Abstract
Cluster varieties come in pairs: for any
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-2302116
Award Identifier / Grant number: DMS-2302117
Funding statement: The research of Hülya Argüz was partially supported by the NSF grant DMS-2302116. The research of Pierrick Bousseau was partially supported by the NSF grant DMS-2302117.
Acknowledgements
We thank Mark Gross and Tom Coates for many useful discussions related to the extensions of Gross–Siebert mirror families.
References
[1] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne–Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. 10.4310/AJM.2014.v18.n3.a5Search in Google Scholar
[2] D. Abramovich, Q. Chen, M. Gross and B. Siebert, Punctured logarithmic maps, preprint (2020), https://arxiv.org/abs/2009.07720. Search in Google Scholar
[3] H. Argüz, Equations of mirrors to log Calabi–Yau pairs via the heart of canonical wall structures, Math. Proc. Cambridge Philos. Soc. (2023), 10.1017/S030500412300021X. 10.1017/S030500412300021XSearch in Google Scholar
[4] H. Argüz and M. Gross, The higher-dimensional tropical vertex, Geom. Topol. 26 (2022), no. 5, 2135–2235. 10.2140/gt.2022.26.2135Search in Google Scholar
[5] S. Bardwell-Evans, M.-W. M. Cheung, H. Hong and Y.-S. Lin, Scattering diagrams from holomorphic discs in log Calabi–Yau surfaces, preprint (2021), https://arxiv.org/abs/2110.15234. Search in Google Scholar
[6] L. Bossinger, B. Frías-Medina, T. Magee and A. Nájera Chávez, Toric degenerations of cluster varieties and cluster duality, Compos. Math. 156 (2020), no. 10, 2149–2206. 10.1112/S0010437X2000740XSearch in Google Scholar
[7] B. Davison and T. Mandel, Strong positivity for quantum theta bases of quantum cluster algebras, Invent. Math. 226 (2021), no. 3, 725–843. 10.1007/s00222-021-01061-1Search in Google Scholar
[8] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. 10.1007/s10240-006-0039-4Search in Google Scholar
[9] V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 6, 865–930. 10.24033/asens.2112Search in Google Scholar
[10] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. 10.1090/S0894-0347-01-00385-XSearch in Google Scholar
[11] B. Gammage and I. Le, Mirror symmetry for truncated cluster varieties, SIGMA Symmetry Integrability Geom. Methods Appl. 18 (2022), Paper No. 055. 10.3842/SIGMA.2022.055Search in Google Scholar
[12] A. Goncharov and L. Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202 (2015), no. 2, 487–633. 10.1007/s00222-014-0568-2Search in Google Scholar
[13] A. Goncharov and L. Shen, Quantum geometry of moduli spaces of local systems and representation theory, preprint (2019), https://arxiv.org/abs/1904.10491. Search in Google Scholar
[14] M. Gross, P. Hacking and S. Keel, Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), no. 2, 137–175. 10.14231/AG-2015-007Search in Google Scholar
[15] M. Gross, P. Hacking and S. Keel, Mirror symmetry for log Calabi–Yau surfaces I, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65–168. 10.1007/s10240-015-0073-1Search in Google Scholar
[16] M. Gross, P. Hacking, S. Keel and M. Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497–608. 10.1090/jams/890Search in Google Scholar
[17] M. Gross, P. Hacking and B. Siebert, Theta functions on varieties with effective anti-canonical class, Mem. Amer. Math. Soc. 278 (2022), no. 1367, 1–103. 10.1090/memo/1367Search in Google Scholar
[18] M. Gross and B. Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. 10.4007/annals.2011.174.3.1Search in Google Scholar
[19] M. Gross and B. Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. 10.1090/S0894-0347-2012-00757-7Search in Google Scholar
[20] M. Gross and B. Siebert, Intrinsic mirror symmetry, preprint (2019), https://arxiv.org/abs/1909.07649. Search in Google Scholar
[21] M. Gross and B. Siebert, The canonical wall structure and intrinsic mirror symmetry, Invent. Math. 229 (2022), no. 3, 1101–1202. 10.1007/s00222-022-01126-9Search in Google Scholar
[22] P. Hacking and S. Keel, Mirror symmetry and cluster algebras, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Scientific, Hackensack (2018), 671–697. 10.1142/9789813272880_0073Search in Google Scholar
[23] P. Hacking, S. Keel and T. Y. Yu, Secondary fan, theta functions and moduli of Calabi–Yau pairs, preprint (2020), https://arxiv.org/abs/2008.02299. Search in Google Scholar
[24] S. Johnston, Comparison of non-archimedean and logarithmic mirror constructions via the Frobenius structure theorem, preprint (2022), https://arxiv.org/abs/2204.00940. Search in Google Scholar
[25] S. Keel and T. Y. Yu, The Frobenius structure theorem for affine log Calabi–Yau varieties containing a torus, preprint (2019), https://arxiv.org/abs/1908.09861. Search in Google Scholar
[26] M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math. 244, Birkhäuser, Boston (2006), 321–385. 10.1007/0-8176-4467-9_9Search in Google Scholar
[27] T. Mandel, Scattering diagrams, theta functions, and refined tropical curve counts, J. Lond. Math. Soc. (2) 104 (2021), no. 5, 2299–2334. 10.1112/jlms.12498Search in Google Scholar
[28] T. Mandel, Theta bases and log Gromov–Witten invariants of cluster varieties, Trans. Amer. Math. Soc. 374 (2021), no. 8, 5433–5471. 10.1090/tran/8398Search in Google Scholar
[29] D. R. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, Journées de géométrie algébrique d’Orsay, Astérisque 218, Société Mathématique de France, Paris (1993), 243–271. Search in Google Scholar
[30] L. Mou, Scattering diagrams for generalized cluster algebras, preprint (2021), https://arxiv.org/abs/2110.02416. Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Random dynamics on real and complex projective surfaces
- On quadratically enriched excess and residual intersections
- Fock–Goncharov dual cluster varieties and Gross–Siebert mirrors
- Crystal limits of compact semisimple quantum groups as higher-rank graph algebras
- Existence of nonconstant CR-holomorphic functions of polynomial growth in Sasakian manifolds
- Rigidity of four-dimensional gradient shrinking Ricci solitons
- A nonexistence result for rotating mean curvature flows in ℝ4
- Algebraic independence of topological Pontryagin classes
Articles in the same Issue
- Frontmatter
- Random dynamics on real and complex projective surfaces
- On quadratically enriched excess and residual intersections
- Fock–Goncharov dual cluster varieties and Gross–Siebert mirrors
- Crystal limits of compact semisimple quantum groups as higher-rank graph algebras
- Existence of nonconstant CR-holomorphic functions of polynomial growth in Sasakian manifolds
- Rigidity of four-dimensional gradient shrinking Ricci solitons
- A nonexistence result for rotating mean curvature flows in ℝ4
- Algebraic independence of topological Pontryagin classes