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The integrality conjecture and
the cohomology of preprojective stacks

By Ben Davison at Edinburgh

Abstract. We study the Borel–Moore homology of stacks of representations of pre-
projective algebras …Q, via the study of the DT theory of the undeformed 3-Calabi–Yau
completion …QŒx�. Via a result on the supports of the BPS sheaves for …QŒx�-mod, we
prove purity of the BPS cohomology for the stack of …QŒx�-modules and define BPS sheaves
for stacks of …Q-modules. These are mixed Hodge modules on the coarse moduli space of
…Q-modules that control the Borel–Moore homology and geometric representation theory
associated to these stacks. We show that the hypercohomology of these objects is pure and
thus that the Borel–Moore homology of stacks of …Q-modules is also pure. We transport the
cohomological wall-crossing and integrality theorems from DT theory to the category of …Q-
modules. We use our results to prove positivity of a number of “restricted” Kac polynomials,
determine the critical cohomology of Hilbn.A3/, and the Borel–Moore homology of genus
one character stacks, as well as providing various applications to the cohomological Hall alge-
bras associated to Borel–Moore homology of stacks of modules over preprojective algebras,
including the PBW theorem, and torsion-freeness.

1. Introduction

1.1. Background. This paper concerns the Borel–Moore homology of stacks of rep-
resentations of preprojective algebras …Q, which play a prominent role in many branches
of mathematics, and which we study through the prism of cohomological Donaldson–Thomas
(DT) theory and BPS cohomology. The Borel–Moore homology of stacks of finite-dimensional
…Q-modules occurs as the underlying vector space of the cohomological Hall algebra con-
taining all raising operators for the cohomology of Nakajima quiver varieties [33, 34], which
themselves can be presented as certain stacks of semistable representations of preprojective
algebras. More generally, stacks of representations of preprojective algebras model the local
geometry of complex 2-Calabi–Yau categories possessing good moduli spaces [9], for example
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coherent sheaves on K3 and abelian surfaces, Higgs bundles on smooth projective curves, local
systems on Riemann surfaces, and moduli of semistable objects in Kuznetsov components.

Via dimensional reduction, we study the Borel–Moore homology of the stack of …Q-
modules by relating it to the BPS sheaves for the stack of objects in the 3-Calabi–Yau comple-
tion C…Q (as defined by Keller [25]) of the category of …Q-modules. This paper is devoted
to understanding the BPS sheaves (as defined in [10]) of the 3CY categories C…Q formed this
way. By studying these BPS sheaves and the associated BPS cohomology, we prove a number
of theorems regarding the Borel–Moore homology of stacks of …Q-representations, Nakajima
quiver varieties, stacks of coherent sheaves on surfaces, as well as vanishing cycle cohomology
of Hilbn.A3/, and vanishing cycle cohomology of stacks of objects in C…Q .

1.2. Purity. In DT theory, as well as many of the other subjects this paper touches on,
we are typically interested in motivic invariants. See e.g. [22, 27] and references therein for
extensive background on motivic DT theory. This means that we are interested in invariants
z� of objects in a triangulated category D that factor through the Grothendieck group of D ; if
V 0 ! V ! V 00 is a distinguished triangle in D , then we require that z�.V / D z�.V 0/C z�.V 00/.
Alternatively, by “motivic”, people mean invariants of varieties X such that if U � X is open,
with complement Z, then the cut and paste relation z�.X/ D z�.U /C z�.Z/ holds. The link
between the two meanings is provided by the distinguished triangle

Hc.U;Q/! Hc.X;Q/! Hc.Z;Q/

so that a motivic invariant in the first sense induces one in the second sense.
A very basic example of a motivic invariant is the Euler characteristic of a complex of

vector spaces �.V / D
P
i2Z.�1/

i dim.V i /. A basic example of a non-motivic invariant is the
Poincaré polynomial P.V; q/ D

P
i2Z dim.V i /qi ; since the connecting morphisms in a long

exact sequence of vector spaces may be nonzero, the Poincaré polynomial may not satisfy the
cut and paste relation.

Recall that a mixed Hodge structure on a rational vector space V is the data of an
ascending weight filtration W�V , along with a descending Hodge filtration F �VC of the com-
plexification, such that the Hodge filtration induces a weight nHodge structure on the nth piece
GrWn .V / of the associated graded object with respect to the weight filtration. Given L, a coho-
mologically graded mixed Hodge structure, one defines its Hodge series, E series, and weight
series, respectively, by

h.L; x; y; z/ D
X

a;b;c2Z

dim.GrbF .GrWbCc.H
a.L////xbycza;

E.L; x; y/ D h.L; x; y;�1/;

�wt.L; q
1=2/ D E.L; q1=2; q1=2/:

Since both the E series and weight series involve an alternating sum over cohomological
degrees, they are motivic invariants.

We say that a cohomologically graded mixed Hodge structure L is pure if its ath coho-
mologically graded piece is pure of weight a, i.e. if GrWb Ha.L/ D 0 for b ¤ a. Our interest in
pure mixed Hodge structures comes from the fact that if L is pure, then P.L; q/ D �wt.L; q/.
Moreover, when the Borel–Moore homology of a stack is pure, we have a much better chance
of being able to calculate it, as we will demonstrate in this paper.
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1.3. The purity theorem. Let Q be a quiver with set of vertices Q0 and arrows Q1.
The quiver Q, which is the double of Q, is obtained by adding an arrow a� for every arrow
of a, with the reverse orientation. Then the preprojective algebra is defined as the quotient of
the free path algebra of Q,

(1.1) …Q ´ CQ=
D X
a2Q1

Œa; a��
E
:

We define N ´ Z�0. Let d 2 NQ0 be a dimension vector for Q. Define

X.Q/d D
Y

a an arrow of Q

Hom.Cdsource.a/ ;Cdtarget.a//:

This space is symplectic, via the natural isomorphism X.Q/d Š T�.X.Q/d/. This symplectic
manifold carries an action of the gauge group GLd ´

Q
i2Q0

GLdi .C/, with moment map

�Q;dWX.Q/d ! gld ´
Y
i2Q0

gldi .C/; � 7!
X
a2Q1

Œ�.a/; �.a�/�:

We identify gldi .C/ with the dual vector space gldi .C/
_ via the trace pairing. The stack

M.…Q/d of …Q-representations with dimension vector d is isomorphic to the stack-theoretic
quotient ��1Q;d.0/=GLd. Our first main result is the following.

Theorem A ([7, Conjecture 3.1]). Fix a quiver Q and a dimension vector d 2 NQ0 .
Then the mixed Hodge structure on HBM.M.…Q/d;Q/´ Hc.M.…Q/d;Q/_ is pure, of Tate
type.

We prove a more general version of Theorem A, concerning Borel–Moore homology of
stacks of semistable …Q-modules: see Section 6 and Theorem 6.4.

In Theorem A, the symbol _ denotes the dual in the category of cohomologically graded
mixed Hodge structures. Purity means that Deligne’s mixed Hodge structure on each cohomo-
logically graded piece Hnc .M.…Q/d;Q/ is pure of weight n, and the statement that a cohomo-
logically graded mixed Hodge structure L is of Tate type is the statement that we can write
L D

L
m;n2Z.L

mŒn�/˚am;n , for some set of numbers am;n 2 N, with L´ Hc.A1;Q/ given
the usual weight 2 pure Hodge structure, concentrated in cohomological degree 2. Purity is the
further statement that am;n D 0 for n ¤ 0.

Theorem A concerns compactly supported cohomology. Since ��1Q;d.0/ is a cone, and
hence homotopic to a point, there is an isomorphism H.M.…Q/d;Q/ Š H.BGLd;Q/ in usual
singular cohomology, and it is known this cohomology is pure [11]. On the other hand, com-
pactly supported cohomology is not preserved by homotopy equivalence, and the highly singu-
lar nature of��1Q;d.0/=GLd means that its compactly supported cohomology is a great deal more
complicated than its cohomology. In fact, purity requires an essentially new type of argument,
requiring the full force of cohomological DT theory. In particular, outside of finite type Q,
there is no way known (to date) of proving this purity statement without invoking the cohomo-
logical integrality theorem for the DT theory of quivers with potential, along with dimensional
reduction.

1.3.1. Okounkov’s conjecture. Theorem A is a singular stack-theoretic cousin of the
result that the cohomology of Nakajima quiver varieties is pure, with Hodge polynomial ex-
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pressible as a polynomial in xyz2 (this can be obtained by combining the proof of [18, Theo-
rem 1] with [20, Theorem 6.1.2 (3)]). In fact, we recover this result (Corollary 6.8). The purity
of Nakajima quiver varieties provides one of the main motivations for the purity statement in
Theorem A.

In a little more detail, it is conjectured that the cohomological Hall algebra A…Q obtained
by taking the direct sum of HBM.M.…Q/d;Q/ across all dimension vectors d is isomorphic
to the positive half of the Yangian YMO;Q constructed by Maulik and Okounkov in [29]. This in
turn would imply that the graded dimensions of gMO;Q are given by Kac polynomials, as conjec-
tured by Okounkov. Since the algebra YMO;Q is defined as a subalgebra of the endomorphism
algebra of the cohomology of Nakajima quiver varieties, the purity of YMO;Q follows from
purity for these quiver varieties. Our purity theorem provides evidence towards the conjecture
that A…Q Š YCMO;Q.

1.4. From DT theory to symplectic geometry. Consider the following general setup,
of which our situation withX.Q/d being acted on by GLd is a special case. LetX be a complex
symplectic manifold, with the affine algebraic group G acting on it via a Hamiltonian action,
with (G-equivariant) moment map �WX ! g�. Then define the function

(1.2) gWX � g! C; .x; �/ 7! �.x/.�/:

This function is G-invariant and so defines a function gW .X � g/=G ! C on the stack-the-
oretic quotient. Via dimensional reduction [5, Theorem A.1], there is a natural isomorphism
in compactly supported cohomology Hc.��1.0/=G;Q/˝ Ldim.g/ Š Hc..X � g/=G; �gQ/,
where �gQ is the mixed Hodge module complex of vanishing cycles for g. This explains the
appearance of vanishing cycles in what follows.

Note that �gQ is supported on the critical locus of g. A guiding principle for DT theory
(e.g. as expressed in [45]) is that a given moduli stack N of coherent sheaves on a Calabi–
Yau 3-fold can be locally expressed as the critical locus of a function g on some smooth
ambient stack M. DT invariants are then defined by taking invariants, factoring through the
Grothendieck group of mixed Hodge structures, of

Hc.M; �gQ/ D Hc.crit.g/; �gQ/ D Hc.N; �gQ/:

The link between DT theory and symplectic geometry is completed by the observation of
[14, Section 4.2] (see also [32]) that, associated to any quiver Q, there is a tripled quiver
with potential . zQ; zW / such that .X.Q/d � gld/=GLd is identified with the smooth stack of
d-dimensional representations of C zQ, and the critical locus of the function Tr. zW / (which is
the function g from (1.2)) is exactly the substack of representations belonging to the category
of representations of the Jacobi algebra1) Jac. zQ; zW / associated to the pair . zQ; zW /.

Putting all of this together, the cohomological DT theory of Jac. zQ; zW / gives us a tool for
understanding the compactly supported cohomology of M.…Q/, i.e. there is an isomorphism
of cohomologically graded mixed Hodge structures

Hc.M.…Q/d;Q/˝ Ldim.GLd/ Š Hc
�
M.Jac. zQ; zW //d; �Tr. zW /Q

�
:

We use cohomological DT theory to prove powerful theorems regarding the right-hand side,
and deduce results regarding the left-hand side.

1) The definition of Jac. zQ; zW / is recalled in Section 2.1.



Davison, Integrality conjecture and preprojective stacks 109

1.5. BPS sheaves and their supports. We prove Theorem A via an analysis of BPS
sheaves. These were introduced in [10], in the course of the proof of the relative cohomo-
logical integrality/PBW theorem for the critical cohomological Hall algebras introduced by
Kontsevich and Soibelman [28]. This theorem states that, for a symmetric quiverQ0 with poten-
tial W 0 and stability condition �, the direct image of the mixed Hodge module of vanishing
cycles for the function Tr.W 0/ along the morphism JH from the moduli stack of �-semistable
CQ0-modules to the coarse moduli space is obtained by taking the free symmetric algebra
generated by an explicitly defined mixed Hodge module BPS

�
Q0;W 0 , called the BPS sheaf,

tensored with a half Tate twist of H.BC�;Q/. The BPS cohomology BPS�Q0;W 0 is defined to be
the hypercohomology of this sheaf.

Although the direct image of the mixed Hodge module of vanishing cycles along JH is
concentrated in infinitely many cohomological degrees, this BPS sheaf is a genuine mixed
Hodge module, i.e. its underlying complex of constructible sheaves is a perverse sheaf. It
follows that, for every d 2 NQ0 , the BPS cohomology BPS�Q0;W 0;d lives in bounded degrees.

Unless the pairQ0; W 0 is quite special, it is difficult to actually determine BPS
�
Q0;W 0 . In

this paper, we show that, for the quiver zQ with potential zW appearing in the previous section,
the situation is much better. A key role is played by a support lemma, Lemma 4.1, which
imposes strong restrictions on the support of the BPS sheaves for Jac. zQ; zW / forQ any quiver.

Lemma 1.1 (Lemma 4.1). Let x be a point in M. zQ/� -ss
d corresponding to a C zQ-module

�, and let x lie in the support of BPS�zQ; zW ;d. Letƒ be the set of generalised eigenvalues of the
operators �.!i /, with i the vertices of Q. Then ƒ contains only one element.

This is a crucial lemma on the way to proving purity of BPS cohomology for Jac. zQ; zW /.
In combination with this purity result, the lemma also enables us to provide some of the first
nontrivial calculations of BPS sheaves; see in particular Section 5, lifting the work of Behrend,
Bryan and Szendrői on motivic degree zero invariants to the level of BPS sheaves. This lemma
is also one of the crucial ingredients in proving the purity of the BPS sheaves BPS�zQ; zW them-
selves, and the definition of the “less perverse filtration”: see [8, 9] for developments in this
direction.

1.6. 2d BPS sheaves. Aside from purity of BPS cohomology, one of the main appli-
cations of the support lemma is that it enables us to define 2d BPS sheaves.

Theorem B. Let mWA1 �M.…Q/
� -ss
d !M. zQ/

� -ss
d be the morphism extending a …Q-

module to a C zQ-module by letting each of the extra loops !i act via scalar multiplication
by z 2 A1. Then there is a Verdier self-dual mixed Hodge module BPS

�
…Q;d on M.…Q/

� -ss
d ,

which we call the 2d BPS sheaf, such that

BPS�zQ; zW ;d Š m�.ICA1.Q/� BPS
�
…Q;d/:

The pure intersection complex ICA1.Q/ is defined in Section 3.1. The 2d BPS sheaves
enjoy a number of properties.

(i) They categorify the Kac polynomials; we elaborate upon this in Section 8.

(ii) They are Verdier self-dual (see Section 4.2), which we expect to have a role in producing
geometric doubles of BPS Lie algebras.
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(iii) Their hypercohomology carries a Lie algebra structure, the BPS Lie algebra g…Q .

(iv) They are pure as mixed Hodge modules, enabling us to relate generators of g…Q to
intersection cohomology.

These last two properties are explained and explored in the paper [8], which is devoted to the
further study of 2d BPS sheaves.

1.7. Serre subcategories. A Serre subcategory S � CQ-mod is a full subcategory
such that, for every short exact sequence 0!M 0 !M !M 00 ! 0 of CQ-modules, M is
in S if and only if M 0 and M 00 are. Note that a module M is in S if and only if all of the
subquotients in its Jordan–Hölder filtration are in S , or equivalently if its semisimplification is
in S . So restricting attention to M.CQ/S , which is defined to be the substack of CQ-modules
belonging to S , is the same as restricting to the preimage of a particular subspace under the
semisimplification map from the stack of CQ-modules to the coarse moduli space M.Q/.

Because many of our results can be stated in the category of mixed Hodge modules2)

on M.Q/, we can prove results on the Borel–Moore homology of M.…Q/
S via restriction

functors and base change. Working with the BPS sheaf BPS…Q , as opposed to its hypercoho-
mology, enables us to calculate the compactly supported cohomology of substacks of M.…Q/

corresponding to Serre subcategories, leading to e.g. applications for character stacks.

1.8. Structural results. We prove two general structural results (Theorems C and D)
regarding the compactly supported cohomology of stacks M.…Q/

S for arbitrary finite quiver
Q and Serre subcategory S . The first is a kind of cohomological wall-crossing isomorphism.

Theorem C. Let Q be a quiver, let S � CQ-mod be a Serre subcategory, let � 2 HQ0
C

be a stability condition, and let % be the slope function defined with respect to �. Then there is
an isomorphism of NQ0-graded mixed Hodge structuresM

d2NQ0

Hc.M.…Q/
S
d ;Q/˝ L.d;d/

Š

O
�2.�1;1/

� M
d2NQ0

ˇ̌
dD0 or
%.d/D�

Hc.M.…Q/
S;� -ss
d ;Q/˝ L.d;d/

�
;

where
.d0;d00/´

X
i a vertex of Q

d0id
00
i �

X
a an arrow of Q

d0source.a/d
00
target.a/;

and M.…Q/
S;� -ss
d is the stack of d-dimensional �-semistable …Q-modules in S .

Taking the Hodge series of both sides of this isomorphism yields the equalityX
d2NQ0

h
�
Hc.M.…Q/

S
d ;Q/; x; y; z

�
.xyz2/.d;d/td

D

Y
�2.�1;1/

�
1C

X
%.d/D�

h
�
Hc.M.…Q/

S;� -ss
d ;Q/; x; y; z

�
.xyz2/.d;d/td

�(1.3)

regardless of whether the compactly supported cohomology of M.…Q/
S;� -ss
d is pure. We ex-

plain how a specialisation of a special case of equation (1.3) yields Hausel’s formula for the
Betti polynomials of Nakajima quiver varieties [18] in Section 7.3.

2) In cohomological DT theory, this is what is meant by the “relative” in the relative integrality conjecture.
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1.8.1. PBW/integrality isomorphism. Fix a quiver Q, a stability condition � 2 HQ0
C

,
a slope � 2 .�1;1/, and a Serre subcategory S of the category of CQ-modules. We write

AS;�
…Q;�

´

M
d2NQ0

ˇ̌
dD0 or
%.d/D�

HBM.M.…Q/
S;� -ss
d ;Q/˝ L�.d;d/:

This graded mixed Hodge module carries a Hall algebra structure; see Section 9.1 for details.

Theorem D. Let % be the slope function defined with respect to a stability condition
� 2 HQ0

C
, let � 2 .�1;1/ be a slope. Define the 2d BPS sheaf BPS

�

…Q;�
as in Theorem B

and the BPS cohomology to be the mixed Hodge structure

BPSS;�
…Q;�

´

M
0¤d2NQ0

%.d/D�

Hc.M.Q/S;� -ss
d ;BPS

�
…Q;d/

_:

Then there is an isomorphism

(1.4) JH�
�;Š

�M
d2ƒ�

�

QM.…Q/d ˝ L.d;d/
�
Š Sym�˚

.BPS
�

…Q;�
˝ H.BC�;Q/_/:

Moreover, there is a PBW isomorphism

(1.5) Sym.BPSS;�
…Q;�

˝ H.BC�;Q//
Š
�! AS;�

…Q;�
:

Since BPS
�
…Q;d is Verdier self-dual by Theorem B, BPSS;�

…Q;d is the hypercohomology
of the Š-restriction of the BPS sheaf on the coarse moduli space of �-semistable d-dimensional
C zQ-modules to the subspace of points representing modules in S .

1.9. Positivity of restricted Kac polynomials. For an arbitrary quiverQ, it was proven
by Kac in [23] that, for each dimension vector d 2 NQ0 , there is a polynomial aQ;d.q/ 2 ZŒq�
which is equal to the number of absolutely indecomposable d-dimensional representations of
Q over the field of order q, whenever q is equal to a prime power.

In the case of the degenerate stability condition, for which all modules are semistable of
the same slope, and so the superscript � and the subscript � can be dropped, (1.5) gives

(1.6)
M

d2NQ0

HBM.M.…Q/
S
d ;Q/˝ L�.d;d/ Š Sym.BPSS

…Q
˝ H.BC�;Q//:

Taking weight series of both sides of (1.6) yieldsX
d2NQ0

�wt.HBM.M.…Q/
S
d ;Q/; q

1=2/q�.d;d/td D Exp
�X

d¤0

aS
Q;d.q

�1=2/.1 � q/�1td
�
;

where aS
Q;d.q

1=2/´ �wt.BPSS
…Q;d; q

1=2/ is by definition the “S-restricted Kac polynomial”.
We have used the plethystic exponential

ExpWZ..q1=2//ŒŒti j i 2 Q0��C ! Z..q1=2//ŒŒti j i 2 Q0��;X
i2Z;d2NQ0

bi;dq
i=2td 7!

Y
i2Z;d2NQ0

.1 � qi=2td/�bi;d ;

where theC subscript means that bi;0 D 0 for all i 2 Z.
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The mere existence of isomorphism (1.6) can tell us something highly nontrivial about
aS
Q;d.q

1=2/ without knowing how to calculate it. Namely, if the left-hand side of (1.6) is pure,
then the BPS cohomology BPSS

…Q;d must also be pure, and so aS
d .q

1=2/ has positive coef-
ficients (expressed as a polynomial in �q1=2/. In particular, for the case S D CQ-mod, the
S-restricted Kac polynomial is the same as Kac’s original polynomial, and our purity theorem
(Theorem A) implies Kac’s positivity conjecture, originally proved by Hausel, Letellier and
Rodriguez-Villegas [19].

In [3, 43], Bozec, Schiffmann and Vasserot define the subcategory of nilpotent, *-semi-
nilpotent and *-strongly semi-nilpotent CQ-representations by demanding nilpotence of cer-
tain paths in CQ; see Section 7.1 for definitions. By the above method, in Section 8, we prove
positivity of all of the resulting polynomials.

Theorem E (Theorem 8.2, Remark 8.4). Let Q be an arbitrary finite quiver, and let
d 2 NQ0 be a dimension vector. Setting S to be any out of the full subcategory of nilpo-
tent, *-semi-nilpotent, or *-strongly semi-nilpotent CQ-representations, the S-restricted Kac
polynomial aS

Q;d.q/ has positive coefficients.

1.10. Conventions. For G a complex algebraic group, we set HG ´ H.BG;Q/. All
functors are assumed to be derived unless explicitly stated otherwise. All quivers are assumed
to be finite. For X a complex variety, or global quotient stack, we continue to denote

HBM.X;Q/´ Hc.X;Q/_:

We continue to write N D Z�0.
Wherever an object appears with a subscript that is a bold Roman letter, that letter refers

to a dimension vector, and �d is the subobject corresponding to that dimension vector. If any
such object appears with a Greek letter such as � as a subscript, then � will refer to a slope,
and �� will refer to the subobject corresponding to dimension vectors of slope � . Finally, if an
expected subscript is missing altogether, then the entire object is intended.

For D a triangulated category equipped with a t structure, we define the total cohomology
functor H .�/´

L
i2Z H i .�/Œ�i �. We generally use capital Roman letters to refer to spaces

of representations before taking any kind of quotient, calligraphic letters to refer to GIT moduli
spaces, and Fraktur letters to refer to moduli stacks. Where a space or object is defined with
respect to a stability condition �, that stability condition will appear as a superscript. In the
event that the superscript is missing, we assume that � is the degenerate King stability condition
.i; : : : ; i / 2 HQ0

C
. With respect to this stability condition, all representations have the same

slope and are semistable, semisimple representations are the polystable representations, and
the stable representations are exactly the simple ones.

2. Quiver representations

2.1. Quivers and potentials. Throughout the paper, Q will be used to denote a finite
quiver, i.e. a pair of finite sets Q0 and Q1 (the vertices and arrows, respectively), and a pair of
maps s; t WQ1 ! Q0 (taking an arrow to its source and target, respectively). We denote by CQ
the path algebra of Q, i.e. the algebra over C having as a basis the paths in Q, with structure
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constants for the multiplication given by concatenation of paths. For each vertex i 2 Q0, we
denote by ei 2 CQ the “lazy” path of length 0 starting and ending at i .

A potential on a quiver Q is an element W 2 CQ=ŒCQ;CQ�vect, where the vect sub-
script means that we take the quotient by the linear span of the set of commutators. A potential
is given by a linear combination of cyclic words in Q, where two cyclic words are considered
to be the same if one can be cyclically permuted to the other. If W is a single cyclic word and
a 2 Q1, we define

𝜕W=𝜕a D
X

WDcac0

c and c0 paths in Q

c0c;

and we extend this definition linearly to general W . We define the Jacobi algebra

Jac.Q;W /´ CQ=h𝜕W=𝜕a j a 2 Q1i

associated to the quiver with potential .Q;W /. We will often abbreviate “quiver with potential”
to just “QP”.

Given a quiver Q, we denote by Q the quiver obtained by doubling Q. This is defined
by setting Q0´ Q0 and Q1 D ¹a; a

� j a 2 Q1º, and extending s and t to maps Q1 ! Q0
by setting s.a�/ D t .a/ and t .a�/ D s.a/. We denote by …Q the preprojective algebra of Q,
defined as in (1.1).

We denote by zQ the quiver obtained from Q by setting

zQ0´ Q0; zQ1´ Q1

a
¹!i j i 2 Q0º;

where each !i is an arrow satisfying s.!i / D t .!i / D i . If a quiver Q is fixed, we define the
potential zW as in [14, Section 4.2] and [32] by setting zW D

P
a2Q1

Œa; a��
P
i2Q0

!i . If A is
an algebra, we denote by A-mod the category of finite-dimensional A-modules.

Proposition 2.1. Define C…Q to be the category whose objects are pairs .M; f /, where
M is a finite-dimensional …Q-module and f 2 End…Q-mod.M/, and define

HomC…Q
..M; f /; .M 0; f 0//

to be the subspace of morphisms g 2 Hom…Q-mod.M;M
0/ such that f 0g D gf . Then there is

an isomorphism of categories

C…Q Š Jac. zQ; zW /-mod:

Proof. From the relations 𝜕 zW =𝜕!i , for i 2 Q0, we deduce that the natural inclusion
CQ � C zQ induces an inclusion …Q � Jac. zQ; zW /. Therefore, a Jac. zQ; zW /-module is given
by a …Q-module M , along with linear maps M.!i / 2 EndC.ei �M/ satisfying

M.𝜕 zW =𝜕a/ DM.a�/M.!s.a�// �M.!t.a�//M.a�/ D 0;

M.𝜕 zW =𝜕a�/ DM.!t.a//M.a/ �M.a/M.!s.a// D 0:

These are precisely the conditions for the elements ¹M.!i /ºi2Q0 to define an endomorphism
of M , considered as a …Q-module.
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2.2. Moduli spaces. Given an algebra A, presented as a quotient A D CQ=I of a free
path algebra by a two-sided ideal I � CQ�1 generated by paths of length at least one, and
a dimension vector d 2 NQ0 , we denote by M.A/d the stack of d-dimensional complex repre-
sentations of A. This is a finite type Artin stack. In the case A D CQ, we abbreviate M.CQ/d
to M.Q/d. This stack is naturally isomorphic to the quotient stack X.Q/d=GLd, where

X.Q/d ´
Y
a2Q1

Hom.Cds.a/ ;Cdt.a//; GLd ´
Y
i2Q0

GLdi .C/

and the action is by simultaneous conjugation. We define gld D
Q
i2Q0

gldi .C/ and define

�Q;dWX.Q/d ! gld; � 7!
X
a2Q1

Œ�.a/; �.a�/�:

As substacks of M.Q/d, there is an equality ��1Q;d.0/=GLd DM.…Q/d. As in the introduc-
tion, we define the function

Tr. zW /dWX. zQ/d ! C; � 7! Tr
� X
a2Q1

Œ�.a/; �.a�/�
X
i2Q0

�.!i /
�

and denote by Tr. zW /dWM. zQ/d ! C the induced function. As substacks of M. zQ/d, there
are equalities

(2.1) crit.Tr. zW /d/=GLd DM.Jac. zQ; zW //d D crit.Tr. zW /d/:

We define M. zQ/!-nilp
d �M. zQ/d to be the reduced stack defined by the vanishing of the func-

tions Tr.�.!i /
m/ for i 2 Q0 and 1 � m � di . The geometric points of M. zQ/!-nilp

d over
a field extension K � C correspond to d-dimensional K zQ representations � such that, for
each i 2 Q0, the endomorphism �.!i / is a nilpotent K-linear endomorphism.

A stability condition for Q is defined to be an element of HQ0
C

, where

HC´ ¹r exp.i��/ 2 C j r > 0; 0 < � � 1º:

For a fixed stability condition � 2 HQ0
C

, we define the central charge

ZWNQ0 n ¹0º ! HC; d 7! d � �:

We define the slope of a dimension vector d 2 NQ0 n ¹0º by setting

%.d/´

´
�<e.Z.d//==m.Z.d// if =m.Z.d// ¤ 0;
1 otherwise:

If � is a representation of Q, we define %.�/´ %.dim.�//. A representation � is called �-
semistable if, for all proper subrepresentations �0 � �, we have %.�0/ � %.�/, and � is called
�-stable if the inequality is strict. We will always assume that our stability conditions are King
stability conditions, meaning that, for each 1i 2 NQ0 in the natural generating set,

=m.Z.1i // D 1 and <e.Z.1i // 2 Q:

If � is a King stability condition, then for each d 2 NQ0 , there is a geometric invariant
theory (GIT) coarse moduli space of �-semistable Q-representations of dimension d, con-
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structed in [26], which we denote M.Q/� -ss
d ´ X.Q/� -ss

d ==�.�/GLd. Here X.Q/� -ss
d � X.Q/d

is the open subscheme whose geometric points correspond to �-semistable Q-representations.
We denote by

(2.2) JH�Q;dWM.Q/� -ss
d !M.Q/� -ss

d

the morphism from the stack to the coarse moduli space. At the level of points, this map takes
a semistable representation � to the direct sum of the subquotients appearing in the Jordan–
Hölder filtration of �, considered as an object in the category of �-semistable representations
of slope %.d/. If there is no ambiguity, we omit the subscript Q from the definition of JH.

We denote by q�Q;dWM.Q/� -ss
d !M.Q/d the morphism from the GIT quotient to the

affinisation. This morphism is proper, as can be seen from the construction of the domain via
GIT. At the level of points, q�Q;d takes a �-semistable module to its semisimplification.

We define two pairings on ZQ0 ,

.d; e/Q ´
X
i2Q0

diei �
X
a2Q1

ds.a/et.a/ hd; eiQ ´ .d; e/Q � .e;d/Q:

Again, we will drop the subscript Q when the choice of quiver is obvious from the context.
For � 2 .�1;1/ a slope, we denote by ƒ�

�
� NQ0 the submonoid of dimension vectors d

such that d D 0 or %.d/ D � . A stability condition � 2 HQ0
C

is � -generic if, for all d; e 2 ƒ�
�

,
hd; ei D 0, and we say that � is generic if it is � -generic for all � . A quiver Q is a symmet-
ric if, for any two vertices i; j 2 Q0, the number of arrows a with s.a/ D i and t .a/ D j
is equal to the number of arrows with s.a/ D j and t .a/ D i . For Q a quiver, we define the
degenerate stability condition � D .i; : : : ; i / 2 HQ0

C
. If Q is symmetric, then all stability con-

ditions � 2 HQ0
C

are generic. The degenerate stability condition is generic if and only if Q is
symmetric. In particular, for all quivers Q, the degenerate stability condition is generic for Q
and zQ.

We denote by dim� WM.Q/� -ss ! NQ0 the map taking a polystable quiver representation
to its dimension vector, and define Dim� ´ dim� ıJH�Q, where JH�Q is as in (2.2).

If S is a Serre subcategory of the category of CQ-mod, we denote by

�0WM.Q/S;� -ss
d ,!M.Q/

� -ss
d

the inclusion of the polystable CQ modules that are objects of S . We only consider choices of
S for which this is a morphism of varieties. We set

M.Q/S;� -ss
d DM.Q/S;� -ss

d �M.Q/
�-ss
d

M.Q/
� -ss
d

and denote the inclusion �WM.Q/S;� -ss
d ,!M.Q/

� -ss
d .

3. Cohomological DT theory

3.1. Vanishing cycles and mixed Hodge modules. Let X be a smooth complex vari-
ety, and let f be a regular function on it. Set X0 D f �1.0/ and X<0 D f �1.R<0/. We define
the nearby cycle functor as the following composition of (derived) functors:

 f ´ .X0 ! X/�.X0 ! X/�.X<0 ! X/�.X<0 ! X/�;



116 Davison, Integrality conjecture and preprojective stacks

and we define the functor

�
p
f
D cone..X0 ! X/�.X0 ! X/� !  f /Œ�1�:

Alternatively, define X�0 D f �1.R�0/, and define the (underived) functor �X�0 by setting

�X�0F .U / D ker.F .U /! F .U nX�0//:

Then we can define �p
f

F D .R�X�0F /X0 . We define  p
f
´  f Œ�1�.

If X is a quasiprojective complex variety, and so there is a closed embedding X � Y
inside a smooth complex variety, and f extends to a function f on Y , we define �p

f
D i��

p

f
i�,

where i WX ! Y is the embedding. For a complex variety X , we define as in [38, 39] the
category MHM.X/ of mixed Hodge modules on X . See [37] for an overview of the theory.
There is an exact functor ratWD.MHM.X//! D.Perv.X// which takes a complex of mixed
Hodge modules F to its underlying complex of perverse sheaves, and commutes with f�, fŠ,
f �, f Š, DX and tensor product. In addition, the functors �p

f
and  p

f
lift to exact functors for

the category of mixed Hodge modules. We denote by �f the lift of �p
f

.

Remark 3.1. If f is a regular function on the smooth variety X , then

supp.�p
f

QX / D supp.�f QX / D crit.f /:

We define Db.MHM.X// to be the bounded derived category of mixed Hodge modules
on X . If X is connected, we define D�.MHM.X// to be the inverse limit of the diagram of
categories

� � � ����! Db.MHM.X//
��n

����! Db.MHM.X//
��n�1

����! Db.MHM.X// ����! � � � :

Explicitly, an object of D�.MHM.X// is given by a Z-tuple of objects Fn in D�.MHM.X//,
along with isomorphisms ��n�1Fn Š Fn�1. For F an object in D�.MHM.X//, we write
��nF D Fn and Hn.F / D Hn.Fn/. For an object F of D�.MHM.X//, the cohomological
amplitude of the objects Fn are universally bounded below.

Similarly, we define D�.MHM.X// to be the inverse limit of the diagram

� � � ����! Db.MHM.X//
��n

����! Db.MHM.X//
��nC1

����! Db.MHM.X// ����! � � � :

For generalX , we define D�.MHM.X//´
Q
X 02�0.X/

D�.MHM.X 0// and D�.MHM.X//
similarly. A mixed Hodge module F comes with a filtration � � � � WiF � WiC1F � � � � , the
weight filtration, which is equal to the usual weight filtration if F is a genuine mixed Hodge
module. We say that F 2 MHM.X//, with ~ D b;�;�, we say that F is pure of weight n if
H i .F / is pure of weight i C n for all i , or we just call F “pure” if each H i .F / is pure of
weight i .

We define L´ Hc.A1;Q/, considered as a cohomologically graded mixed Hodge struc-
ture, i.e. as a pure cohomologically graded mixed Hodge structure concentrated in cohomolog-
ical degree two. We formally add a tensor square root L1=2 of L to this category.

Remark 3.2. This may be achieved either purely formally, or by embedding MHM.X/
inside the category of monodromic mixed Hodge structures; both approaches are explained
in [28]. Since we will only consider cohomology of vanishing cycle complexes that may be
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dimensionally reduced as in Theorem 3.4, the natural monodromy operators on the resulting
mixed Hodge structures will be trivial so that (apart from this square root) we stay essentially
within the category of mixed Hodge modules and will refrain from elaborating upon the theory
of monodromic mixed Hodge here (see [10, §2.1] for a thorough introduction in the context of
DT theory).

Convention 3.3. Let X be a complex variety such that each connected component
contains a connected dense smooth locus. In this paper, we will shift the definition of the
intersection complex mixed Hodge module for X so that it is pure of weight zero, while its
underlying element in Db.Perv.X// is a perverse sheaf. This we achieve by setting

ICX .Q/´
X

Z2�0.X/

ICZreg.Q/˝ L� dim.Z/=2:

If X is a smooth connected variety, we set H.c/.X;Q/vir ´ H.c/.X; ICX .Q//. Since the
smooth stack BC� has complex dimension �1, we extend this notation in the natural way by
setting H.BC�;Q/vir ´ H.BC�;Q/˝ L1=2 and Hc.BC�;Q/vir ´ H.BC�;Q/_ ˝ L�1=2.

3.2. Pushforwards from stacks. Assume that X is a complex variety, acted on by an
algebraic groupG, following [10, Section 2] how to define p��f QX=G 2Ob.D�.MHM.Y ///.
We recall the definition for the case in whichX is connected – the general definition is obtained
by taking the direct sum over connected components. The definition is a minor modification of
Totaro’s well-known construction [46].

Let V0 � V1 � � � � be an ascending chain ofG-representations, and let U0 � U1 � � � � be
an ascending sequence of closed inclusions of G-equivariant varieties, with each Ui � X � Vi
an open dense subvariety. We assume that limi 7!1.codimX�Vi ..X � Vi / n Ui // D1, that G
acts freely on Ui for all i , and that the principal bundle Ui ! Ui=G exists in the category
of complex varieties. We define Xi ´ Ui=G and denote by pi WXi ! Y and fi WXi ! C the
induced maps. We define

��n.p��f ICX=G.Q//´ lim
i 7!1

��n.pi;��fiQXi /˝ L.dim.G/�dim.X//=2;

��n.pŠ�f ICX=G.Q//´ lim
i 7!1

��n.pi;Š�fiQXi ˝ L� dim.Ui //˝ L.dim.G/�dim.X//=2;

where the limit is constructed, and exists, as in [10, §2.2]. Similarly, we define

��n.p�ICX=G.Q//´ lim
i 7!1

��n.pi;�QXi /˝ L.dim.G/�dim.X//=2;

��n.pŠICX=G.Q//´ lim
i 7!1

��n.pi;ŠQXi ˝ L� dim.Ui //˝ L.dim.G/�dim.X//=2:

This can be seen as a special case of the previous construction, with f D 0.
Let Z � X be a subvariety, preserved by the G-action, and denote by �WZ=G ,! X=G

the inclusion of stacks. We obtain inclusions �i WZi´ .Ui \ .Z � Vi //=G!Xi and we define
the restricted pushforward of vanishing cycle cohomology

��n.p����
Š�f ICX=G.Q//´ lim

i 7!1
��n.pi;��i;��

Š
i�fiQXi /˝ L.dim.G/�dim.X//=2;

��n.pŠ�Š�
��f ICX=G.Q//´ lim

i 7!1
��n.pi;Š�i;Š�

�
i �fiQXi ˝ L� dim.Ui //

˝ L.dim.G/�dim.X//=2:
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As a particular case, setting Y to be a point, we obtain

Hnc .Z=G; �f ICX=G.Q//´ lim
i 7!1

Hnc .Zi ; �
�
i �fiQXi ˝ L� dim.Ui //˝ L.dim.G/�dim.X//=2:

3.3. Dimensional reduction. Given a decompositionX D X 0 �An of varieties, let C�

act on X via the product of the trivial action on X 0, and the scaling action on An. Assume that
f 2 �.X/ has weight one. Denote by � WX ! X 0 the natural projection. Then we can write
f D

P
1�i�n �

�fi � xi , where fi are functions on X 0, and xi are coordinates for An. Define
Z0 D Z.f1; : : : ; fn/ to be the shared vanishing locus of all the functions f1; : : : ; fn, and
denote Z D ��1.Z0/. Note that Z � X0´ f �1.0/, so we can postcompose the canonical
natural transformation �f W�f ! .X0 ! X/�.X0 ! X/� with the restriction map

.X0 ! X/�.X0 ! X/� ! .Z ! X/�.Z ! X/�

to obtain a natural transformation �W�f ! .Z ! X/�.Z ! X/�.

Theorem 3.4 ([5, Theorem A.1]). �Š��
� is a natural isomorphism.

This is a cohomological analogue of the dimensional reduction theorem of [1]. It implies
(see [5, Corollary A.7]) that ifX is the total space of aG-equivariant affine fibration � WX!X 0

for G an algebraic group, and S � X 0 is a G-invariant subspace of the base, there is a natural
isomorphism in compactly supported cohomology

Hc.��1.S/=G; �f QX=G/ Š Hc..S \Z0/=G;Q/˝ Ldim.�/:

3.4. Integrality and PBW isomorphisms. LetQ be a finite quiver. We consider NQ0-
graded mixed Hodge structures as mixed Hodge modules on the space NQ0 in the obvious
way: a mixed Hodge module on a point is just a polarisable mixed Hodge structure, and NQ0

is a union of points d 2 NQ0 , and so a mixed Hodge module on NQ0 is given by a formal
direct sum

L
d2NQ0 Ld of mixed Hodge structures.

The GIT quotient M.Q/� -ss is a monoid with monoid morphism ˚ taking a pair of
points representing polystable representations �; �0 to the point representing their direct sum
�˚ �0. This morphism is finite [31, Lemma 2.1]. A unit for the monoid morphism is pro-
vided by the inclusion M.Q/

� -ss
0 ,!M.Q/� -ss, which at the level of complex points, corre-

sponds to the inclusion of the zero module. The morphism dim� WM.Q/� -ss ! NQ0 , taking
a representation to its dimension vector, is a morphism of monoids, where the morphism
CWNQ0 �NQ0 ! NQ0 is the usual addition map. If W is a potential for Q, there is an
induced function T r.W /� WM.Q/� -ss ! C satisfying T r.W /� ı JH� D Tr.W /� .

If X is a commutative monoid in the category of locally finite type complex schemes,
with finite type monoid morphism � WX �X ! X , then by [30, Theorem 1.9], the categories
carry symmetric monoidal structures defined by F �� G ´ ��.F � G /. In particular, the cat-
egories D�.MHM.M.Q/� -ss// and D�.MHM.M.Q/� -ss// carry symmetric monoidal struc-
tures defined by F �˚ G ´˚�.F � G /.

The following theorem allows for the definition of BPS sheaves and BPS cohomology. It
is a cohomological lift of the property known in DT theory as integrality.
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Theorem 3.5 ([10, Theorem A]3)). Fix a QP .Q;W / such that

crit.Tr.W // � Tr.W /�1.0/;

a slope � 2 .�1;1/, and a � -generic stability condition �. For nonzero d 2 ƒ�
�

, where
ƒ
�

�
� NQ0 is as in Section 2.2, define the mixed Hodge module on M.Q/� -ss

d ,

BPS
�
Q;W;d D

´
�T r.W /

�
d
ICM.Q/�-ss

d
.Q/ if M.Q/� -st

d ¤ ;;

0 otherwise;

and define
BPS

�

Q;W;�
´

M
d2ƒ�

�

BPS
�
Q;W;d:

Then there are isomorphisms of objects in D�.MHM.M.Q/
� -ss
�
//, D�.MHM.M.Q/

� -ss
�
//,

respectively,

JH�
�;�
�Tr.W /

�

�
ICM.Q/

�-ss
�
.Q/ Š Sym�˚

.BPS
�

Q;W;�
˝ H.BC�;Q/vir/;(3.1)

JH�
�;Š
�Tr.W /

�

�
ICM.Q/

�-ss
�
.Q/ Š Sym�˚

.BPS
�

Q;W;�
˝ Hc.BC�;Q/vir/:(3.2)

Since Verdier duality naturally commutes with the vanishing cycles functor, and since
ICM.Q/�-ss

d
.Q/ is Verdier self-dual, the BPS sheaf is Verdier self-dual: there is an isomorphism

BPS
�
Q;W;d Š DBPS

�
Q;W;d:

3.4.1. (3d) BPS cohomology. Let S be a Serre subcategory of the category of CQ-
modules. Recall that we denote by �0WM.Q/S;� -ss ,!M.Q/� -ss the inclusion of objects in S .
We define the BPS cohomology

BPSS;�
Q;W;d ´ H.M.Q/S;� -ss

d ; �0ŠBPS
�
Q;W;d/

Š Hc.M.Q/S;� -ss
d ; �0�BPS

�
Q;W;d/

_;

where the isomorphism follows from Verdier self-duality of the BPS sheaf.
The cohomologically graded mixed Hodge structure

A
S;�

Q;�
´ Dim�� ���

Š�Tr.W /
�

�
ICM.Q/

�-ss
�
.Q/

carries a Hall algebra multiplication, defined in [5,28], via pullback and pushforward of vanish-
ing cycle sheaves; see Section 9.1 for a generalisation of the construction. Applying the natural
transformation ��1 ! id to (3.1), we obtain the morphism

(3.3) BPS
�

Q;W;�
˝ L1=2 ! JH�

�;�
�Tr.W /

�

�
ICM.Q/

�-ss
�
.Q/:

3) Technically, the result quoted from [10] is in fact stated for H .�/ of the LHS of (3.1). That there is an
isomorphism H .LHS/ Š LHS is a consequence of approximation by projective morphisms and the decomposition
theorem; see [10]. In addition, for general Q;W , the result makes use of the symmetric monoidal structure on the
category of monodromic mixed Hodge modules, which we ignore, following Remark 3.2.
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Applying H �0��
0Š to (3.3), we obtain the embedding BPSS;�

Q;W;�
˝ L1=2 ,! A

S;�

Q;W;�
. Since HC�

acts on the target, this extends to a morphism

gWBPSS;�

Q;W;�
˝ H.BC�;Q/vir ! A

S;�

Q;W;�
:

Theorem 3.6 (PBW theorem [10, Theorem C]). The morphism

Sym.BPSS;�

Q;W;�
˝ H.BC�;Q/vir/! A

S;�

Q;W;�

extending g via the Hall algebra multiplication on the target is an isomorphism.

3.5. Framed moduli spaces. Let Q be a quiver. For the moment, we do not assume
that Q is symmetric. Let d; f 2 NQ0 . Following [10, Section 3.3], we extend Q to Qf via

.Qf/0´ Q0 [ ¹1º; .Qf/1´ Q1 [ ¹ˇi;m j i 2 Q0; 1 � m � fiº

and
s.ˇi;m/ D1; t .ˇi;m/ D i:

Given a King stability condition � for Q, and a slope � 2 .�1;1/, we extend � to a stability
condition �.�/ for Qf by fixing the slope

�<e.�.�/1 /==m.�.�/1 / D � C �

for sufficiently small positive �. Let d 2 ƒ�
�

. Then a .1;d/-dimensional representation � of Qf
is �.�/-semistable if and only if it is �.�/-stable, and this holds if and only if the underlying
Q-representation of � is �-semistable, and for all proper Qf-subrepresentations �0 � �, if
dim.�0/1 D 1, then the underlying Q-representation of �0 is nonzero and has slope strictly
less than � .

We denote by M.Q/
�
f;d D X.Qf/

�.�/-ss
.1;d/ =GLd the fine moduli space of f-framed �-semi-

stable representations of Q of dimension d, or in other words, the fine moduli space of �.�/-
stable .1;d/-dimensional representations of Qf. We denote by ��f;dWM.Q/

�
f;d !M.Q/

� -ss
d

the induced map from the quotient. The following is the version of the integrality theorem
(Theorem 3.5) for moduli spaces of stable framed modules; the proof follows the proof of
[10, Theorem 4.10], to which we refer for more details.

Proposition 3.7. Let � be a � -generic stability condition, and assume that

crit.Tr.W // � Tr.W /�1.0/:

There is an isomorphism in the category D�.MHM.M.Q/
� -ss
�
//,

�
�

Q;f;�;Š

�M
d2ƒ�

�

�T r.W /
�
f;d

QM.Q/
�
f;d
˝ L.d;d/Q=2

�
Š Sym�˚

�M
d2ƒ�

�

BPS
�
Q;W;d ˝ H.CP f�d�1;Q/_ ˝ L�1=2

�
:

4. Purity and supports

In this section, we prove Theorem A. A crucial role in the proof is played by the support
lemma (Lemma 4.1), which also enables us to prove Theorem B.
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4.1. Proof of Theorem A. Fix a quiver Q. We define . zQ; zW / as in Section 2.1. Define

BPS_
zQ; zW
´ dimŠBPS zQ; zW D Hc.M. zQ/;BPS zQ; zW /;

BPS!-nilp;_
zQ; zW

´ dimŠ.BPS zQ; zW jM. zQ/!-nilp/

the compactly supported cohomology and the restricted compactly supported cohomology,
respectively, of the BPS sheaf from Theorem 3.5. Recall that dimWM. zQ/! NQ0 is the map
taking a semisimple representation to its dimension vector. As explained at the beginning of
Section 3.4, we may consider both of the above objects equivalently as mixed Hodge module
complexes on the discrete space NQ0 , or NQ0-graded mixed Hodge structures. We will prove
Theorem A using the following three lemmas.

Lemma 4.1 (Support lemma). Let x 2M. zQ/
� -ss
d lie in the support of BPS

� -ss
zQ; zW ;d,

corresponding to a d-dimensional semisimple C zQ representation �. Then the union of the
multisets

S
i2Q0
¹�i;1; : : : ; �i;di º of generalised eigenvalues of �.!i / contains only one distinct

element � 2 C. The action of
P
i2Q0

!i on � is by multiplication by the constant �.

Lemma 4.2. There are isomorphisms of NQ0-graded mixed Hodge structuresM
d2NQ0

Hc.��1Q;d.0/=GLd;Q/˝ L.d;d/

Š DimŠ �Tr. zW /ICM. zQ/.Q/

(4.1)

Š Sym�C
.BPS!-nilp;_

zQ; zW
˝ L˝ Hc.BC�;Q/vir/;(4.2)

DimŠ
�
.�Tr. zW /ICM. zQ/.Q//jM. zQ/!-nilp

�
Š Sym�C

.BPS!-nilp;_
zQ; zW

˝ Hc.BC�;Q/vir/:

(4.3)

Lemma 4.3 ([7, Theorem 3.4]). The NQ0-graded mixed Hodge structure

DimŠ
�
.�Tr. zW /ICM. zQ/.Q//jM. zQ/!-nilp

�
is pure, of Tate type.

Assuming Lemmas 4.1, 4.2 and 4.3, we argue as follows.

Proof of Theorem A. First, note that a graded mixed Hodge structure F is pure, of Tate
type, if and only if Sym.F / is. Lemma 4.3 and (4.3) thus imply that BPS!-nilp;_

zQ; zW is pure, of
Tate type. A tensor product of pure mixed Hodge modules is pure, and so BPS!-nilp;_

zQ; zW ˝ L is
also pure, of Tate type. It follows from (4.1) and (4.2) that

DimŠ �Tr.W /ICM. zQ/.Q/ and
M

d2NQ0

Hc.��1Q;d.0/=GLd;Q/

are pure, of Tate type, and the theorem follows.

Before coming to the proof of Lemmas 4.1, 4.2 and 4.3, we note the following.

Corollary 4.4. For all d 2 NQ0 , the BPS cohomology BPS zQ; zW ;d is pure, of Tate type.
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Proof. From Theorem (3.6), we deduce that there is an inclusion of mixed Hodge struc-
tures BPS zQ; zW ;d ˝ L1=2 ,! Hc.M.…Q/d;Q/_ ˝ L�.d;d/. By Theorem A, the target is pure,
of Tate type, and so BPS zQ; zW ;d ˝ L1=2 is also pure, of Tate type. It follows that the Tate twist
BPS zQ; zW ;d is pure, of Tate type.

The proof of both Lemmas 4.2 and 4.3 will use the dimensional reduction theorem,
recalled as Theorem 3.4. Let QC be obtained from zQ by deleting all of the arrows a�, and
let Qop be obtained from zQ by deleting all the arrows a and all the loops !i . We decompose

X. zQ/d D X.Q
C/d �X.Q

op/d:

If we let C� act on X. zQ/d via the trivial action on X.QC/d and the weight one action
on X.Qop/d, then Tr. zW /d is C�-equivariant in the manner required to apply Theorem 3.4.
In the notation of Theorem 3.4, we have that Z0 � X.QC/d is determined by the vanish-
ing of the matrix-valued functions, 𝜕W=𝜕a� D a!s.a/ � !t.a/a for a 2 Q1. Concretely, the
stack Z0=GLd is isomorphic to the stack of pairs .�; f /, where � is a d-dimensional Q-
representation, and f W �! � is an endomorphism in the category of Q-representations.

We fix X.QC/!-nilp
d � X.QC/d to be the subspace of representations such that each

�.!i / is nilpotent. We deduce from Theorem 3.4 that there is a natural isomorphism in com-
pactly supported cohomology

DimŠ
�
.�Tr.W /ICM. zQ/d.Q//jM. zQ/!-nilp

d

�
Š Hc

�
.Z0 \X.QC/!-nilp

d /=GLd;Q
�
:

(4.4)

Lemma 4.3 is proved in [7] by analysing the right-hand side of (4.4). Note that there is no
overall Tate twist in (4.4) – the Tate twist in the definition of the left-hand side is cancelled by
the Tate twist appearing in Theorem 3.4.

The first isomorphism in Lemma 4.2 is obtained in similar fashion. Let L � zQ be the
quiver obtained by deleting all of the arrows a and a�, for a 2 Q1. Then we can decompose

X. zQ/d Š X.Q/d �X.L/d;

and let C� act on X. zQ/d via the trivial action on X.Q/d and the scaling action on X.L/d. This
time the role of Z0 in Theorem 3.4 is played by ��1Q;d.0/ � X.Q/d, and we deduce that

(4.5) DimŠ �Tr. zW /dICM. zQ/d.Q/ Š Hc.��1Q;d.0/=GLd;Q/˝ L.d;d/:

Proof of Lemma 4.2. Since the map dimWM. zQ/! NQ0 is a morphism of commutative
monoids, with proper monoid maps ˚ and C, respectively, by [30, Section 1.12], there is
a natural equivalence of functors dimŠ Sym�˚

Š Sym�C
dimŠ. We denote by

�0dWM. zQ/!-nilp
d ,!M. zQ/d

the inclusion. Taking the direct sum over all d 2 NQ0 , applying base change, and using the
relative cohomological integrality theorem (Theorem 3.5),

DimŠ
�
.�Tr. zW /ICM. zQ/.Q//jM. zQ/!-nilp

�
Š dimŠ �0�JHŠ�Tr. zW /ICM. zQ/.Q/

Š dimŠ �0� Sym�˚
.BPS zQ; zW ˝ Hc.BC�;Q/vir/
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Š dimŠ Sym�˚
.BPS zQ; zW jM. zQ/!-nilp ˝ Hc.BC�;Q/vir/

Š Sym�C
.dimŠBPS zQ; zW jM. zQ/!-nilp ˝ Hc.BC�;Q/vir/

Š Sym�C
.dimŠBPS zQ; zW jM. zQ/!-nilp ˝ Hc.BC�;Q/vir/;

giving isomorphism (4.3). Taking the direct sum of isomorphisms (4.5) over d 2 NQ0 gives
isomorphism (4.1). Applying dimŠ to (3.2), we have the isomorphisms

dimŠ JHŠ�Tr. zW /ICM. zQ/.Q/ Š dimŠ Sym�˚
.BPS zQ; zW ˝ Hc.BC�;Q/vir/

Š Sym�C
dimŠ.BPS zQ; zW ˝ Hc.BC�;Q/vir/

Š Sym�C
.BPS zQ; zW ˝ Hc.BC�;Q/vir/:

To prove the existence of isomorphism (4.2), then it is sufficient to prove that

BPS zQ; zW Š BPS!-nilp
zQ; zW

˝ L:

Fix a dimension vector d. We let A1 act on M. zQ/d as follows:

z � �.a/ D

´
�.a/C ziddi�di if a D !i for some i;

�.a/ otherwise:

Then T r. zW /d is invariant with respect to the A1-action and it follows that the underlying
perverse sheaf of BPS zQ; zW ;d can be obtained from an A1-equivariant MHM via the forgetful
map. Let BPS 0zQ; zW ;d be the restriction of BPS zQ; zW ;d to the locus M �M. zQ/d, where the
union of the sets of generalised eigenvalues of all of the !i has only one element, and let

mWA1 �M. zQ/!-nilp
d

Š
�!M

be the restriction of the action map. This is an isomorphism since, for a module represented by
a point in M, there exists a z 2 C such that, adding z � Iddi�di to the action of each of the !i ,
they all become nilpotent. We have

BPS 0zQ; zW ;d Š m�.QA1 � BPS !-nilp
zQ; zW

/:

By the support lemma (Lemma 4.1), we have BPS zQ; zW ;d D BPS 0zQ; zW ;d, and so we deduce
that

BPS zQ; zW ;d Š BPS!-nilp
zQ; zW ;d

˝ .A1 ! pt/ŠQA1 Š BPS!-nilp
zQ; zW ;d

˝ L;

as required.

We complete the proof of Theorem A by proving the support lemma.

Proof of Lemma 4.1. To ease the notation, we prove the lemma under the assumption
that � is the degenerate stability condition: the proof for the general case is unchanged. Since the
support of BPS zQ; zW is the same as the support of the underlying perverse sheaf, and all com-
plexes that we encounter in the following proof are quasi-isomorphic to their total cohomology,
throughout the proof, we work in the category of cohomologically graded perverse sheaves.

Let x 2M. zQ/d be a point corresponding to a semisimple C zQ-module �, and assume
that there are at least two distinct eigenvalues �1; �2 for the set of operators ¹�.!i / j i 2 Q0º.
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Assume, for a contradiction, that x 2 supp.BPS zQ; zW / so that, in particular,

x 2 supp.JH��
p
Tr. zW /

ICM. zQ/.Q//;

and so, by (2.1) and Remark 3.1, there exists a Jac. zQ; zW / module with semisimplification
given by �, and so � is a semisimple Jac. zQ; zW /-module.

Under our assumptions, there are disjoint (analytic) open sets U1; U2 � C with �1 2 U1
and �2 2 U2, and with all of the generalised eigenvalues of � contained in U1 [ U2. Given
an (analytic) open set U � C, we denote by MU . zQ/d �M. zQ/d the subspace consisting of
those � such that all of the generalised eigenvalues of ¹�.!i / j i 2 Q0º belong to U , and we
define MU . zQ/ similarly. Given a point x 2MU1[U2.Jac. zQ; zW //, the associated Jac. zQ; zW /-
module M admits a canonical direct sum decomposition M DM1 ˚M2 for which all of
the eigenvalues of all of the !i , restricted to Mi , belong to Ui .4) In particular, there is an
isomorphism of complex analytic stacks

(4.6) MU .Jac. zQ; zW // ŠMU1.Jac. zQ; zW // �MU2.Jac. zQ; zW //:

By Lemma 4.5, proved below, there is an isomorphism

JH��
p
Tr. zW /

jMU1[U2 . zQ/ Š JH��
p
Tr. zW /

ICM. zQ/jMU1 . zQ/

�˚ JH��
p
Tr. zW /

ICM. zQ/jMU2 . zQ/:

(4.7)

Applying (3.1) to the right-hand side of (4.7), we have isomorphisms

JH��
p
Tr. zW /

jMU1[U2 . zQ/

Š Sym�˚

�
.BPS zQ; zW ˝ H.BC�;Q/vir/jMU1 . zQ/

�
�˚ Sym�˚

�
.BPS zQ; zW ˝ H.BC�;Q/vir/jMU2 . zQ/

�
Š Sym�˚

�
.BPS zQ; zW jMU1 . zQ/ ˚BPS zQ; zW jMU2 . zQ//

˝ H.BC�;Q/vir
�
:

(4.8)

On the other hand, restricting the isomorphism of (3.1) to the left-hand side of (4.7) yields

(4.9) JH��
p
Tr. zW /

jMU1[U2 . zQ/ Š Sym�˚
.BPS zQ; zW jMU1[U2 . zQ/ ˝ H.BC�;Q/vir/:

Comparing (4.8) and (4.9), we deduce that

BPS zQ; zW jMU1[U2 . zQ/ Š BPS zQ; zW jMU1 . zQ/ ˚BPS zQ; zW jMU2 . zQ/:

We deduce that

supp.BPS zQ; zW jMU1[U2 . zQ// D supp.BPS zQ; zW jMU1 . zQ/ ˚BPS zQ; zW jMU2 . zQ//

D supp.BPS zQ; zW jMU1 . zQ// [ supp.BPS zQ; zW jMU2 . zQ//

�MU1. zQ/ [MU2. zQ/;

and so, since x 2MU1[U2. zQ/ n .MU1. zQ/ [MU2. zQ//, the restriction of BPS zQ; zW to x is
zero, which is the required contradiction.

4) Note that this is not true of a general point in MU1[U2. zQ/; the crucial fact is that the operationP
i2Q0

�.!i / � defines a module homomorphism for a Jac. zQ; zW /-module � as
P
i2Q0

!i is central in Jac. zQ; zW /.
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For the final statement of the lemma, it suffices to prove that if � is a simple Jac. zQ; zW /-
module, then

P
i2Q0

�.!i / acts via scalar multiplication. In the decomposition of � into gen-
eralised eigenspaces for the action of the operator

P
i2Q0

�.!i / � , we have already shown that
there is only one generalised eigenvalue, which we denote �. Then � is filtered by the nilpo-
tence degree of the nilpotent operator ‰´

P
i2Q0

�.!i / � �� Id�, and so since � is simple,
‰ D 0 and we are done.

4.2. Proof of Theorem B. Firstly, by Lemma 4.1, the support of BPS�zQ; zW ;d lies in
the image of the morphism A1 �M.Q/� -ss !M. zQ/� -ss defined as in the statement of Theo-
rem B. The support of BPS�zQ; zW ;d also lies within the locus of polystable Jac. zQ; zW /-modules,
so by Proposition 2.1, the support of BPS�zQ; zW ;d lies within the image of

mWA1 �M.…Q/
� -ss
d ,!M. zQ/

� -ss
d :

We have seen in the proof of Lemma 4.2 that BPS�zQ; zW ;d is A1-equivariant, where the A1-
action on the subspace A1 �M.…Q/

� -ss
d is via translation in the first factor. It follows that we

can write

(4.10) BPS�zQ; zW ;d Š ICA1.Q/� BPS
�
…Q;d:

Finally, BPS�zQ; zW ;d D �Tr.W /ICM. zQ/�-ss
d

is Verdier self-dual [10], as is ICA1.Q/. So from
(4.10), we deduce

ICA1.Q/� BPS
�
…Q;d Š ICA1.Q/� DBPS

�
…Q;d

and Verdier self-duality of BPS
�
…Q;d follows.

We finish this section with the technical lemma appearing in the proof of Lemma 4.1. Fix
a decomposition d D d0 C d00. Then, via (4.6), there is an open and closed inclusion

i WMU1.Jac. zQ; zW //d0 �MU2.Jac. zQ; zW //d00 !MU1[U2.Jac. zQ; zW //d:

Lemma 4.5. Let U1; U2 be disjoint analytic open subspaces of A1. There is a natural
isomorphism of perverse sheaves

i��
p
Tr. zW /

ICMU1[U2 . zQ/�-ss
d
.Q/ Š �p

Tr. zW /
ICMU1 . zQ/

�-ss
d0
.Q/� �

p
Tr. zW /

ICMU2 . zQ/
�-ss
d00
.Q/:

This isomorphism does not follow directly from the Thom–Sebastiani isomorphism since
we need to compare the vanishing cycle sheaf of the function Tr. zW /� Tr. zW / on

MU1. zQ/d0 �MU2. zQ/d00

with the vanishing cycle sheaf for the function Tr. zW / on MU1[U2. zQ/d, and these ambient
smooth stacks are different.

Proof of Lemma 4.5. Again, it is sufficient to prove the lemma for the degenerate stabil-
ity condition (the general case then follows by restriction to the �-semistable locus). Writing

Y D XU1[U2.L/d �X.Q/d; B D XU1. zQ/d0 �X
U2. zQ/d00 ;
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where L is the quiver with vertices Q0 and arrows !i for i 2 Q0, we have

MU1[U2. zQ/d Š Y=GLd0�d00 ; MU1. zQ/d0 �MU1. zQ/d00 Š B=GLd0�d00 :

The space Y is the total space of the GLd0�d00-equivariant vector bundle V C ˚ V � onB , where

V C D
Y
a2Q1

Hom.Cd0
s.a/ ;Cd00

t.a//; V � D
Y
a2Q1

Hom.Cd0
t.a/ ;Cd00

s.a//:

Note that rank.V C/ D rank.V �/. Denote by zWB ! Y the inclusion of the zero section. Writ-
ing f; g for the functions on Y;B induced by Tr. zW /, it is sufficient to show that there is an
isomorphism of GLd0�d00-equivariant perverse sheaves �p

f
ICY .Q/ Š z��

p
gICB.Q/.

Let C� act on V C and V � with weights 1 and �1, respectively; then f is C�-invariant.
It follows that gjTot.VC/ D f ı �

C, where �CWTot.V C/! B is the projection. So there is
a natural isomorphism

(4.11) �p
gQB Š �

C

Š
�

p
f

QTot.VC/Œ2 rank.V C/�:

We claim that the natural morphism

(4.12) �Š�
p
f
.QY ! iC� QTot.VC//

is an isomorphism, where we denote by iCWTot.V C/! Y the inclusion. This can be checked
locally on the base B . Pick b 2 B , and let x1; : : : ; x˛; y1; : : : ; yˇ ; z1; : : : ; zˇ be a set of ele-
ments of the local ring OX. zQ/;b , providing a basis for mb=m

2
b
, where xi all have weight

zero, yi have weight 1, and zi have weight �1 for the C�-action. The weight �1 partial
derivatives of f are provided by 𝜕g=𝜕yi , and so, since the critical locus of g (restricted
to a neighbourhood of b) lies on the zero section B , it follows that we can change coordi-
nates and pick zi D 𝜕g=𝜕yi . Then we have g D hC k in OX. zQ/;b , with h 2 CŒx1; : : : ; x˛�
and k D

P
1�i�ˇ yizi . By the Thom–Sebastiani theorem, after restricting to a neighbour-

hood U 3 b, we find �p
gQU�V Š �

p
h

QU � �
p
k

QV and the claim reduces to the claim that
�Š�

p
k
.QV ! .V C ,! V /�QVC/ is an isomorphism, which is a simple calculation, or a trivial

application of the dimensional reduction theorem.
Combining (4.11) and (4.12) yields the isomorphism �

p
gQB Š �Š�

p
f

QY ŒcodimY .B/�.
Since �p

f
QY is supported on B , we obtain the required isomorphism by applying z� to this

isomorphism and shifting cohomological degree by dimB .

4.3. Calculating Hc.M.…Q/d; Q/. We use Theorem A and existing results on the E
series of M.…Q/d to determine the compactly supported cohomology of M.…Q/d, along with
its mixed Hodge structure. The E series (see Section 1.2) of Hc.M.…Q/d;Q/ was calculated
in [32].

Recall the plethystic exponential defined in Section 1.9. We define the ring

Z..X1; : : : ; Xm//ŒŒY1; : : : ; Yn��

of formal Laurent power series

g.X1; : : : ; Xm; Y1; : : : ; Yn/

such that, for each .a1; : : : ; an/ 2 Nn, the Y a11 � � �Y
an
n coefficient of

g.X1; : : : ; Xm; Y1; : : : ; Yn/X
c1
1 � � �X

cm
m
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is in ZŒŒX1; : : : ; Xm�� for sufficiently large c1; : : : ; cm. This is isomorphic to the Grothendieck
ring of the category D˘.VectZm˚Zn/, which we define to be the subcategory of the unbounded
derived category of Zm ˚ Zn-graded vector spaces V such that

(i) for each .e;d/ 2 Zm ˚ Zn, the total cohomology H.V /e;d is finite-dimensional,

(ii) H.Ve;d/ ¤ 0 only if d 2 Nn,

(iii) for each d 2 Nn, there exists e 2 Zm such that we have H.V /e0;d D 0 if e0i � ei for some
i D 1; : : : ; m.

This isomorphism is induced by the character function

�W ŒV � 7!
X
i2Z

X
.e;d/2Zm˚Zn

.�1/i dim.Hi .V /e;d/X eY d:

We define D˘.VectCZm˚Zn/ � D˘.VectZm˚Zn/ to be the full subcategory satisfying the extra
condition that the total cohomology H.V /.e;0/ is zero for all e 2 Zm. Then � induces an
isomorphism

�WK0.D
˘.VectCZm˚Zn//! mZ..X1; : : : ; Xm//ŒŒY1; : : : ; Yn��;

where m is the maximal ideal generated by Y1; : : : ; Yn. We may define plethystic exponentia-
tion via the formula Exp.�.ŒV �// D �ŒSym.V /� for V 2 D˘.VectCZm˚Zn/. Then the E series
for Hc.M.…Q/d;Q/ is given by (see [32])X

d2NQ0

E
�
Hc.M.…Q/d;Q/; x; y

�
.xy/.d;d/td

D Exp
� X
0¤d2NQ0

aQ;d.xy/.1 � x�1y�1/�1td
�
:

(4.13)

Here x�1 and y�1 are the invertible commuting variables, and ¹tiºi2Q0 are the other commut-
ing variables. Each of the .xy/ terms arises from the E polynomial E.L; x; y/ D xy. Given
a polynomial b.q/ D

P
i�0 biq

i 2 NŒq� and an object F in a tensor category C , we define
b.F / D

L
i2N.F

˝i /˚bi . By Theorem A, the mixed Hodge structure on Hc.M.…Q/d;Q/ is
entirely determined by its E series, and we deduce from (4.13) the following result.

Theorem 4.6. There is an isomorphism of cohomologically graded, NQ0-graded mixed
Hodge structuresM

d2NQ0

Hc.M.…Q/d;Q/˝ L.d;d/Q Š Sym
� M

d2NQ0n¹0º

aQ;d.L/˝ H.BC�;Q/_
�
:

5. Degree zero DT theory

5.1. Degree zero BPS sheaves. For n 2 N, we define Q.n/ to be a quiver with one
vertex, denoted 0, and n loops. We will be particularly interested in the quiver QJor ´ Q.1/:
the Jordan quiver. We identify Q.3/ D eQJor. We denote by x; y; z the three arrows of Q.3/.
Then zW D xŒy; z�. The ideas in the proof of Theorem A allow us to prove rather more for the
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QP .eQJor; zW /, essentially because this QP is invariant (up to sign) under permutation of the
loops so that we can apply the support lemma (Lemma 4.1) three times.

Let d 2 N with d � 1. The support of JHeQJor;Š�Tr. zW /dICM.eQJor/d .Q/ is given by the
coarse moduli space of d -dimensional representations of the Jacobi algebra CŒx; y; z�, i.e.
the space of semisimple representations of CŒx; y; z�. This space is in turn isomorphic to
Symd .A3/ since any simple representation � of CŒx; y; z� is one-dimensional and determined
up to isomorphism by the three complex numbers �.x/; �.y/; �.z/.

Theorem 5.1. For all d � 1, there is an isomorphism of MHMs

BPSeQJor; zW ;d Š �A3;d;�ICA3.Q/:

Proof. By the same argument as for Lemma 4.1, the support of BPSeQJor; zW ;d is con-
tained in the image of the morphism

�A3;d WA
3
!M.eQJor/d ; .z1; z2; z3/ 7! .z1 � Idd�d ; z2 � Idd�d ; z3 � Idd�d /:

By the argument in the proof of Lemma 4.2, BPSeQJor; zW ;d is constant on its support, so
BPSeQJor; zW ;d Š �A3;d;�ICA3.Q/˝Ld for some mixed Hodge structure Ld . It follows that

(5.1) BPS_eQJor; zW ;d
Š L_d ˝ L3=2:

On the other hand, by [1, Proposition 1.1], there is an equality

ŒBPS_eQJor; zW ;d
� D ŒL3=2�

in the Grothendieck ring of mixed Hodge structures. The mixed Hodge structure BPSeQJor; zW ;d

is pure by Corollary 4.4. We deduce that

BPS_eQJor; zW ;d
Š L3=2;

and so, from (5.1), there is an isomorphism Ld ˝ L3=2 Š L3=2, and we finally deduce that
Ld Š Q, with the standard pure weight zero mixed Hodge structure, as required.

For any constructible inclusion U ,! C3, there is an inclusion of triples of diagonal
matrices with entries in U which we denote �U;d WSymd .U / ,!M.eQJor/d as well as an inclu-
sion �U;d WU ,! Symd .U / ,!M.eQJor/d of the small diagonal. Taking disjoint unions of all
these inclusions, we define the inclusions

�U WSym.U / ,!M.eQJor/; �U W
a
d�1

U ,!M.eQJor/:

We denote by M.CŒx; y; z�/U
d

the preimage of �U;d .Symd .U // under the map

JHeQJor;d WM.eQJor/d !M.eQJor/d :

We set CohU .A3/ D
�`

d�1M.CŒx; y; z�/U
d

�
qM.eQJor/0. Then define the N-graded, coho-

mologically graded mixed Hodge structure

ACohU .A3/´ H.CohU .A3/; �Tr. zW /ICM.eQJor//:

Combining Theorems 3.5, 3.6 and 5.1 gives the following.
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Corollary 5.2. There is an isomorphism in D�.MHM.M.eQJor///,

.JHeQJor;Š�Tr. zW /ICM.eQJor/.Q//jSym.U /

Š Sym�˚
.�U;�Q

`
d�1U ˝ L�1 ˝ Hc.BC�;Q//;

and a PBW isomorphism of N-graded mixed Hodge structures

(5.2) Sym
� M
d2Z�1

HBM.U;Q/˝ H.BC�;Q/˝ L2
�
Š
�! ACohU .A3/:

Proof. We construct the first isomorphism as a special case of (3.2); via the same
argument, we then realise (5.2) as a special case of Theorem 3.6. In fact, it is sufficient to
construct the isomorphism in the case U D C3 since then the general case is given by restric-
tion to �U .Sym.U //. In this case, since supp.JHeQJor;Š�Tr. zW /ICM.eQJor/.Q// D Sym.A3/, the
proposed isomorphism becomes

JHeQJor;Š�Tr. zW /ICM.eQJor/.Q/ Š Sym�˚
.�A3;�IC `

d�1A3.Q/˝ Hc.BC�;Q/vir/;

which follows from (3.2) and Theorem 5.1.

5.2. Applications to surfaces and character stacks. Let j WV ,! A2 be the inclusion
of a constructible subset, and write U D V �A1 � A3. We consider the commutative diagram

M.eQJor/ M.QJor/

M.eQJor/ M.QJor/;
 

!
�

 ! JHgQJor  ! JHQJor

 

!
$

where the horizontal morphisms are the forgetful morphisms. We denote by Cd DCd=GLd .C/
the stack of commuting pairs of matrices, and set C D

`
d2N Cd . We define the inclusions

�V WSym.V / ,!M.QJor/; �V W
a
d�1

V ,! Sym.V /

as in the previous section. We denote by [WSym.V / � Sym.V /! Sym.V / the morphism tak-
ing a pair of multisets of points to their union (so that �V is a morphism of monoids in the
category of schemes). We define F �[ G ´ [�.F � G /. We denote by i WC ,!M.QJor/ the
inclusion. By Theorem 3.4, there is an isomorphism of complexes of mixed Hodge modules

(5.3) �Š�Tr. zW /ICM.eQJor/.Q/ Š i�QC
:

We denote by CohV .A2/ the reduced substack of coherent sheaves on A2 set-theoretically sup-
ported on V with zero-dimensional support, and by pWCohV .A2/! Sym.V / the morphism
taking such a sheaf to its support, counted with multiplicity, so that p restricts to a morphism

pd WCoh
V
d .A

2/! Symd .V /

from the stack of coherent sheaves of length d . We define

ACohV .A2/´
M
d�0

HBM.CohVd .A
2/;Q/:
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Corollary 5.3. Let j WV ,! A2 be the inclusion of a constructible subset. Then there is
an isomorphism of complexes of mixed Hodge modules

pŠQCohV .A2/ Š Sym[.�V;�Q
`
d�1 V ˝ Hc.BC�;Q//

and a PBW isomorphism of N-graded mixed Hodge structures

Sym
�M
d�1

HBM.V;Q/˝ L˝ H.BC�;Q/
�
Š
�! ACohV .A2/:

Proof. We denote by �V WSym.V /!M.QJor/ the inclusion. Then compose the isomor-
phisms

pŠQCohV .A2/ Š �
�
V JHQJor;ŠQC

Š ��V JHQJor;Š�Š�Tr. zW /ICM.eQJor/.Q/(5.4)

Š ��V$ŠJHeQJor;Š�Tr. zW /ICM.eQJor/.Q/

Š ��V$Š Sym�˚
.�A3;�IC `

d�1A3.Q/˝ Hc.BC�;Q/vir/(5.5)

Š Sym�˚
.��V$Š�A3;�IC `

d�1A3.Q/˝ Hc.BC�;Q/vir/

Š Sym�˚
.$Š�U;�Q

`
d�1U ˝ L�1 ˝ Hc.BC�;Q//

Š Sym�˚
.�V;�Q

`
d�1 V ˝ Hc.BC�;Q//;

where (5.4) comes from (5.3) and isomorphism (5.5) comes from Corollary 5.2. This gives the
first isomorphism; the PBW isomorphism follows by the same argument, and (5.2).

For an application to nonabelian Hodge theory, we set V D .C�/2 in Corollary 5.2. Set
A D Chx˙1; y˙1i. There are identifications

M.A/ D Cohcpct..C
�/2/ DM.�1.†1//

of substacks of M.QJor/, where the final stack is the stack of finite-dimensional representations
of the fundamental group of a genus 1 closed Riemann surface. From Corollary 5.3, we deduce
the following result.

Corollary 5.4. There is a PBW isomorphism of N-graded mixed Hodge structuresM
d2N

HBM.M.�1.†1//d ;Q/ Š Sym
� M
d2Z�1

HBM..C�/2;Q/˝ L˝ H.BC�;Q/
�
:

The CoHA structure on the left-hand side of this isomorphism is introduced and studied
in [4]. Given g; d 2 Z�1, consider the stack-theoretic quotient

Reptw
d .†g/´

²
.A1; : : : ; Ag ; B1; : : : ; Bg/ 2 GLd .C/

�2g

ˇ̌̌̌
gY
nD1

.An; Bn/ D exp.2�i=d/ � Idd�d

³
=GLd .C/;

where the action is the simultaneous conjugation action. The action of GLd .C/ on the variety
in brackets is not free, but it factors through the conjugation action by PGLd .C/, which is
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scheme-theoretically free by [20, Corollary 2.2.7], and the quotient

Reptw
d .†g/´

²
.A1; : : : ; Ag ; B1; : : : ; Bg/ 2 GLd .C/

�2g

ˇ̌̌̌
gY
nD1

.An; Bn/ D exp.2�i=d/ � Idd�d

³
=PGLd .C/

is a smooth quasiprojective variety. It follows that there is an isomorphism

H.Reptw
d .†g/;Q/ Š H.Reptw

d .†g ;Q//˝ H.BC�;Q/:

For g D 1, we have by [20, Theorem 2.2.17] that Reptw
d .†1/ Š .C

�/2. In general, we have the
following conjecture.

Conjecture 5.5 ([4, Conjecture 1.1]). There is an isomorphism of N-graded cohomo-
logically graded mixed Hodge structuresM

d2N

Hc
�
M.�1.†g//d ;Q

�
˝ L.1�g/n

2

Š Sym
�M
d�1

Hc.Reptw
d .†g/;Q/˝ Hc.BC�;Q/˝ L.1�g/n

2
�
:

From Corollary 5.4, we deduce the g D 1 part of the following; the g D 0 case follows
from [28, Section 1].

Theorem 5.6. Conjecture 5.5 is true for g � 1.

6. Generalisations of the purity theorem

6.1. The wall-crossing isomorphism in DT theory. The wall-crossing isomorphism
in cohomological DT theory (e.g. [10, Theorem B]) provides a powerful way to deduce purity
of Borel–Moore homology of moduli spaces of semistable quiver representations, for some sta-
bility condition �, from purity of Borel–Moore homology for some other stability condition �0

(see e.g. [6] for an application of this principle for quantum cluster algebras). We will use this
idea to prove a generalisation of Theorem A incorporating stability conditions.

Fix a quiver Q and a stability condition � 2 HQ0
C

. Let � be a finite-dimensional CQ-
module; then � admits a unique Harder–Narasimhan filtration 0 D �0 � � � � � �s D � such
that each �t=�t�1 is �-semistable and the slopes %.�1=�0/; : : : ; %.�s=�s�1/ are strictly de-
scending. Given a dimension vector d 2 NQ0 , we denote by

HNd ´
°
.d1; : : : ;ds/ 2 .NQ0/s n ¹0º

ˇ̌̌
%.d1/ > %.d2/ > � � � > %.ds/;

X
j�s

dj D d
±

the set of Harder–Narasimhan types for CQ-modules of dimension d. For

˛ D .d1; : : : ;ds/ 2 HNd;

we denote dj by ˛j , and write s.˛/ D s. For each ˛ 2 HNd, there is a locally closed quasipro-
jective subvariety X.Q/Œ˛� � X.Q/ for which the closed points correspond exactly to those
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CQ-modules � of Harder–Narasimhan type ˛. For ˛ 2 HNd, define by X.Q/˛ � X.Q/d the
subspace of linear maps preserving the Q0-graded flag 0 � C˛1 � C˛1C˛2 � � � � � Cd and
such that each subquotient is �-semistable, and denote by P˛ � GLd the subgroup preserv-
ing this same flag. Then the natural map X.Q/˛=P˛ ! X.Q/Œ˛�=GLd is an isomorphism. We
set M.Q/˛ ´ X.Q/˛=P˛ and denote by i˛WM.Q/˛ !M.Q/d the locally closed inclusion
of substacks. By [35, Proposition 3.4], there is a decomposition into locally closed substacks
M.Q/d Š

`
˛2HNd

M.Q/˛.

Theorem 6.1. For Q a quiver, W 2 CQ=ŒCQ;CQ� a potential, and stability condi-
tion �, there is an isomorphism in D�.MHM.M.Q///,

JHŠ�Tr.W /ICM.Q/.Q/

Š

M
d2NQ0

˛2HNd

�
�

˚;1�j�s.˛/

q�˛j ;ŠJH�˛j ;Š�Tr.W /�˛j ICM.Q/
�-ss
˛j
.Q/

�
˝ Lf .˛/=2;

(6.1)

where f ..d1; : : : ;ds//´
P
1�j 0<j 00�shdj

0

;dj 00i and q�d WM.Q/� -ss
d !M.Q/d is the affini-

sation morphism. Taking the direct image to NQ0 , there is an isomorphism

DimŠ �Tr.W /ICM.Q/.Q/

Š

M
d2NQ0

˛2HNd

�
�

1�j�s.˛/

Dim�˛j ;Š �Tr.W /�˛j ICM.Q/
�-ss
˛j
.Q/

�
˝ Lf .˛/=2

(6.2)

in D�.MHM.NQ0//.

If Q is symmetric, the function f in the above proposition is identically zero.

Corollary 6.2. For any stability condition � 2 HQ0
C

, the cohomologically graded mixed
Hodge structure

Hc.M. zQ/
� -ss
d ; �Tr. zW /

�
d
ICM. zQ/

�-ss
d
.Q// 2 D�.MHS/

is pure, of Tate type.

Proof. For each d 2 N zQ0 , the Harder–Narasimhan type .d/ contributes the summand

(6.3) Hc.M. zQ/
� -ss
d ; �Tr. zW /

�
d
ICM. zQ/

�-ss
d
.Q//

to the right-hand side of (6.2), and so we deduce that, as a sub-mixed Hodge module of
a mixed Hodge module that is both an ordinary mixed Hodge module and pure, of Tate type by
Lemma 4.2 and Theorem A, the mixed Hodge module (6.3) is a pure element of D�.MHS/,
of Tate type.

6.2. Purity for stacks of semistable …Q-modules. Fix a quiver Q and a dimension
vector d. There is a natural projection

�Q;dWM. zQ/d !M.Q/d

induced by forgetting �.!i / for all i 2 Q0. Let � 2 HQ0
C

be a stability condition. The inclusion
��1Q;d.M.Q/

� -ss
d / �M. zQ/

� -ss
d is strict in general. We nonetheless have the following useful

lemma, which enables us to prove purity for stacks of semistable …Q-modules.
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Lemma 6.3. For Q an arbitrary finite quiver, � 2 HQ0
C

a stability condition, d 2 NQ0

a dimension vector, and �Q;dWM. zQ/d !M.Q/d the natural projection, the inclusion

(6.4)
�
��1Q;d.M.Q/

� -ss
d / \ crit.Tr. zW /

�
d/
�
,!

�
M. zQ/

� -ss
d \ crit.Tr. zW /

�
d/
�

is the identity.

Proof. Let � be a Jac. zQ; zW /-representation represented by a closed point of the com-
plement of inclusion (6.4). Then, via Proposition 2.1, � corresponds to a pair .M; f /, where
M is a…Q-module and f 2 End…Q.M/. By assumption, the Harder–Narasimhan filtration of
M , considered as a …Q-module, is nontrivial, i.e. it takes the form

0 DM0 �M1 � � � � �Ms DM;

where s � 2. Since each �.Mj =Mj�1/ for j � 2 has slope strictly less than �.M1/, each
Hom…Q-mod.M1;Mj =Mj�1/ D 0, and so the restriction f jM1 WM1 !M factors through the
inclusion M1 �M . So the pair .M1; f jM1/ is a proper subobject of the pair .M; f / in the
category C…Q of Proposition 2.1. But then, by Proposition 2.1, � is not a �-semistable zQ-
representation, a contradiction.

Theorem 6.4. Let Q be a finite quiver, let � 2 HQ0
C

be a stability condition, and let
d 2 NQ0 be a dimension vector. There is a natural isomorphism in D�.MHS/,

Hc.M. zQ/
� -ss
d ; �Tr. zW /

�
d
QM. zQ/

�-ss
d
/ Š Hc

�
.��1Q;d.0/ \X.Q/

� -ss
d /=GLd;Q

�
˝ Ld�d;

and so, by Theorem 6.5, taking duals, the mixed Hodge structure HBM.M.…Q/
� -ss
d ;Q/ is pure,

of Tate type.

Proof. Write V D ��1Q;d.M.Q/
� -ss
d /. By Theorem 3.4, there is an isomorphism

(6.5) Hc
�
.��1Q;d.0/ \X.Q/

� -ss
d /=GLd;Q

�
˝ Ld�d

Š Hc.V; �Tr. zW /
�
d
QV /:

There are equalities

supp.�Tr. zW /
�
d
QV / D

�
V \ crit.Tr. zW /

�
d/
�

D
�
M. zQ/

� -ss
d \ crit.Tr. zW /

�
d/
�
.Lemma 6.3/

D supp.�Tr. zW /dQM. zQ/
�-ss
d
/:

Thus the natural map Hc.V; �Tr. zW /
�
d
QV /! Hc.M. zQ/

� -ss
d ; �Tr. zW /

�
d
QM. zQ/

�-ss
d
/ is an isomor-

phism. Combining (6.5) and this isomorphism with Corollary 6.2, we deduce the result.

6.3. Framed quivers. For Q0 a quiver, f;d 2 NQ00 , and � 2 H
Q00
C

a stability condi-
tion, recall from Section 3.5 the construction of the moduli space M.Q0/

�
f;d of f-framed �-

semistable d-dimensional Q0-representations. We consider this construction for Q0 D zQ, the
tripled quiver associated to a quiver Q. We define

�
�

zQ;f;d
WM. zQ/

�
f;d !M. zQ/

� -ss
d

to be the map forgetting the framing and remembering the associated graded object of the
Jordan–Hölder filtration (in the category of �-semistable zQ-representations) of the underlying
zQ-representation.
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Theorem 6.5. Fix a finite quiver Q, dimension vectors d; f 2 NQ0 , and a King stabil-
ity condition � 2 HQ0

C
. Then the NQ0-graded mixed Hodge structure on the vanishing cycle

cohomology Hc.M. zQ/
�
f;d; �T r. zW /

�
f;d

ICM. zQ/
�
f;d
.Q// on the fine moduli space of �-semistable

f-framed C zQ-modules is pure, of Tate type.

Proof. Applying dim�
�;Š

to the isomorphism of Proposition 3.7, we obtain

.dim�
�
ı�

�

zQ;f;�
/Š
M

d2ƒ�
�

�T r. zW /
�
f;d

QM. zQ/
�
f;d
˝ L.d;d/ zQ=2

Š Sym�C

�M
d2ƒ�

�

BPS�zQ; zW ;d ˝ H.P f�d�1;Q/_ ˝ L�1=2
�
:

(6.6)

On the other hand, from Corollary 4.4, each of the complexes BPS�zQ; zW ;d is pure. The purity of
the right-hand side of (6.6) follows, and so does the theorem.

6.4. Critical cohomology of Hilb.A3/. We consider again the special case in which
Q D QJor, and so zQ is a quiver with one vertex and three loops, which we label x; y; z, and
zW D xŒy; z�. Setting f D 1, there is a natural isomorphism of schemes (see [1])

(6.7) M. zQ/1;n \ crit.T r. zW /n/ Š Hilbn.A3/;

where the right-hand side of (6.7) is the usual Hilbert scheme parameterising codimension n
ideals I � CŒx; y; z�. The following is then a corollary of Theorem 6.5.

Corollary 6.6. The mixed Hodge structure Hc.Hilbn.A3/; �T r. zW /nQM. zQ/1;n/ is pure,
of Tate type for all n.

It follows from our purity result that the Hodge polynomial

h
�
Hc.Hilbn.A3/; �T r. zW /dQM. zQ/1;n/; x; y; z

�
is equal to the weight polynomial

�wt
�
Hc.Hilbn.A3/; �T r. zW /n/; q

�
after the substitution q2 D xyz2. We deduce from [1, Theorem 2.7] the following generating
function equation:X

n�0

h
�
Hc.Hilbn.A3/; �T r. zW /nQM. zQ/1;n/; x; y; z

�
.xyz2/�n�n

2

tn

D

1Y
nD1

n�1Y
kD0

.1 � .xyz2/1�ktn/�1:

Indeed, we can determine the critical cohomology of Hilbn.A3/ itself.

Corollary 6.7. There is an isomorphism of N-graded, cohomologically graded mixed
Hodge structures,M

n2N

Hc.Hilbn.A3/; �T r. zW /nQM. zQ/1;n/˝ L�n�n
2

Š Sym
�M
n�1

M
0�k�n�1

L1�k
�
:
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Proof. By Corollary 6.6, the left-hand side of the expression in the corollary is pure,
of Tate type, as is the right-hand side (by definition). A cohomologically graded mixed Hodge
structure that is pure, of Tate type, is determined by its weight polynomial. The required equal-
ity of weight polynomials follows from the main result of [1], following on from the earlier
paper [12], where an in-depth analysis of the case n D 4 was undertaken.

6.5. Nakajima quiver varieties. Let Q be an arbitrary quiver, and let � 2 HQ0
C

be
a stability condition. Let f 2 NQ0 be a framing vector. Throughout this section, we assume
that f ¤ 0. Consider the quiver fQf, where the tilde covers the f as well as the Q; this is the
quiver obtained by framing the quiver Q to form Qf, then doubling, and then adding a loop !i
at every vertex (including the vertex1).

Fix a slope � 2 .�1;1/. We define the stability condition �.�/ as in Section 3.5. Assume
that d 2 ƒ�

�
� NQ0 . Then a .1;d/-dimensional fQf-representation � is �.�/-stable if and only

if the underlying zQ-representation is �-semistable, and for every proper subrepresentation
�0 � � such that dim.�0/1 D 1, the underlying zQ-representation of �0 has slope strictly less
than � . In addition, �.�/-stability for fQf-representations of dimension .1;d/ is equivalent to
�.�/-semistability.

For each of the vertices i 2 Q0, the condition �.1;d/.�/ D 0 imposes the conditions

Ti ´
X
t.a/Di

�.a/�.a�/ �
X
s.a/Di

�.a�/�.a/

C

X
i2Q0

X
1�n�fi

�.ˇi;n/�.ˇ
�
i;n/ D 0

(6.8)

which are the usual Nakajima quiver variety relations [33, 34], while at the vertex 1, the
relation imposed is

(6.9) T1´ �

X
i2Q0

X
1�n�fi

�.ˇ�i;n/�.ˇi;n/ D 0:

By cyclic invariance of the trace,
P
i2.Qf/0

Tr.Ti / D 0, and so T1 D Tr.T1/ D 0 follows
already from relations (6.8), and (6.9) is redundant. It follows that

.��1Qf;.1;d/.0/ \X.Qf/
�.�/-ss
.1;d/ /=GLd

is the usual Nakajima quiver variety, which we will denote M� .d; f/. There is an isomorphism

Hc
�
.��1Qf;.1;d/.0/ \X.Qf/

�.�/-ss
.1;d/ /=GL.1;d/;Q

�
Š Hc.M� .d; f/;Q/˝ Hc.BC�;Q/:

(6.10)

Each M� .d; f/ is smooth, and so we have

Hc.M� .d; f/;Q/ Š H.M� .d; f/;Q/_ ˝ Ldim.M�.d;f//;

and we recover the following corollary.

Corollary 6.8. For an arbitrary quiver Q, nonzero dimension vectors f;d 2 NQ0 , and
a King stability condition � 2 HQ0

C
, H.M� .d; f/;Q/ is pure, of Tate type.
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7. The PBW and wall-crossing isomorphisms

7.1. Serre subcategories. Let S � CQ-mod be a Serre subcategory of the category
of finite-dimensional CQ-modules, i.e. we choose a property P of CQ-modules such that,
for every short exact sequence 0!M 0 !M !M 00 ! 0 inside CQ-mod,M 0 andM 00 have
property P if and only if M does. Then S � CQ-mod is the full subcategory of modules hav-
ing property P . We assume that there is an inclusion of algebraic stacks �WM.Q/S ,!M.Q/

which induces the inclusion of the objects of S into the objects of CQ-mod after passing to
C-points.

The standard construction for P is as follows. For a quiverQ, let C.Q/ denote the set of
equivalence classes of cycles inQ, i.e. the set of cyclic paths, where if l l 0 and l 0l are both cyclic
paths, they are considered to be equivalent. For every cycle c 2 C.Q/, we pick a constructible
subset Uc � C, and we say that a CQ-module � has property P if and only if the generalised
eigenvalues of �.c/ belong to Uc , for each c a representative of c 2 C.U /.

Example 7.1. Setting all Uc D ¹0º, S � CQ-mod is the subcategory of nilpotent mod-
ules, i.e. those modules M for which there exists some n 2 N such that CQ�n �M D 0.

Example 7.2. Setting

Uc D

´
C if c 2 C.Q/;

¹0º otherwise;

we obtain the condition for the Lusztig nilpotent variety ifQ has no loops. In general, the Serre
subcategory S � CQ-mod determined by this choice of Uc is the subcategory of modules
M for which there exists a filtration by Q0-graded vector spaces 0 � L1 � � � � � Ln of the
underlying Q0-graded vector space of M such that a � Ls � Ls for all s, and a� � Ls � Ls�1.
This second property is obviously of Serre type. It is introduced under the name of *-semi-
nilpotency in [3].

Example 7.3 ([2]). Set Uc D C if c is composed entirely of loops in Q, and 0 other-
wise. A CQ-module is called *-strongly semi-nilpotent5) if it possesses a filtration as in Exam-
ple 7.2, for which each subquotient Ls=Ls�1 is supported at a single vertex. These are exactly
the modules in the Serre subcategory corresponding to the above choices of Uc .

7.2. Proof of Theorems C and D. Applying the functor dimŠ �� to the isomorphism
constructed in the next theorem yields Theorem C.

Theorem 7.4. Pick a stability condition � 2 HQ0
C

. There is an isomorphismM
d2NQ0

JHQ;d;ŠQM.…Q/d ˝ L.d;d/

Š �
˚;�2.�1;1/

M
d2ƒ�

�

�
q
�

Q;d;Š
JH�
Q;d;Š

QM.…Q/
�-ss
d
˝ L.d;d/

�
in D�.MHM.M.Q///.

5) In fact, this is the modified terminology of [3].
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Proof of Theorem 7.4. We consider the commutative diagram

M. zQ/� -ss
d V M.Q/

� -ss
d

M. zQ/� -ss
d M.Q/� -ss

d

M. zQ/d M.Q/d

 ! JH�
zQ;d

!

 -
j  

!
�Q;d

 ! JH�
Q;d

 ! q�
zQ;d

 ! q�
Q;d

 

!
� 0Q;d

with V defined as in the proof of Theorem 6.4. By Theorem 3.4, there are isomorphisms

JH�
Q;d;Š

QM.…Q/
�-ss
d
˝ Ld�d

Š JH�
Q;d;Š

�Q;d;Š�Tr. zW /
�
d
QV ;(7.1)

JHQ;d;ŠQM.…Q/
�-ss
d
˝ Ld�d

Š � 0Q;d;ŠJH zQ;d;Š�Tr. zW /dQM. zQ/d :

By Lemma 6.3, the support of �Tr. zW /
�
d
QM. zQ/�-ss

d
is contained in the image of the natural

inclusion j , and so from (7.1) and the above commutative diagram, we obtain the isomorphism

q
�

Q;d;Š
JH�
Q;d;Š

QM.…Q/
�-ss
d
Š � 0Q;d;Šq

�

zQ;d;Š
JH�
zQ;d;Š

�Tr. zW /
�
d
QM. zQ/�-ss

d
:

Thus, applying � 0
Q;Š

to isomorphism (6.1) applied to the QP . zQ; zW / yields the required iso-
morphism.

Proof of Theorem D. Let mWA1 �M.…Q/
� -ss
d !M. zQ/

� -ss
d be the morphism extend-

ing a …Q-module to a Jac. zQ; zW /-module by letting all of the loops !i act by multiplication
by a fixed scalar in A1. Then, by Theorem B, there is an isomorphism

(7.2) BPS�zQ; zW ;d Š m�.ICA1.Q/� BPS
�
…Q
/;

where BPS
�
…Q

is a mixed Hodge module on M.…Q/
� -ss
d . Consider the commutative diagram

M.Jac. zQ; zW //� -ss
d M.…Q/

� -ss
d

M.Jac. zQ; zW //� -ss
d M.…Q/

� -ss
d :

 ! zJH�d

 

!
�d

 ! JH�d

 

!
� 0d

Arguing as in the proof of Theorem 7.4, there are isomorphismsM
d2ƒ�

�

JH�d;ŠQM.…Q/
�-ss
d
˝ L.d;d/ Š JH��;Š��;Š�Tr. zW /

�

�
ICM. zQ/

�-ss
�
.Q/

Š � 0�;Š
zJH��;Š�Tr. zW /

�

�
ICM. zQ/

�-ss
�
.Q/

Š � 0�;Š Sym�˚
.BPS

�

zQ; zW ;�
˝ Hc.BC�;Q/vir/

Š Sym�˚
.� 0�;ŠBPS

�

zQ; zW ;�
˝ Hc.BC�;Q/vir/

Š Sym�˚
.BPS

�

…Q;�
˝ H.BC�;Q/_/;

giving isomorphism (1.4).
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The construction of the PBW isomorphism is similar; via dimensional reduction and
Lemma 6.3, there is an isomorphism

AS;�
…Q;�

Š A
zS;�

zQ; zW ;�
;

where zS is the Serre subcategory of C zQ-modules for which the underlying CQ-module is
in S , defining a Hall algebra structure on AS;�

…Q;�
. Then the required PBW isomorphism is

constructed from Theorem 3.6 and the isomorphisms

BPS
zS;�

zQ; zW ;�
D Hc.M. zQ/

zS;� -ss
�

;BPS
�

zQ; zW ;�
/_ Š Hc.M.Q/S;� -ss

� ;BPS
�

…Q;�
/_ ˝ L�1=2;

following from isomorphism (7.2).

7.3. Applications for Nakajima quiver varieties. We explain the special case of Theo-
rem C which gives rise to Hausel’s original formula for the Poincaré polynomials of Naka-
jima quiver varieties. In brief, we choose …Qf to be the preprojective algebra for a framed
quiver Qf, pick � to be the usual stability condition defining the Nakajima quiver variety, set
S D CQf-mod and specialise the Hodge series to the Poincaré series, to derive Hausel’s result.
For this set of choices, an analogue of equation (1.3) was demonstrated by Dimitri Wyss [47],
working in the naive Grothendieck ring of exponential motives. We describe in a little more
detail how our derivation runs.

LetQ be a quiver, and let S � CQ-mod be a Serre subcategory. Let f 2 NQ0 be a fram-
ing vector, assumed nonzero, and let Sf � …Qf-mod be the Serre subcategory consisting of
those modules for which the underlying CQ-module is in S . We let � D .i; : : : ; i / be the
degenerate stability condition onQ and define �.0/ as in Section 3.5. If X is an Artin stack, we
define its Poincaré series via P.X; q/ D h.Hc.X;Q/; 1; 1; q/. Equating coefficients in (1.3) for
which d1 D 1, and specialising, we obtain, from (6.10),X

d2NQ0

P.M.…Qf/
Sf
.1;d/; q/q

2..d;d/�f�dC1/xd

D

� X
d2NQ0

P.M.…Q/
S
d ; q/q

2.d;d/xd
�

�

� X
d2NQ0

P.M.f;d/S ; q/q2..d;d/�f�dC1/xd.q2 � 1/�1
�
;

where M.f;d/S is the subvariety of the Nakajima quiver variety for the dimension vector d and
framing vector f corresponding to those points for which the underlying Q-representation is in
S . Putting S D CQ-mod (or, equivalently, removing S from the above formulae) and using
Hua’s formula [21] to rewrite both sides as rational functions in q defined in terms of Kac
polynomials, we recover [17, Theorem 5]. The advance that Theorem C gives us is an upgrade
from an equality of generating series to an isomorphism in cohomology, i.e. it tells us that the
above identity is induced by a graded isomorphism of (pure) Hodge structuresM

d2NQ0

Hc.M.…Qf/
Sf
.1;d/;Q/˝ L..d;d/�f�dC1/

Š

� M
d2NQ0

Hc.M.…Q/
S
d ;Q/˝ L.d;d/

�
˝

� M
d2NQ0

Hc.M.f;d/S ;Q/˝ L..d;d/�f�dC1/
˝ Hc.BC�;Q/

�
by taking Poincaré series of the two sides of the isomorphism.
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8. Restricted Kac polynomials

8.1. Definition. Next we explain how Theorem D enables one to define and categorify
the Kac polynomial aS

Q;d.q
1=2/ associated to a quiver Q, a Serre subcategory S � CQ, and

a dimension vector d. Furthermore, we explain a general mechanism for deducing positivity of
such Kac polynomials from purity, and we prove Theorem E.

Defining BPSS
…Q

as BPSS;�
…Q

, for the degenerate stability condition � D .i; : : : ; i / (equiv-
alently, without any stability condition), the dual of isomorphism (1.5) yields

(8.1)
M

d2NQ0

Hc.M.…Q/
S
d ;Q/˝ L.d;d/ Š Sym.BPSS;_

…Q
˝ L˝ Hc.BC�;Q//:

Isomorphism (8.1) can be restated as saying that BPSS;_
…Q

categorifies the restricted Kac polyno-
mials aS

Q;d.q
1=2/, defined by the plethystic logarithm (the inverse to the plethystic exponential)

q.q � 1/�1
X

d2NQ0

aS
Q;d.q

1=2/td D Log
� X

d2NQ0

�wt
�
Hc.M.…Q/

S
d ;Q/; q

1=2
�
q.d;d/td

�
:

Isomorphism (8.1) and the definition of Exp (see Section 4.3) imply

aS
Q;d.q

1=2/ D �wt.BPSS
…Q;d; q

�1=2/:

This is indeed a polynomial: despite its high-tech definition, BPSS
…Q;d is, after all, the hyper-

cohomology of a bounded complex of mixed Hodge modules on an algebraic variety.

8.2. Positivity of Kac polynomials. A corollary of the existence of isomorphism (8.1)
is that if

L
d2NQ0

Hc.M.…Q/
S
d ;Q/ is pure, then so is BPSS

…Q
, and as a result, aS

Q;d.q
1=2/

has only positive coefficients, when expressed as a polynomial in �q1=2. This brings us to the
special case of Theorem D that, along with Theorem A, implies the Kac positivity conjecture,
first proved by Hausel, Letellier and Villegas in [19] via arithmetic Fourier analysis for smooth
Nakajima quiver varieties. Namely, we set S D CQ-mod, and we set � D .i; : : : ; i / to be the
degenerate stability condition. Then Theorem D states that there is an isomorphismM

d2NQ0

Hc.M.…Q/d;Q/˝ L.d;d/ Š Sym.BPS_…Q ˝ H.BC�;Q/_/;

while Theorem 3.4 states that there is an isomorphismM
d2NQ0

Hc.M.…Q/d;Q/˝ L.d;d/ Š
M

d2NQ0

Hc.M. zQ/d; �Tr. zW /ICM. zQ/d.Q//:

On the other hand, by [32, Theorem 5.1], there is an equalityX
d2NQ0

�wt
�
Hc.M. zQ/d; �Tr. zW /ICM. zQ/d.Q//; q

1=2
�
td

D Exp
� X

d2NQ0n¹0º

aQ;d.q/.1 � q�1/�1td
�
;

where aQ;d.q/ is Kac’s original polynomial, from which we deduce that

�wt.BPS…Q;d; q
1=2/ D aQ;d.q�1/:
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From Corollary 4.4, we deduce that each

BPS…Q;d Š BPS zQ; zW ;d ˝ L1=2

is pure, and so �wt.BPS…Q;d; q
1=2/ is a polynomial in �q1=2 with positive coefficients. In

particular, since aQ;d.q/ is a polynomial in q, we have reproved the following theorem.

Theorem 8.1 ([19]). For a finite quiver Q and a dimension vector d 2 NQ0 , the Kac
polynomial aQ;d.q/ has positive coefficients.

8.3. Positivity of restricted Kac polynomials. For new positivity results, we turn to the
examples of Serre subcategories appearing in the work of Bozec, Schiffmann and Vasserot –
see Examples 7.1, 7.2 and 7.3 for the definitions. Setting N ;SN ;SSN � CQ-mod to be
the full subcategory of nilpotent, *-semi-nilpotent and *-strongly semi-nilpotent CQ-modules,
respectively, we define

a]Q;d.q
1=2/´ �wt

�
Hc.M.Q/d; �

0];�
d BPS…Q;d/; q

1=2
�

for ] D N ;SN ;SSN , where �0]WM.Q/
]
d ,!M.Q/d is the inclusion. In this way we obtain

a new description of the nilpotent, semi-nilpotent and strongly semi-nilpotent Kac polyno-
mials of [3]. By [3], the polynomials aSN

Q;d.q/ and aSSN
Q;d .q/ have an enumerative definition

when q is a prime power: the former counts absolutely indecomposable d-dimensional FqQ-
modules such that each loop acts via a nilpotent operator, while the latter counts absolutely
indecomposable d-dimensional nilpotent FqQ-modules.

Theorem 8.2. For a finite quiver Q, the Kac polynomials aSN
Q;d.q/ and aSSN

Q;d .q/ have
positive coefficients.

Proof. The proof proceeds exactly as in the above reproof of Theorem 8.1, using the
results and proofs of [3,43] to deduce purity of Hc.M.…Q/

SN ;Q/ and Hc.M.…Q/
SSN ;Q/.

For example, one may extract this purity result as follows. Let ] be either of the conditions SN

or SSN . By [43, Theorem 3.2.d], the Serre spectral sequence

E
p;q
2 D HpT .pt;Q/˝ Hqc;GLd

.��1d .0/];Q/_ D HpT .pt;Q/˝ Hc.M.…Q/
];Q/_

converging to Hc;GLd�T .�
�1
d .0/];Q/_ degenerates at the second sheet (here T is an extra

complex torus acting on all relevant varieties, and is a special case of one of the tori T � that
we consider in Section 9.1). In particular, purity of Hc.M.…Q/

];Q/_ follows from purity of
Hc;GLd�T .�

�1
d .0/];Q/_, which is [43, Theorem 3.2.b].

8.4. Verdier duality and nilpotent Kac polynomials. We finish our discussion of
restricted Kac polynomials with a result relating aQ;d.q/ with aN

Q;d.q/, providing a cohomo-
logical refinement of a Kac polynomial identity [3, Theorem 1.4], which in turn extended the
main result of [41] from the case of a quiver without loops.

Proposition 8.3. For a quiver Q and a dimension vector d 2 NQ0 , there is an iso-
morphism Hc.M.Q/;BPS…Q;d/ Š Hc.M.Q/N ;BPS…Q;d/

_ providing a cohomological
refinement of the identity aN

Q;d.q/ D aQ;d.q�1/.



Davison, Integrality conjecture and preprojective stacks 141

Proof. The torus T D .C�/2 acts on M. zQ/ via the rescaling action

.z1; z2/ � �.b/ D

8̂<̂
:
z1�.b/ if b 2 Q1;

z2�.b/ if b� 2 Q1;

.z1z2/
�1�.b/ if there exists i 2 Q0 such that b D !i :

This action preserves Tr. zW / so that BPS zQ; zW ;d lifts to a T -equivariant mixed Hodge module
on M. zQ/d, and so BPS…Q;d lifts to a T -equivariant MHM on M.Q/d. By Theorem B, the
MHM BPS…Q;d is Verdier self-dual so that there is an isomorphism

Hc.M.Q/d;BPS…Q;d/ Š H.M.Q/d;BPS…Q;d/
_:

Since T contracts M.Q/d to the point M.Q/Nd , there are isomorphisms

H.M.Q/d;BPS…Q;d/ Š H.M.Q/Nd ;BPS…Q;d/ Š Hc.M.Q/Nd ;BPS…Q;d/:

Combining these isomorphisms gives the isomorphism in the proposition. The identity in the
proposition then follows from the definitions.

Remark 8.4. Combining Theorems 8.1 and 8.2 with Proposition 8.3, we conclude that
all of the Kac polynomials aQ;d.q/, aN

Q;d.q/, aSN
Q;d.q/ and aSSN

Q;d .q/ have positive coefficients.

9. Deformations of Hall algebras

9.1. Kontsevich–Soibelman CoHAs. In [28], a method was given for associating a
cohomological Hall algebra (CoHA for short) to the data of an arbitrary QP .Q;W /. The
construction provides a mathematically rigorous approach to defining algebras of BPS states –
see [16] for the physical motivation. We will work with a slight generalisation of the original
definition, denoted A�;Q;W , incorporating extra parameters depending on a weight function � .

Definition 9.1. If .Q;W / is a QP, then a W -invariant grading for Q is a function
� WQ1 ! Zs such that every cyclic word appearing in W is homogeneous of weight zero.

Example 9.2. For s D 0, the function � D 0WQ1 ! Z0 gives a W -invariant grading
for any potential W , and we will recover below the original definition of Kontsevich and
Soibelman, by considering this grading.

Example 9.3. For a quiver Q and s D 2, the weight function

�.a/ D .1; 0/; �.a�/ D .0; 1/ for all a 2 Q1;

�.!i / D .�1;�1/ for all i 2 Q0

is a zW -invariant grading for the tripled quiver zQ.

From now on, we will only consider the case in which our quiver with potential is . zQ; zW /
for some quiverQ. Given a grading � WQ1 ! Zs , define T � ´ Hom.Zs;C�/. Given a dimen-
sion vector d 2 NQ0 , we form the extended gauge group GL�d ´ GLd � T

� . The group GL�d
acts on X.Q/d via ..¹giºi2Q0 ; �/ � �/.a/ D �.�.a//gt.a/�.a/g

�1
s.a/

extending the action of
GLd on X.Q/d. Similarly, if d0;d00 2 NQ0 , we define GL�d0;d00 ´ GLd0;d00 � T

� , the parabolic
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gauge group, acting on X.Q/d0;d00 via the same formula, and GL�d0�d00 ´ GLd0 � GLd00 � T
� ,

acting on X.Q/d0 �X.Q/d00 via

..¹g0iºi2Q0 ; ¹g
00
i ºi2Q0 ; �/ � .�

0; �00//.a/ D �.�.a//.g0t.a/�
0.a/g0�1s.a/; g

00
t.a/�

00.a/g00�1s.a//:

For fixed � 2 T � , the action of � on the category of CQ-modules is functorial and preserves
dimension vectors. It follows that if � 2 HQ0

C
is a stability condition, the spaces X.Q/� -ss

d and
X.Q/� -st

d are preserved by GL�d. We define the stack �M.Q/� -ss
d ´ X.Q/� -ss

d =GL�d.
For the remaining part of the section, we will only consider the degenerate stability condi-

tion � D .i; : : : ; i /, and so we drop � from our notation. We denote by Dim� W �M. zQ/! NQ0

the map taking a zQ-representation to its dimension vector.
Assume that the grading � W zQ1 ! Zs is zW -invariant. The function Tr. zW / induces a func-

tion Tr. zW / on �M. zQ/. Let S be a Serre subcategory of the category of C zQ-modules, which
we assume to be invariant under the action of T � , with induced morphism

�W �M. zQ/S ,! �M. zQ/:

We define

A�; zQ; zW ´ Dim�� �
Š�Tr. zW /IC�M.Q/.Q/˝ L� dim.T � /=2

2 D�.MHM.NQ0//;

the underlying cohomologically graded mixed Hodge module or, equivalently, NQ0-graded
mixed Hodge structure, of A�; zQ; zW . We endow A�; zQ; zW with the structure of an algebra object
in the category of complexes of mixed Hodge modules on NQ0 . In order to achieve this, as in
Section 3.2, a little care has to be taken to approximate morphisms of stacks by morphisms of
varieties so that we can apply Saito’s theory of mixed Hodge modules to these morphisms. We
spell this out in detail.

We define

Vd;N D
�M
i2Q0

Hom.CN ;Cdi /
�
; V�;d;N D

�M
i2Q0

Hom.CN ;Cdi /
�
˚ Hom.CN ; t� /:

We let GL�d act on V�;d;N via the product of the natural action of GLd on the first component,
and the action of T � on t� given by the embedding .C�/s � Cs D t� , and componentwise
multiplication. We define U�;d;N � V�;d;N to be the subset consisting of those

.¹giºi2Q0 ; f / 2 V�;d;N

such that each gi is surjective, and f is too. Then GL�d acts freely on U�;d;N .
We break the multiplication into two parts. Fix a pair of dimension vectors d0;d00 and set

d D d0 C d00. We write GLd0�d00 ´ GLd0 � GLd00 . We embed GLd0�d00 and GLd0;d00 into GLd
as aQ0-indexed product of Levi or parabolic subgroups, respectively. We define GL�d, GL�d0;d00
and GL�d0�d00 as the product of T � with GLd, GLd0;d00 and GLd0�d00 , respectively.

For G an algebraic group with a fixed embedding G � GL�d, we define a functor on
G-equivariant varieties X by AN .X;G/´ X �G U�;d;N . If f WX ! Y is a G-invariant mor-
phism, we denote by fN WAN .X/! Y the induced morphism. For �WY ,! X a G-invariant
subvariety, then, as discussed in Section 3.2, for fixed i , the mixed Hodge structure

H i ..Y=G ! pt/��Š�f QX=G/
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is defined as
H i
�
.AN .Y;G/! pt/�AN .�; G/Š�fNQAN .X;G/

�
;

for N � 0 depending on i . Consider the commutative diagram

(9.1)

AN .X. zQ/d0;d00 ;GL�d0�d00/

AN .X. zQ/d0 �X. zQ/d00 ;GL�d0�d00/ AN .X. zQ/d0;d00 ;GL�d0;d00/

NQ0 �NQ0 NQ0 ;

 !q1
 

!

q2

 !.Dim� �Dim� /N  !Dim�;ıN

 

!
C

where q1 and q2 are the natural affine fibrations, inducing isomorphisms

˛d0;d00 W C�.Dim� �Dim� /�.�Š�Tr. zW /�Tr. zW /IC�M. zQ/d0�BT�M. zQ/d00 .Q//

! Dim�;ı� �Š�Tr. zW /IC�M. zQ/d0;d00 .Q/˝ L�.d
0;d00/ zQ=2:

Consider the composition of proper maps

AN .X. zQ/d0;d00 ;GL�d0;d00/
rN
��! AN .X. zQ/d;GL�d0;d00/

sN
��! AN .X. zQ/d;GL�d/;

where rN is induced by the inclusion X. zQ/d0;d00 ,! X. zQ/d and sN is induced by the inclusion
GL�d0;d00 ,! GL�d. Since rN and sN are proper, there is a natural morphism

(9.2) sN;�rN;�QAN .X. zQ/d0;d00 ;GL�d0;d00 /
˝ L�.d

0;d00/ zQ ! QAN .X. zQ/d;GL�d /:

Applying Dim�N;� �Tr. zW / and letting N 7! 1, morphism (9.2) induces the morphism

ˇd0;d00 WDim�;ı� �Š�Tr. zW /IC�M. zQ/d0;d00 .Q/˝ L�.d
0;d00/ zQ=2

! Dim�� �
Š�Tr. zW /IC�M. zQ/d.Q/:

Defining
md0;d00 D .ˇd0;d00 ˝ L� dim.T � /=2/ ı .˛d0;d00 ˝ L� dim.T � /=2/ ı TS;

where TS is the Thom–Sebastiani isomorphism [40], gives the multiplication

mWAS
�; zQ; zW ˝HT� AS

�; zQ; zW ! AS
�; zQ; zW :

We write A
S
zQ; zW for the special case in which T � is the zero-dimensional torus (as in Ex-

ample 9.2). In this case, the above multiplication is exactly the multiplication defined by
Kontsevich and Soibelman in [28]. The proof that, for general T � , the multiplication is asso-
ciative is standard, and is in particular unchanged from the proof given in [28, Section 7], to
which we refer for fuller details.

9.2. Degeneration. The extra equivariant parameters arising from the torus action on
M. zQ/ are not considered in the original paper [28], but were introduced, for the particular
cohomological Hall algebras we are considering, in [36,48,49]. In general, such extra parame-
ters are of most interest when they provide a geometric deformation of the original algebra, i.e.
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when they provide a flat family of algebras over Spec.HT /, such that the specialisation at the
central fibre is our original algebra, which in this case is A zQ; zW . For T � the torus associated to
a zW -invariant grading of zQ, this is precisely the result we prove in this section.

Let � W zQ1 ! Zs be a zW -invariant grading, with associated torus T . Let �WZs ! Zs
0

be
a surjective morphism of groups, inducing the inclusion of tori T 0 ,! T , where T 0 is the torus
associated to the zW -invariant grading � 0 D � ı � . Write s00 D s � s0. Then picking a splitting
of � , i.e. an extension of � to an isomorphism Zs ! Zs

0

˚ Zs
00

, induces an isomorphism

(9.3) HT Š HT 0 ˝HT � ;

where �W zQ1 ! Zs
00

is induced by the splitting. The splitting of � induces a splitting

t Š t0 ˚ t�:

We define Y�;d;N ´ X. zQ/d �GL�d U�;d;N and consider the natural maps

vd;N WY�;d;N ! Homsurj.CN ; t�/=T �µ S�;N

defined by the morphism

Homsurj.CN ; t/! Homsurj.CN ; t�/; f 7! �t� ı f:

The function Tr. zW / induces functions Tr. zW /�;d;N WY�;d;N ! C.

Lemma 9.4. The space S�;N is s00.N � 1/-dimensional and simply connected, and
H.S�;N ;Q/ is pure.

Proof. By choosing a splitting t� D C˚s
00

and considering the entries of a morphism
f 2 S�;N one by one, we obtain a sequence of morphisms

S�;N D Hs00
ls00�1
����! Hs00�1

ls00�2
����! � � �

l1
����! H1 D PN�1;

where le is an .AN nAe/=C�-fibration, with C� acting on AN via scaling. All the claims
follow from this description.

Each of the maps vd;N is a fibre bundle with fibre Y� 0;d;N . Picking i W‡ ,! S�;N the
inclusion of a sufficiently small open ball (in the analytic topology) contained in the base, we
may write

Tr. zW /�;d;N jv�1d;N .‡/
W‡ �vd;N Y�;d;N Š ‡ � Y� 0;d;N ! C

as Tr. zW /� 0;d;N ı � , where � W v�1d;N .‡/! Y� 0;d;N is the projection, and so we deduce that
the mixed Hodge modules Hq.vd;N;��Tr. zW /�;d;NQY�;d;N / are locally trivial in the analytic
topology, with fibre given by Hq.Y� 0;d;N ; �Tr. zW /�0;d;NQY�0;d;N /, and are furthermore globally
trivial by the rigidity theorem [44, Theorem 4.20], since the base of vd;N is simply connected.

The Leray spectral sequence E�;��;d;N;� converging to

H.Y�;d;N ; �Tr. zW /�;d;N ICY�;d;N .Q/˝ L.dim.V�;d;N /�s/=2/

therefore satisfies

E
p;q
�;d;N;2 D Hp.S�;N ;Q/˝ Hq.Y� 0;d;N ; �Tr. zW /�0;d;N ICY�0;d;N .Q/

˝ L.dim.V�0;d;N /�s
0/=2/:

(9.4)
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Set

~
.0/
D .dim.U�.0/;d;N / � s.

0/N � .d0;d00/ zQ/=2; �.
0/
D .dim.U�.0/;d;N / � s.

0/N/=2:

In similar fashion, we obtain spectral sequences E�;��;N;d0;d00;� and E�;��;N;d0�d00;� satisfying

E
p;q
�;d0;d00;N;2 D Hp.S�;N ;Q/˝ Hq.Y� 0;d0;d00;N ; �Tr. zW /�0;d0;d00;N ICY�0;d0;d00;N .Q/˝ L~

0

/;

E
p;q
�;d0�d00;N;2 D Hp.S�;N ;Q/˝ Hq.Y� 0;d0�d00;N ; �Tr. zW /�0;d0�d00;N ICY�0;d0�d00;N .Q/˝ L�

0

/

converging to
H.Y�;d0;d00;N ; �Tr. zW /�;d0;d00;N ICY�;d0;d00;N .Q/˝ L~/;

H.Y�;d0�d00;N ; �Tr. zW /�;d0�d00;N ICY�;d0�d00;N .Q/˝ L�/;

respectively. As in the construction of A�; zQ; zW , we obtain a commutative diagram of mor-
phisms of spectral sequences, with vertical morphisms provided by restriction morphisms in
cohomology,

(9.5)

E�;��;d;NC1;� E�;��;d0;d00;NC1;� E�;��;d0�d00;NC1;�

E�;��;d;N;� E�;��;d0;d00;N;� E�;��;d0�d00;N;�:

 !

 

!

 !  !

 

!

 

!

 

!

Each of the spectral sequences E�;��;d;N;�, E
�;�
�;d0;d00;N;�, E

�;�
�;d0�d00;N;� is a first quadrant spectral

sequence, and each of the limits

lim
N 7!1

E
p;q
�;d;N ;2; lim

N 7!1
E
p;q
�;d0;d00;N;2; and lim

N 7!1
E
p;q
�;d0�d00;N;2

exists as in Section 3.2. We claim the following commutativity of limits:

(9.6)

A�; zQ; zW ;d Š lim
N 7!1

lim
l 7!1

E
p;q

�;d;N ;l

Š lim
l 7!1

lim
N 7!1

E
p;q

�;d;N ;l ;

A�; zQ; zW ;d0;d00 Š lim
N 7!1

lim
l 7!1

E
p;q

�;d0;d00;N;l

Š lim
l 7!1

lim
N 7!1

E
p;q

�;d0;d00;N;l ;

A�; zQ; zW ;d0 ˝HT A�; zQ; zW ;d00 Š lim
N 7!1

lim
l 7!1

E
p;q

�;d0�d00;N;l

Š lim
l 7!1

lim
N 7!1

E
p;q

�;d0�d00;N;l ;

using the shorthand A�; zQ; zW ;d0;d00 Š A�; zQ; zW ;d0 ˝HT A�; zQ; zW ;d00 ˝ L�.d
0;d00/ zQ=2.

The argument for all three statements is the same: fixing p and q, the limit Ep;q�;d;N ;1
depends only on a finite portion of Ep;q�;d;N ;s , which therefore stabilises for sufficiently large
N D Np;q . The .p; q/-term of both the second and third expression of (9.6) are then given
by Ep;q�;d;Np;q ;1.

We may define the cohomological Hall algebra multiplication on A�; zQ; zW via the com-
mutative diagram obtained from (9.1) or as the morphism induced in the double limit by the
composition of the horizontal morphisms in (9.5). Via the morphism E�;��;d;1;2 ! E0;�d;1;2 to
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the degenerate spectral sequence concentrated on the first nontrivial column, and the analogous
morphisms for the spectral sequences E�;��;d0;d00;1;� and E�;��;d0�d00;1;�, we obtain a commutative
diagram of double limits

liml 7!1E�;��;d;1;l liml 7!1E�;��;d0;d00;1;l liml 7!1E�;��;d0�d00;1;l

A� 0; zQ; zW ;d A� 0; zQ; zW ;d0;d00 A� 0; zQ; zW ;d0 ˝H0T
A� 0; zQ; zW ;d00 ;

 

!

 !

 

!

 !  !

 

!

 

!

providing a lift of the natural morphism

(9.7) A�; zQ; zW ˝HT HT 0 ! A� 0; zQ; zW

in cohomology to a morphism in the category of algebra objects in the category of complexes
of mixed Hodge structures.

Theorem 9.5. Let

zQ1 Zs Zs
0

 

!

� 0

 

!
�

 �
�

be as above a specialisation of a zW -invariant weighting of zQ. Then there is an isomorphism
of mixed Hodge structures A�; zQ; zW Š A� 0; zQ; zW ˝Q HT � with T � as in (9.3). Furthermore,
morphism (9.7) is an isomorphism, and both sides of this isomorphism are pure.

Proof. First we consider the special case s0 D 0, � 0 D 0. Then, by Theorem A and
Lemma 9.4, the right-hand side of (9.4) is a pure Hodge structure, and so the spectral sequence
E�;�
�;d;1;�

degenerates at the second sheet, and the existence of the required isomorphism fol-
lows, along with the fact that (9.7) is an isomorphism. As a consequence, A�; zQ; zW is pure for
all � . So it follows that, for general � , the right-hand side of (9.4) is pure, and the general case
follows via the same argument as the special case.

Let the torus T D .C�/s act on M. zQ/d via the weight function � W zQ1 ! Zs . Then, for
each d 2 NQ0 , ignoring the overall Tate twist, via Theorem 3.4, there is an isomorphism in
Borel–Moore homology

‰�;Q;dWHBM.�M. zQ/d; �Tr. zW /Q/ Š HBM
T�GLd

.��1Q;d.0/;Q/µ A�;…Q;d:

The domain of
L

d2NQ0 ‰�;Q;d carries the Kontsevich–Soibelman cohomological Hall algebra
product recalled above, while the target carries the Schiffmann–Vasserot product [42, Sec-
tion 4]. By [36, Corollary 4.5] or [49], the modified morphism

(9.8) ‰0�;Q ´
M

d2NQ0

.�1/
P
i2Q0

.di
2
/‰�;Q;dWA�; zQ; zW ! A�;…Q

is an isomorphism of algebras. Since ‰�;Q;d is a morphism of HT -modules, we deduce the
following corollary of Theorem 9.5.
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Corollary 9.6. Let m be the maximal homogeneous ideal in HT . Then A�;…Q is free as
an HT -module, and the natural morphism of algebras

„WA�;…Q ˝HT .HT =m/!
M

d2NQ0

HBM
GLd
.��1Q;d.0/;Q/

is an isomorphism.

10. Shuffle algebras, torsion-freeness and noncommutativity

10.1. Definition. Fix a weight function � W zQ1! Zs , and set T D T � D Hom.Zs;C�/.
We recall the shuffle algebra description of the cohomological Hall algebra

A�; zQ D

M
d2NQ0

H.�M. zQ/d;Q/˝ L.d;d/ zQ=2:

Set k´ HT . Since X. zQ/d is equivariantly contractible, there is an isomorphism in cohomol-
ogy

HT�GLd.X.
zQ/d;Q/ Š kŒxi;n j i 2 Q0; 1 � n � di �Sd :

Here Sd D
Q
i2Q0

Sdi is the product of symmetric groups, with Sdi acting by permuting the
variables xi;1; : : : ; xi;di . For d0 C d00 D d, we define Shd0;d00 � Sd to be the subset of permuta-
tions .�i /i2Q0 such that, for each i 2 Q0, we have inequalities �i .1/ < �i .2/ < � � � < �i .d0i /
and �i .d0i C 1/ < � � � < �i .di /. We fix generators t1; : : : ; ts of HT , with ti corresponding to
the generator of the equivariant cohomology of Hom.Zi ;C�/, where Zi is the i th copy of Z
inside Zs . For a 2 zQ1, define Ea.z/ D z C

P
i�s �.a/i ti . We use ? to denote the multiplica-

tion in the CoHA A�; zQ. Then it is shown, as in [28, Section 1],

f .x1;1; : : : ; xr;d0r / ? g.x1;1; : : : ; gr;d00r /

D

X
�2Shd0;d00

�

�
f .x1;1; : : : ; xr;d0r /g.x1;d01C1

; x1;d01C2
; : : : ; x1;d1 ; x2;d02C1

; : : : ; xr;dr /

�

Y
a2 zQ1

� Y
1�m�d0

s.a/

d0
t.a/

<n�dt.a/

Ea.xt.a/;n � xs.a/;m/
� Y
i2Q0

� Y
1�m�d0

i

d0
i
<n�di

.xi;n � xi;m/
�1
��
:

Let zWZ ,! X. zQ/d µ X be the subvariety cut out by the matrix-valued equationX
a2Q1

Œa; a�� D 0:

Then, since Z � Tr. zW /�1.0/, there is a (dual) restriction map z�zŠQX ! �Tr. zW /QX , induc-
ing the morphism ˛ in the following diagram:

HT�GLd.X. zQ/d; �Tr. zW /Q/˝ L.d;d/ zQ=2

HBM
T�GLd

.Z;Q/˝ Ls�.d;d/ zQ=2 HT�GLd.X. zQ/d;Q/˝ L.d;d/ zQ=2

HBM
T�GLd

.��1Q;d.0/;Q/˝ Ls�.d;d/Q HBM
T�GLd

.X.Q/d;Q/˝ Ls�.d;d/Q :

 

!

ˆd

 

!
ˇ

 ! �

 !˛

 ! �

 

!
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The morphisms �; � are isomorphisms because they are induced by affine fibrations, while ˛ is
an isomorphism by Theorem 3.4. Then we define ˆd D ˇ˛

�1. In particular, ˆd is injective if
and only if 
 is.

Proposition 10.1. The morphism

ˆW
M

d2NQ0

HT�GLd.X. zQ/d; �Tr. zW /Q/˝ L.d;d/ zQ=2

!

M
d2NQ0

HT�GLd.X. zQ/d;Q/˝ L.d;d/ zQ=2

is an algebra morphism, where the domain and target are given the KS cohomological Hall
algebra structure.

Proof. For a 2 zQ1, we define

E tw
a .z/ D

´
Ea.z/ if a ¤ !i for i 2 Q0;

�Ea.z/ if a D !i for i 2 Q0:

The shuffle algebra Atw
�; zQ is defined to have the same underlying graded vector space as A�; zQ,

with shuffle multiplication defined as above, but with all instances ofEa.�/ replaced byE tw
a .�/.

Let
F W

M
d2NQ0

HBM
T�GLd

.��1Q;d.0/;Q/˝ Ls�.d;d/Q ! Atw
�; zQ

be the morphism defined by taking the sum of ��1
 over all d. By [42], F is an algebra
homomorphism. We define an isomorphism �WAtw

�; zQ ! A�; zQ by setting

�d D .�1/
P
i2Q0

.di
2
/
� idA�; zQ;d :

We define‰0�;Q as in (9.8). Then it follows thatˆ D � ı F ı‰0�;Q is a composition of algebra
morphisms.

10.2. Torsion-freeness. The algebra A�;…Q is still not wholly understood, despite in-
tensive study. On the other hand, in their work on the AGT conjectures [42, Section 4.3],
Schiffmann and Vasserot conjectured that, for � as defined in Example 9.3, the morphismˆ (or
equivalently, the morphism F ) is in fact an embedding of algebras, making the cohomological
Hall algebra A�;…QJor

much more manageable. We prove this conjecture in the case of a general
quiver Q, for any sufficiently large T .

Theorem 10.2. Let Q be a finite quiver, and let d 2 NQ0 be a dimension vector. Let
� W zQ1 ! Zs be a zW -invariant grading such that the grading of Example 9.3 is a specialisation
of � . The HT�GLd-module HBM

T�GLd
.��1Q;d.0/;Q/ is torsion-free, and the natural map F to the

shuffle algebra Atw
�; zQ is an inclusion of algebras.

Proof. The passage from torsion-freeness to all of the other statements of the theorem
is as explained in [42], so we focus on torsion-freeness. The proof for this is a modification
of [43, Proposition 4.6]; the original statement of this result in [43], and its proof, require
modification, which we indicate.
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Firstly, by assumption, T contains two one-dimensional tori C�1 and C�2 , where C�1 acts
on arrows a; a�; !i , for a 2 Q1 and i 2 Q0 with weights 1;�1; 0, respectively, and C�2 acts
with weights 1; 0;�1, respectively. Let ki D HC�

i
, let Ii � HT�GLd be the ideal of functions

vanishing on Lie.C�i / � Lie.T � GLd/, and let Ki be the fraction field of ki . Considering
X.Q/d as a subvariety of ��1Q;d.0/ via the extension by zero map, X.Q/d contains the fixed
locus of the C�1 -action on ��1Q;d.0/, and so the pushforward

.HT�GLd/I1 Š HBM
T�GLd

.X.Q/d;Q/I1 ! HBM
T�GLd

.��1Q;d.0/;Q/I1

is an isomorphism by [15, Theorem 6.2]. It is thus enough to prove that HBM
T�GLd

.��1Q;d.0/;Q/ is
S1-torsion-free for S1 D HT�GLd nI1. The k2-module HBM

T�GLd
.��1Q;d.0/;Q/ is free by Theo-

rem 9.5, and so the morphism

(10.1) HBM
T�GLd

.��1Q;d.0/;Q/! HBM
T�GLd

.��1Q;d.0/;Q/˝k2 K2

is an embedding. Therefore, it is sufficient to show that the right-hand side of (10.1) has no
S1-torsion. By two applications of dimensional reduction (see Theorem 3.4, and the discussion
before the proof of Lemma 4.3), we have the k2-linear isomorphisms (leaving out Tate twists/
shifts in cohomological degree)

HBM
T�GLd

.��1Q;d.0/;Q/ Š HBM.�M. zQ/d; �Tr. zW /Q/ Š HBM
T�GLd

.Cd;Q/;

where Cd � X.Q
C/d is the subspace ofQC-modules such that the linear maps assigned to the

loops !i define a CQ-module endomorphism. We define Nd D Cd \X.Q
C/!-nilp

d . Since the
torus C�2 acts by scaling the loops !i , the natural map

HBM
T�GLd

.Nd;Q/˝k2 K2 ! HBM
T�GLd

.Cd;Q/˝k2 K2

is an isomorphism. So it is sufficient to show that HBM
T�GLd

.Nd;Q/ has no S1-torsion.
Set QŒt1� D HC�1

andA D HC�2�GLd , so there is a natural isomorphism HT�GLd Š AŒt1�.
Elements of S1 are written p.t1/C

P
i�0 ai t

i
1, where ai 2 A and 0 ¤ p.t1/ 2 QŒt1�. We con-

sider the following stratification of the space Nd by Jordan types: if � D .�.i//i2Q0 is a tuple
of partitions, with each �.i/ a partition of di , the stratum N� � Nd is the space for which the
Jordan normal form of the operator assigned to !i has blocks with sizes given by �.i/. The
space N� can be T � GLd-equivariantly contracted onto the subspace N 0� for which all arrows
a 2 Q1 act via the zero matrix, and the T � GLd-action is transitive on this subspace. So if
� 2 N 0� has stabiliser group H , which we may decompose H D C�1 �H

0 since C�1 acts triv-
ially, there are isomorphisms HBM

T .N� ;Q/ Š HH .pt;Q/ Š HH 0.pt;Q/Œt1�. This module has
no S1-torsion, and the claim that HBM.Nd;Q/ has no S1-torsion follows from the long exact
sequences in compactly supported cohomology induced by the stratification of Nd.

The same proof works with ��1Q;d.0/ replaced by ��1Q;d.0/
] for ] any of SN ;SSN ;N .

Remark 10.3. It is possible for the strata N� to have S2-torsion, so we cannot substitute
I2 for I1 in the above proof, and merely insist on the inclusion C�2 � T . Indeed, we show
in Section 10.4 that this (stronger) version of the statement of Theorem 10.2 with (weaker)
assumptions is false.



150 Davison, Integrality conjecture and preprojective stacks

10.3. Noncommutativity. Theorem 10.2 enables explicit calculations inside A�;…Q .
Furthermore, although (as we have seen in Remark 10.3, and will see further, with Proposi-
tion 10.7) it is important that we work equivariantly with respect to a sufficiently large torus T
in Theorem 10.2, we will demonstrate in this section how Theorem 10.2 enables us to perform
concrete calculations for trivial T , i.e. in the undeformed preprojective CoHA A…Q .

We use explicit calculations in the algebra A�;eQJor to show that AeQJor; zW Š A…QJor
is

noncommutative6). Recall that, by Theorem 3.6, for an arbitrary (symmetric) quiver Q with
potential W , there is a PBW isomorphism

Sym.BPSQ;W ˝ H.BC�;Q/vir/ Š AQ;W :

By Theorem 5.1, there is an isomorphism of cohomologically graded vector spaces

BPSeQJor; zW ;d Š QŒ3�

so that, for each d � 1 and e � 0, there is an element ˛.e/
d

, of cohomological degree 2e � 2,
well defined up to scalar, defined to be the image of 1˝ ue under the embedding

BPSeQJor; zW ;d ˝ H.BC�;Q/vir ,! AeQJor; zW :

Lemma 10.4. The commutator Œ˛.1/1 ; ˛
.0/
1 � is nonzero, so A…QJor

is noncommutative.

Proof. SetQ D QJor. Pick � as in Example 9.3, with associated torus T Š C�1 �C�2 in
the notation of the proof of Theorem 10.2. By Theorem 10.2, the morphism �WA�;…Q ! A�; zQ

is an inclusion of algebras. Write A0 � A�; zQ for the image of this inclusion. Then, by Corol-
lary 9.6, there is an isomorphism of algebras A…Q Š A0=.t1; t2/ �A

0. We write

A�;…Q;1 Š A…Q;1 ˝ HT

and define z̨.e/1 D ˛
.e/
1 ˝ 1. Then �.z̨.e/1 / D xe1 2 QŒx1; t1; t2�.

First we calculate the commutator in A�; zQ,

Œx1; x
0
1 � D .x1 � x2/.x2 � x1 C t1/.x2 � x1 C t2/.x2 � x1 � t1 � t2/=.x2 � x1/

C .x2 � x1/.x1 � x2 C t1/.x1 � x2 C t2/.x1 � x2 � t1 � t2/=.x1 � x2/

D �2t1t2.t1 C t2/:

This element has cohomological degree �2. We claim that the unique nonzero element of
cohomological degree less than�2 in �.A0/ is x01 ? x

0
1 (up to scalar). Firstly, x01 ? x

0
1 has coho-

mological degree �4 since x01 has cohomological degree �2. Secondly, it is indeed nonzero, as
we calculate below. Finally, it follows from e.g. Corollary 5.3 that the stack C2 Š Cohd .A

2/

of pairs of commuting 2 � 2matrices has a unique irreducible component of (complex) dimen-
sion greater than 1, and that component has dimension 2. Equivalently, A�;…Q is concentrated
in cohomological degrees at least �4, and in degree �4 is one-dimensional. Now we calculate

x01 ? x
0
1 D .x2 � x1 C t1/.x2 � x1 C t2/.x2 � x1 � t1 � t2/=.x2 � x1/

C .x1 � x2 C t1/.x1 � x2 C t2/.x1 � x2 � t1 � t2/=.x1 � x2/

D 2.x1 � x2/
2
� 2.t21 C t1t2 C t

2
2 /:

6) Equivalently, since the entire algebra lives in even cohomological degrees, we show that it is not
supercommutative.
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Thus
Œx1; x

0
1 � … .t1; t2/ � .x

0
1 ? x

0
1/ and Œx1; x

0
1 � … .t1; t2/ �A

0:

It follows that Œ˛.0/1 ; ˛
.1/
1 � ¤ 0.

Corollary 10.5. There exists a nonzero scalar � 2 Q such that Œ˛.1/1 ; ˛
.0/
1 � D �˛

.0/
2 .

Proof. In [10], it is shown that, for a general (symmetric) QP .Q0; W 0/, the CoHA
A zQ; zW is a filtered algebra, for the perverse filtration defined by setting

P nAQ0;W 0 D H.M.Q0/; ��nJH���Tr.W 0/ICM.Q0/.Q//;

and the associated graded algebra is supercommutative. In particular, Œ˛.1/1 ; ˛
.0/
1 � 2 P 3A zQ; zW

since ˛.i/
d
2 P 2iC1A zQ; zW ; here we have used commutativity of the associated graded object,

along with the calculation 3C 1 � 1 D 3.
Via (3.1), for general (symmetric) quiverQ0 with potentialW 0, P 3AQ0;W 0 is spanned by

.BPSQ0;W 0 Œ�1�/ ? .BPSQ0;W 0 Œ�1�/; BPSQ0;W 0 Œ�1� and BPSQ0;W 0 Œ�3�:

So P 3AeQJor; zW ;2 is spanned by ˛.0/1 ? ˛
.0/
1 , ˛.0/2 , ˛.1/2 , which have cohomological degrees

�4, �2, 0, respectively. The cohomological degree of Œ˛.1/1 ; ˛
.0/
1 � is �2. By Lemma 10.4,

Œ˛
.1/
1 ; ˛

.0/
1 � ¤ 0, and the result follows.

A version of the following result is to be found in [24]. Using ideas from the proof of
Corollary 10.5, we give an alternative proof.

Proposition 10.6. The Q-vector space yg � A…QJor
spanned by the elements ˛.n/i is

closed under the commutator Lie bracket, and there is an isomorphism U.yg/ Š A…QJor
.

Proof. SetQ D QJor. The final statement follows from the first statement and the PBW
theorem (Theorem D) for A…Q . For the first statement, we consider the perverse filtration from
the proof of Corollary 10.5. Then P lA zQ; zW has a basis given by monomials ˛ D ˛.n1/i1

� � �˛
.ns/
is

with
Ps
aD1.1C 2na/ � l . On the other hand, the cohomological degree of such an element is

given by j˛j D
Ps
aD1.2na � 2/. Set ˇ D Œ˛.e/i ; ˛

.f /
j �. As in the proof of Corollary 10.5, we

have
ˇ 2 P 2eC2fC1A…Q ; jˇj D 2e C 2f � 4:

So ˇ can be written as a linear combination of elements ˛ with

jˇj D j˛j and
sX

aD1

.1C 2na/ � 2e C 2f C 1:

But then
Ps
aD1.2na � 2/ D 2e C 2f � 4 since j˛j D jˇj, and so 3s � 5. So we find s D 1,

as required.

The same proof(s) demonstrate that ASN
…QJor

is a universal enveloping algebra for some
ygSN satisfying ygSN Š ygŒ�2� (as graded vector spaces).
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10.4. Torsion. We show that torsion-freeness of A�;…Q can fail if we relax the condi-
tions on � in Theorem 10.2.

Proposition 10.7. Let T D C� be any one of the tori C�1 , C�2 , C�3 acting with weights
.1;�1; 0/ or .1; 0;�1/ or .0; 1;�1/ on the three arrows a; a�; ! of eQJor. Let ] be one of
;;N ;SN ;SSN , chosen so that the pushforward morphism ˆ1WA

]
�;…QJor ;1

! A�;…QJor ;1
is

injective. Then the HT�GL2.C/-module

A]
�;…QJor ;2

D HBM
T�GL2.C/

.��1QJor;2
.0/];Q/

is not torsion-free. The natural map ˆWA]
�;…QJor

! A�;eQJor from the cohomological Hall alge-
bra to the shuffle algebra is not injective.

For ] D ;;N ;SN ;SSN , we have that M.eQJor/
]
1 D Ai for i D 3; 1; 2; 2, respectively,

and the condition on ˆ1 is just that the equivariant Euler class E of the normal bundle of the
inclusion Ai ,! A3 DM.eQJor/1 is nonzero.

Proof of Proposition 10.7. Set Q D QJor. Torsion-freeness is equivalent to the state-
ment that the morphism

HBM
T�GL2.C/

.��1Q;2.0/
];Q/! HBM

T�GL2.C/
.X.Q/2;Q/

is injective. We start with the ] D ; case. The commutator map

Œ � ; � �WA�;…Q;1 ˝A�;…Q;1 ! A�;…Q;2

is nonzero since, by Lemma 10.4, it is nonzero after tensoring with .HT =H�2T /. Writing

A�;…Q;1 Š H.A3;Q/˝ H.BC�;Q/˝ H.BT;Q/ Š Q˝QŒu�˝QŒt �;

we have seen that Œ1; u� ¤ 0. For T D C�
l

with l D 1; 2; 3, the shuffle algebra A�; zQ is com-
mutative; e.g. for the C�2 case, from the equalities Ea�.z/ D z and Ea.z/ D �E!.�z/ for a
the unique arrow in Q, it follows that A�; zQ is commutative. So ˆ2.Im.Œ � ; � �// D 0 and ˆ2 is
not injective, proving both parts of the proposition.

Now let ] ¤ ; and E ¤ 0. Then the image of the algebra homomorphism

A]
�;…QJor

! A�;…QJor
;

restricted to A
]
�;…QJor ;1

, contains the elements E;Eu. Then (in A�;…QJor ;2
) we have

ŒE;Eu� D E2Œ1; u� ¤ 0

since A�;…QJor ;2
is free as a QŒt �-module. In particular, Œ � ; � �WA]

�;…Q;1 ˝A
]
�;…Q;1 ! A

]
�;…Q;2

is nonzero, and the proof continues as in the ] D ; case.
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