Abstract
We prove all conjectures of Chapter 7 of Yves André’s book (2004) in the case of products of elliptic curves. The proofs given here are simpler and more uniform than the previous proofs in known cases.
A Appendix: Sections of algebraic gerbes
Let 𝐹 be a number field and
Proof
For all 𝑖, let
We refer to [4, 10] for the notions of gerbes, non-abelian
Let 𝑘 be a number field and 𝒢 an étale (algebraic) gerbe over 𝑘, with connected linear band (or 𝑘-kernel) 𝐿.
Let 𝐸 be a finite extension of 𝑘.
Then there exists a finite extension
Proof
Consider the class 𝛼 of 𝒢 in the non-abelian cohomology set
By [4, Proposition 6.5], for any totally imaginary finite field extension
First, there exists a totally imaginary finite field extensions
There exists an exact sequence of 𝑘-tori (a flasque resolution of 𝑇 for instance; see [7, Proposition 1.3])
To conclude, we apply the lemma to the elements
Acknowledgements
Bruno Kahn thanks Yves André for several discussions around this paper, Giuseppe Ancona for pointing out [20], Cyril Demarche for kindly writing up the appendix and the referee for several comments which helped improve the exposition.
References
[1] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panor. Synthèses 17, Société Mathématique de France, Paris 2004. Search in Google Scholar
[2] L. Barbieri-Viale and B. Kahn, Universal Weil cohomology, preprint (2024), https://arxiv.org/abs/2401.14127. Search in Google Scholar
[3] C. Bertolin, Third kind elliptic integrals and 1-motives, J. Pure Appl. Algebra 224 (2020), no. 10, Article ID 106396 10.1016/j.jpaa.2020.106396Search in Google Scholar
[4] M. V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), no. 1, 217–239. 10.1215/S0012-7094-93-07209-2Search in Google Scholar
[5] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples, Springer, Berlin 2012. 10.1007/978-3-540-35316-4_1Search in Google Scholar
[6] C. Chevalley, Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Hermann & Cie, Paris 1954. Search in Google Scholar
[7] J.-L. Colliot-Thélène and J.-J. Sansuc, Principal homogeneous spaces under flasque tori; applications, J. Algebra 106 (1987), no. 1, 148–205. 10.1016/0021-8693(87)90026-3Search in Google Scholar
[8] P. Deligne, Semi-simplicité de produits tensoriels en caractéristique 𝑝, Invent. Math. 197 (2014), no. 3, 587–611. 10.1007/s00222-013-0492-xSearch in Google Scholar
[9] P. Deligne, J. S. Milne, A. Ogus and K.-Y. Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, Springer, Berlin 1982. 10.1007/978-3-540-38955-2Search in Google Scholar
[10] C. Demarche and G. Lucchini Arteche, Le principe de Hasse pour les espaces homogènes: réduction au cas des stabilisateurs finis, Compos. Math. 155 (2019), no. 8, 1568–1593. 10.1112/S0010437X19007395Search in Google Scholar
[11] E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. Éc. Norm. Supér. (3) 6 (1889), 9–102. 10.24033/asens.317Search in Google Scholar
[12] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci. 29 (1966), 95–103. 10.1007/BF02684807Search in Google Scholar
[13] A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969), 299–303. 10.1016/0040-9383(69)90016-0Search in Google Scholar
[14] H. Imai, On the Hodge groups of some abelian varieties, Kodai Math. Sem. Rep. 27 (1976), no. 3, 367–372. 10.2996/kmj/1138847263Search in Google Scholar
[15] B. Kahn, Motifs et adjoints, Rend. Semin. Mat. Univ. Padova 139 (2018), 77–128. 10.4171/rsmup/139-2Search in Google Scholar
[16] B. Kahn, Zeta and 𝐿-functions of varieties and motives, London Math. Soc. Lecture Note Ser. 462, Cambridge University, Cambridge 2020. 10.1017/9781108691536Search in Google Scholar
[17] B. Kahn, Chow–Lefschetz motives, Indag. Math. (2024), 10.1016/j.indag.2024.04.007. 10.1016/j.indag.2024.04.007Search in Google Scholar
[18] B. Kahn, Galois descent for motivic theories, preprint (2024), https://arxiv.org/abs/2312.01825. Search in Google Scholar
[19] E. R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151–1164. 10.2307/2373294Search in Google Scholar
[20] T. Kreutz, M. Shen and C. Vial, de Rham–Betti classes on products of elliptic curves over a number field are algebraic, preprint (2023), https://arxiv.org/abs/2206.08618. Search in Google Scholar
[21] D. Lombardo, On the ℓ-adic Galois representations attached to nonsimple abelian varieties, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 3, 1217–1245. 10.5802/aif.3035Search in Google Scholar
[22] J. S. Milne, Lefschetz motives and the Tate conjecture, Compos. Math. 117 (1999), no. 1, 45–76. Search in Google Scholar
[23] J. S. Milne, The Tate conjecture for certain abelian varieties over finite fields, Acta Arith. 100 (2001), no. 2, 135–166. 10.4064/aa100-2-3Search in Google Scholar
[24] J. S. Milne, Arithmetic duality theorems, 2nd ed., BookSurge, Charleston 2006. Search in Google Scholar
[25] A. Ogus, Hodge cycles and crystalline cohomology Hodge cycles, motives, and Shimura varieties Lecture Notes in Math. 900, Springer, Berlin (1982), 357–414. 10.1007/978-3-540-38955-2_8Search in Google Scholar
[26] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math. 265, Springer, Berlin 1972. 10.1007/BFb0059108Search in Google Scholar
[27] J.-P. Serre, Abelian 𝑙-adic representations and elliptic curves, W. A. Benjamin, New York 1968. Search in Google Scholar
[28] T. Shioda, Algebraic cycles on abelian varieties of Fermat type, Math. Ann. 258 (1981/82), no. 1, 65–80. 10.1007/BF01450347Search in Google Scholar
[29] M. Spieß, Proof of the Tate conjecture for products of elliptic curves over finite fields, Math. Ann. 314 (1999), no. 2, 285–290. 10.1007/s002080050295Search in Google Scholar
[30] J. Tate, Conjectures on algebraic cycles in 𝑙-adic cohomology, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence (1994), 71–83. 10.1090/pspum/055.1/1265523Search in Google Scholar
[31] C.-F. Yu, A note on the Mumford–Tate conjecture for CM abelian varieties, Taiwanese J. Math. 19 (2015), no. 4, 1073–1084. 10.11650/tjm.19.2015.4730Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Klein–Maskit combination theorem for Anosov subgroups: Amalgams
- Kähler–Einstein metrics on families of Fano varieties
- Symmetries of Fano varieties
- Parallel transport on non-collapsed 𝖱𝖢𝖣(𝐾, 𝑁) spaces
- A Schmidt–Nochka theorem for closed subschemes in subgeneral position
- Boundary Hölder continuity of stable solutions to semilinear elliptic problems in 𝐶1,1 domains
- Kawamata–Miyaoka type inequality for ℚ-Fano varieties with canonical singularities
- Finite generation of fundamental groups for manifolds with nonnegative Ricci curvature whose universal cover is almost 𝑘-polar at infinity
- The fullness conjectures for products of elliptic curves
Articles in the same Issue
- Frontmatter
- Klein–Maskit combination theorem for Anosov subgroups: Amalgams
- Kähler–Einstein metrics on families of Fano varieties
- Symmetries of Fano varieties
- Parallel transport on non-collapsed 𝖱𝖢𝖣(𝐾, 𝑁) spaces
- A Schmidt–Nochka theorem for closed subschemes in subgeneral position
- Boundary Hölder continuity of stable solutions to semilinear elliptic problems in 𝐶1,1 domains
- Kawamata–Miyaoka type inequality for ℚ-Fano varieties with canonical singularities
- Finite generation of fundamental groups for manifolds with nonnegative Ricci curvature whose universal cover is almost 𝑘-polar at infinity
- The fullness conjectures for products of elliptic curves