 1]. Then we have
1£0(0) = p1(0) = 0 and 112(0) = g5

Further, the functions ,qu and p7 change sign in [0, 1] (Figure 6 (a) and (b)); therefore,
the inequality is not satisfied by all 2-increasing functions. On the other hand, u;’ and p, are
nonnegative on [0, 1] (Figure 6 (c) and (d)).
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Therefore, applying Theorem 7 with n = 3 and A € {0, 1}, we obtain that (5.6) is sat-

isfied by all f € M+ 3+(I) and f € My+ 3—([), respectively. The function ;3 vanishes at
A = 1/2 and condition (b) (i) of Theorem 7 with n = 4 and A = 1/2 is satisfied (Figure 6 (e)
and (f)); therefore, (5.6) also holds for all f € M+ 4+ ([). Using the linearity of (5.6), it now
follows that it holds for all f satisfying (5.7).
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