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Proof of the Michael–Simon–Sobolev
inequality using optimal transport
By Simon Brendle at New York and Michael Eichmair at Vienna

Abstract. We give an alternative proof of the Michael–Simon–Sobolev inequality using
techniques from optimal transport. The inequality is sharp for submanifolds of codimension 2.

1. Introduction

In this paper, we use techniques from optimal transport to prove the following result.

Theorem 1. Let n � 2 and m � 1 be integers. Let � W Œ0;1/! .0;1/ be a continu-
ous function with

R
NBnCm �.j�j

2/ d� D 1, where NBmCm D ¹� 2 RnCm W j�j � 1º denotes the
closed unit ball in RnCm. Let

(1.1) ˛ D sup
z2Rn

Z
¹y2Rm W jzj2Cjyj2�1º

�.jzj2 C jyj2/ dy:

Let † be a compact n-dimensional submanifold of RnCm, possibly with boundary 𝜕†. Then

(1.2) j𝜕†j C
Z
†

jH j � n˛�
1
n j†j

n�1
n ;

where H denotes the mean curvature vector of †.

The proof of Theorem 1 is based on an optimal mass transport problem between the
submanifold † and the unit ball in RnCm, the latter equipped with a rotationally invariant
measure. A notable feature is that this transport problem is between spaces of different dimen-
sions.

In Theorem 1, we are free to choose the density �. For m � 2, it is convenient to choose
the density � so that nearly all of the mass of the measure �.j�j2/ d� on NBnCm is concentrated
near the boundary. This recovers the main result of [2].
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Corollary 2. Let n � 2 and m � 2 be integers. Let † be a compact n-dimensional
submanifold of RnCm, possibly with boundary 𝜕†. Then

(1.3) j𝜕†j C
Z
†

jH j � n

�
.nCm/jBnCmj

mjBmj

� 1
n

j†j
n�1

n ;

where H denotes the mean curvature vector of †.

Note that the constant in (1.3) is sharp for m D 2.
Earlier proofs of the non-sharp version of the inequality were obtained by Allard [1],

Michael and Simon [8], and Castillon [4]. In particular, the Michael–Simon–Sobolev inequality
implies an isoperimetric inequality for minimal surfaces. We refer to [3] for a recent survey on
geometric inequalities for minimal surfaces.

Finally, we refer to [5–7] for some of the earlier work on optimal transport and its
applications to geometric inequalities.

2. Proof of Theorem 1

Let † be a compact n-dimensional submanifold of RnCm, possibly with boundary 𝜕†.
We denote by g the Riemannian metric on † and by d. � ; � / the Riemannian distance. For
each point x 2 †, we denote by II.x/ W Tx† � Tx†! T?x † the second fundamental form
of †. As usual, the mean curvature vector H.x/ 2 T?x † is defined as the trace of the second
fundamental form.

We first consider the special case when j†j D 1. Let � denote the Riemannian measure
on †. We define a Borel measure � on the unit ball NBnCm by

�.G/ D

Z
G

�.j�j2/ d�

for every Borel set G � NBnCm. With this understood, � is a probability measure on † and �
is a probability measure on NBnCm. Let J denote the set of all pairs .u; h/ such that u is an
integrable function on †, h is an integrable function on NBnCm, and

(2.1) u.x/ � h.�/ � hx; �i � 0

for all x 2 † and all � 2 NBnCm. By [11, Theorem 5.10 (iii)], we can find a pair .u; h/ 2 J

which maximizes the functional

(2.2)
Z
NBnCm

h d� �

Z
†

ud�:

In fact, the result in [11] shows that the maximizer .u; h/ may be chosen in such a way that h
is Lipschitz continuous and

(2.3) u.x/ D sup
�2 NBnCm

.h.�/C hx; �i/

for all x 2 †.
Note that our notation differs from the one in [11]. In our setting, the space X is the

unit ball NBnCm equipped with the measure �; the space Y is the submanifold † equipped
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with the Riemannian measure �; the cost function is given by c.x; �/ D �hx; �i for x 2 †
and � 2 NBnCm; the function  in [11] corresponds to the function �h; and the function �
in [11] corresponds to the function �u in this paper. The fact that  can be chosen to be a
c-convex function implies that h is Lipschitz continuous (see [11, Definition 5.2]). The fact
that � can be taken as the c-transform of  corresponds to the statement (2.3) above (see
[11, Definition 5.2]).

It follows from (2.3) that u is the restriction to† of a convex function on RnCm which is
Lipschitz continuous with Lipschitz constant at most 1. In particular, u is Lipschitz continuous
with Lipschitz constant at most 1. Moreover, u is semiconvex with a quadratic modulus of
semiconvexity (see [11, Definition 10.10 and Example 10.11]).

Lemma 3. Let E be a compact subset of †. Moreover, suppose that G is a compact
subset of NBnCm such that u.x/ � h.�/ � hx; �i > 0 for all x 2 E and all � 2 NBnCm nG. Then
�.E/ � �.G/.

Proof. For every positive integer j , we define a compact set Gj � NBnCm by

Gj D ¹� 2 NB
nCm

W there exists x 2 E with u.x/ � h.�/ � hx; �i � j�1º:

We define an integrable function uj on † by uj D u � j�1 � 1E . Moreover, we define an
integrable function hj on NBnCm by hj D h � j�1 � 1Gj

. Using (2.1), it is straightforward to
verify that

uj .x/ � hj .�/ � hx; �i � 0

for all x 2 † and all � 2 NBnCm. Therefore, .uj ; hj / 2 J for each j . Since the pair .u; h/
maximizes the functional (2.2), we obtainZ

NBnCm

hj d� �

Z
†

uj d� �

Z
NBnCm

h d� �

Z
†

ud�

for each j . This implies �.E/ � �.Gj / for each j .
Finally, we pass to the limit as j !1. Note that GjC1 � Gj for each j . Since E is

compact and u is continuous, we obtain

1\
jD1

Gj � ¹� 2 NB
nCm

W there exists x 2 E with u.x/ � h.�/ � hx; �i � 0º � G:

Putting these facts together, we conclude that

�.E/ � lim
j!1

�.Gj / � �.G/:

This completes the proof of Lemma 3.

Let us fix a large positive constant K such that jhx � Nx; yij � K d.x; Nx/2 for all points
x; Nx 2 † and all y 2 T?

Nx † with jyj � 1. For each point Nx 2 †, we define

𝜕u. Nx/ D ¹z 2 T Nx† W u.x/ � u. Nx/ � hx � Nx; zi � �K d.x; Nx/2 for all x 2 †º:

We refer to 𝜕u. Nx/ as the subdifferential of u at the point Nx.
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Lemma 4. Fix a point Nx 2 † and let � 2 NBnCm. Let � tan denote the orthogonal projec-
tion of � to the tangent space T Nx†. If u. Nx/ � h.�/ � h Nx; �i D 0, then � tan 2 𝜕u. Nx/.

Proof. By assumption,

u. Nx/ � h.�/ � h Nx; �i D 0:

Since
u.x/ � h.�/ � hx; �i � 0

for all x 2 †, it follows that

(2.4) u.x/ � u. Nx/ � hx � Nx; �i � 0

for all x 2 †. Using the fact that � � � tan 2 T?
Nx † and j� � � tanj � j�j � 1, we obtain

(2.5) hx � Nx; � � � tan
i � �K d.x; Nx/2

by our choice of K. Combining (2.4) and (2.5), we conclude that

(2.6) u.x/ � u. Nx/ � hx � Nx; � tan
i � �K d.x; Nx/2:

Therefore, � tan 2 𝜕u. Nx/. This completes the proof of Lemma 4.

By Rademacher’s theorem, u is differentiable almost everywhere. At each point where u
is differentiable, the norm of its gradient is at most 1. By Alexandrov’s theorem (see [11, Theo-
rems 14.1 and 14.25]), u admits a Hessian in the sense of Alexandrov at almost every point.

In the following, we fix a point Nx 2 † n 𝜕† with the property that u admits a Hessian in
the sense of Alexandrov at Nx. Let yu be a smooth function on † such that

ju.x/ � yu.x/j � o.d.x; Nx/2/

as x ! Nx.
Let us fix a small positive real number Nr so that

p
n
2
Nr < d. Nx; 𝜕†/ and

p
n
2
Nr is smaller

than the injectivity radius at Nx.
For each r 2 .0; Nr/, we denote by y!.r/ the smallest nonnegative real number ! with the

property that jz � r†yu.x/j � ! whenever x 2 †, z 2 𝜕u.x/, and d.x; Nx/ �
p
n
2
r .

Lemma 5. The function y! W .0; Nr/! Œ0;1/ is monotone increasing and

lim
r!0

y!.r/

r
D 0:

Proof. The first statement follows immediately from the definition. The second property
follows from the basic properties of the Alexandrov Hessian; see [11, Theorem 14.25 (i’)]. This
completes the proof of Lemma 5.

For each r 2 .0; Nr/, we denote by yı.r/ the smallest nonnegative real number ı with the
property that

D2†yu.x/ � hII.x/; �i � �ıg

whenever x 2 †, � 2 NBnCm, u.x/ � h.�/ � hx; �i D 0, and d.x; Nx/ �
p
n
2
r .
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Lemma 6. The function yı W .0; Nr/! Œ0;1/ is monotone increasing and

lim
r!0

yı.r/ D 0:

Proof. The first statement follows immediately from the definition. To prove the second
statement, we argue by contradiction. Suppose that lim supr!0 yı.r/ > 0. Then we can find
a positive real number ı0, a sequence of points xj 2 †, and a sequence �j 2 NBnCm with the
following properties:
� xj ! Nx,
� u.xj / � h.�j / � hxj ; �j i D 0 for each j ,
� for each j , the first eigenvalue of D2†yu.xj / � hII.xj /; �j i is less than �ı0.

After passing to a subsequence, we may assume that the sequence �j converges to N� 2 NBnCm.
Since yu is a smooth function, it follows that the first eigenvalue of D2†yu. Nx/ � hII. Nx/;

N�i is
strictly negative. Moreover,

u. Nx/ � h. N�/ � h Nx; N�i D 0:

Since
u.x/ � h. N�/ � hx; N�i � 0

for all x 2 †, it follows that

u.x/ � u. Nx/ � hx � Nx; N�i � 0

for all x 2 †. Since ju.x/ � yu.x/j � o.d.x; Nx/2/ as x ! Nx, we conclude that

yu.x/ � yu. Nx/ � hx � Nx; N�i � �o.d.x; Nx//2

as x ! Nx. This implies D2†yu. Nx/ � hII. Nx/;
N�i � 0. This is a contradiction. This completes the

proof of Lemma 6.

Let ¹e1; : : : ; enº be an orthonormal basis of T Nx†. For each r 2 .0; Nr/, we consider the
cube

Wr D

²
z 2 T Nx† W max

1�i�n
jhz; ei ij �

1

2
r

³
:

We denote by

Er D exp Nx.Wr/ �
²
x 2 † W d.x; Nx/ �

p
n

2
r

³
the image of the cube Wr under the exponential map. We further define

Ar D ¹.x; y/ W x 2 Er ; y 2 T
?
x †; jr

†
yu.x/j2 C jyj2 � .1C y!.r//2;

D2†yu.x/ � hII.x/; yi � �yı.r/gº:

Clearly, Er is a compact subset of † and Ar is a compact subset of the normal bundle of †.
We define a smooth map ˆ W T?†! RnCm by

ˆ.x; y/ D r†yu.x/C y

for x 2 † and y 2 T?x †. Moreover, we denote by

Gr D ¹� 2 NB
nCm

W there exists .x; y/ 2 Ar with j� �ˆ.x; y/j � y!.r/º

the intersection of NBnCm with the tubular neighborhood of ˆ.Ar/ of radius y!.r/. Clearly,
Gr is a compact subset of NBnCm.
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Lemma 7. Let r 2 .0; Nr/. Then

u.x/ � h.�/ � hx; �i > 0

for all x 2 Er and all � 2 NBnCm nGr .

Proof. We argue by contradiction. Suppose that there is a point x 2 Er and a point
� 2 NBnCm nGr such that u.x/ � h.�/ � hx; �i D 0. Let � tan denote the orthogonal projection
of � to the tangent space Tx†. By Lemma 4, � tan 2 𝜕u.x/. Since d.x; Nx/ �

p
n
2
r , it follows

that
j� tan
� r

†
yu.x/j � y!.r/

by definition of y!.r/. Let y D � � � tan 2 T?x †. Then

j� �ˆ.x; y/j D j� � r†yu.x/ � yj D j� tan
� r

†
yu.x/j � y!.r/:

Using the triangle inequality, we obtainq
jr†yu.x/j2 C jyj2 D jˆ.x; y/j � j�j C y!.r/ � 1C y!.r/:

Finally, since d.x; Nx/ �
p
n
2
r , it follows that

D2†yu.x/ � hII.x/; yi D D
2
†yu.x/ � hII.x/; �i � �yı.r/ g

by the definition of yı.r/. To summarize, we showed that .x; y/ 2 Ar and j� �ˆ.x; y/j � y!.r/.
Consequently, � 2 Gr , contrary to our assumption. This completes the proof of Lemma 7.

Lemma 8. Let r 2 .0; Nr/. Then �.Er/ � �.Gr/.

Proof. This follows by combining Lemma 3 and Lemma 7.

Proposition 9. Fix a point Nx 2 † n 𝜕† with the property that u admits a Hessian in the
sense of Alexandrov at Nx. Let yu be a smooth function on † such that

ju.x/ � yu.x/j � o.d.x; Nx/2/ as x ! Nx.

Let
S D ¹y 2 T?Nx † W jr

†
yu. Nx/j2 C jyj2 � 1; D2†yu. Nx/ � hII. Nx/; yi � 0º:

Then
1 �

Z
S

det.D2†yu. Nx/ � hII. Nx/; yi/ �.jr
†
yu. Nx/j2 C jyj2/ dy:

Proof. In the following, we fix an arbitrary positive integer j . We define

Sj D ¹y 2 T
?
Nx † W jr

†
yu. Nx/j2 C jyj2 � 1C j�1; D2†yu. Nx/ � hII. Nx/; yi � �j

�1gº:

For each r 2 .0; Nr/, we decompose the normal space T?
Nx † into compact cubes of size r . Let Qr

denote the collection of all the cubes in this decomposition. Moreover, we denote by Qr;j � Qr

the set of all cubes in Qr that are contained in the set Sj . We define a smooth map

‰ W Wr � T
?
Nx †! RnCm; .z; y/ 7! ˆ.exp Nx.z/; Pzy/;
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where
Pz W T

?
Nx †! T?exp Nx.z/

†

denotes the parallel transport along the geodesic t 7! exp Nx.tz/ (see [9, pp. 114–115]). Since
limr!0 y!.r/ D 0 and limr!0 yı.r/ D 0, we obtain

ˆ.Ar/ �
[

Q2Qr;j

‰.Wr �Q/;

provided that r is sufficiently small (depending on j ). This implies

Gr D ¹� 2 NB
nCm

W there exists .x; y/ 2 Ar with j� �ˆ.x; y/j � y!.r/º

�

[
Q2Qr;j

¹� 2 NBnCm W there exists .z; y/ 2 Wr �Q with j� �‰.z; y/j � y!.r/º;

provided that r is sufficiently small (depending on j ).
We next observe that

jdetD‰.0; y/j D jdetDˆ. Nx; y/j D jdet.D2†yu. Nx/ � hII. Nx/; yi/j

for all y 2 T?
Nx †. Hence, if r is sufficiently small (depending on j ), then we obtain

�
�
¹� 2 NBnCm W there exists .z; y/ 2 Wr �Q with j� �‰.z; y/j � y!.r/º

�
(2.7)

� rn
Z
Q

�
jdet.D2†yu. Nx/ � hII. Nx/; yi/j �.jr

†
yu. Nx/j2 C jyj2/C j�1

�
dy

for each cube Q 2 Qr;j . To justify (2.7), we argue as in the proof of the classical change-of-
variables formula (see [10, pp. 150–156]). We also use the fact that limr!0

y!.r/
r
D 0.

Summation over all cubes Q 2 Qr;j gives

�.Gr/ �
X

Q2Qr;j

�
�
¹� 2 NBnCm W there exists .z; y/ 2 Wr �Q with j� �‰.z; y/j � y!.r/º

�
� rn

Z
Sj

�
jdet.D2†yu. Nx/ � hII. Nx/; yi/j �.jr

†
yu. Nx/j2 C jyj2/C j�1

�
dy;

provided that r is sufficiently small (depending on j ).
On the other hand, Lemma 8 implies that �.Er/ � �.Gr/ for each r 2 .0; Nr/. Thus, we

conclude that

1 D lim sup
r!0

r�n �.Er/

� lim sup
r!0

r�n �.Gr/

�

Z
Sj

�
jdet.D2†yu. Nx/ � hII. Nx/; yi/j �.jr

†
yu. Nx/j2 C jyj2/C j�1

�
dy:

Finally, we pass to the limit as j !1. Note that SjC1 � Sj for each j . Moreover, we haveT1
jD1 Sj D S . This gives

1 �

Z
S

jdet.D2†yu. Nx/ � hII. Nx/; yi/j �.jr
†
yu. Nx/j2 C jyj2/ dy:

Since D2†yu. Nx/ � hII. Nx/; yi � 0 for all y 2 S , the assertion follows. This completes the proof
of Proposition 9.
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Corollary 10. Fix a point Nx 2 † n 𝜕† with the property that u admits a Hessian in the
sense of Alexandrov at Nx. Let yu be a smooth function on † such that

ju.x/ � yu.x/j � o.d.x; Nx/2/ as x ! Nx.

Then
n˛�

1
n � �†yu. Nx/C jH. Nx/j;

where ˛ is defined by (1.1).

Proof. We argue by contradiction. If the assertion is false, then there exists a real number
y̨ > ˛ such that

�†yu. Nx/C jH. Nx/j � n y̨
� 1

n :

Let
S D ¹y 2 T?Nx † W jr

†
yu. Nx/j2 C jyj2 � 1; D2†yu. Nx/ � hII. Nx/; yi � 0º:

The arithmetic-geometric mean inequality gives

0 � det.D2†yu. Nx/ � hII. Nx/; yi/ �
�
�†yu. Nx/ � hH. Nx/; yi

n

�n
� y̨
�1

for all y 2 S . Using Proposition 9, we obtain

1 �

Z
S

det.D2†yu. Nx/ � hII. Nx/; yi/ �.jr
†
yu. Nx/j2 C jyj2/ dy

�

Z
S

y̨
�1 �.jr†yu. Nx/j2 C jyj2/ dy

� y̨
�1 ˛:

In the last step, we have used the definition of ˛; see (1.1). Thus y̨ � ˛, contrary to our
assumption. This completes the proof of Corollary 10.

After these preparations, we may now complete the proof of Theorem 1. Corollary 10
implies that

(2.8) n˛�
1
n � �†uC jH j

almost everywhere, where �†u denotes the trace of the Alexandrov Hessian of u. The distri-
butional Laplacian of u may be decomposed into its singular and absolutely continuous part.
By Alexandrov’s theorem (see [11, Theorem 14.1]), the density of the absolutely continuous
part is given by the trace of the Alexandrov Hessian of u. The singular part of the distributional
Laplacian of u is nonnegative since u is semiconvex. This implies

(2.9)
Z
†

��†u � �

Z
†

hr
†�;r†ui

for every nonnegative smooth function � W †! R that vanishes in a neighborhood of 𝜕†.
Combining (2.8) and (2.9), we obtain

n˛�
1
n

Z
†

� �

Z
†

��†uC

Z
†

� jH j

� �

Z
†

hr
†�;r†ui C

Z
†

� jH j

�

Z
†

jr
†�j C

Z
†

� jH j
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for every nonnegative smooth function � W †! R that vanishes in a neighborhood of 𝜕†. By
a straightforward limiting procedure, this implies

n˛�
1
n j†j � j𝜕†j C

Z
†

jH j:

This completes the proof of Theorem 1 in the special case when j†j D 1. The general case
follows by scaling.

3. Proof of Corollary 2

In this final section, we explain how Corollary 2 follows from Theorem 1. Assume that
n � 2 andm � 2. We can find a find a sequence of continuous functions �j W Œ0;1/! .0;1/

such that
R
NBnCm �j .j�j

2/ d� D 1,

sup
Œ0;1�j�1�

�j � o.1/;

and
sup

Œ1�j�1;1�

�j �
2j

.nCm/ jBnCmj
C o.j /

as j !1. For each point z 2 Rn, we obtainZ
¹y2Rm W jzj2Cjyj2�1º

�j .jzj
2
C jyj2/ dy

� jBmj.1 � jzj2 � j�1/
m
2

C
sup

Œ0;1�j�1�

�j

C jBmj
�
.1 � jzj2/

m
2

C
� .1 � jzj2 � j�1/

m
2

C

�
sup

Œ1�j�1;1�

�j

� jBmj sup
Œ0;1�j�1�

�j C
m

2
jBmjj�1 sup

Œ1�j�1;1�

�j :

This implies

sup
z2Rn

Z
¹y2RmW jzj2Cjyj2�1º

�j .jzj
2
C jyj2/ dy �

m jBmj

.nCm/ jBnCmj
C o.1/

as j !1. Therefore, the assertion follows from Theorem 1.
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