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The Kottwitz conjecture for
unitary PEL-type Rapoport—Zink spaces

By Alexander Bertoloni Meli at Ann Arbor and Kieu Hieu Nguyen at Miinster

Abstract. In this paper we study the cohomology of PEL-type Rapoport—Zink spaces
associated to unramified unitary similitude groups over Q,, in an odd number of variables. We
extend the results of Kaletha—Minguez—Shin—White and Mok to construct a local Langlands
correspondence for these groups and prove an averaging formula relating the cohomology
of Rapoport-Zink spaces to this correspondence. We use this formula to prove the Kottwitz
conjecture for the groups we consider.
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1. Introduction

Shimura varieties play an important role in the global Langlands program, which predicts
a link between automorphic representations of linear algebraic groups and Galois representa-
tions. Rapoport and Zink ([45]) introduced p-adic analogues of Shimura varieties defined as
moduli spaces of p-divisible groups with additional structures. The £-adic ({ # p) cohomol-
ogy of these spaces should provide local incarnations of the Langlands correspondences and
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this is the subject of the Kottwitz conjecture ([44, Conjecture 7.3]). The goal of this paper is
to prove the Kottwitz conjecture in the case of PEL-type Rapoport—Zink spaces associated to
unramified unitary similitude groups over Q, in an odd number of variables. Prior to our work,
the conjecture was proven for Lubin-Tate spaces by [9, 10, 19]. By duality [13, 15, 47], the
conjecture is also known in the Drinfeld case. The case of unramified EL-type Rapoport—Zink
spaces was proven by [14,53] and the case of unramified unitary PEL-type spaces of signature
(1,n — 1) was proven by [42]. Hansen, Kaletha, and Weinstein ([18]) have proven, for all local
shtuka spaces, a weakened form of the Kottwitz conjecture where, in particular, they do not
consider the action of the Weil group.

We now describe our results in more detail. One considers triples (G, b, 1) such that G
is a connected reductive group over Q,, and u is a minuscule cocharacter of G and b is an
element of the Kottwitz set B(Q,, G, —u). Then Rapoport-Zink attach to triples (G, b, ) of
PEL-type a tower of rigid spaces Mk, indexed by compact open subgroups K, C G(Q)).

Attached to the group G and the element b is a connected reductive group J;, that is an
inner form of a Levi subgroup of the quasi-split inner form G* of G. The element b is said to
be basic when Jj, is in fact an inner form of G*. The tower (M K,)K,CG(Q,) carries an action
of G(Q,) x Jp(Q,). For each i > 0 one can take the compactly supported £-adic cohomology
H.(Mg,,Q) of Mg, and hence consider, for each irreducible admissible representation p
of J5(Q,), the cohomology space

HY (G,b, wlp] = imExt], o \(HL (M. Qp). p).

K,

as arepresentation of G(Q,) x W, , where W, is the Weil group of the reflex field £}, of p.
We now further assume that we can give G the structure of an extended pure inner twist
(G, 0,z) of G*. Then the Kottwitz conjecture describes the homomorphism of Grothendieck
groups
Mantg p, , : Groth(J5(Q,)) — Groth(G(Q,) x WE,,)
given by

Mantg p . (p) 1= Y (1)’ T/ H"/ (G, b, p)[p)(— dim M™),
i,
in the case when b is basic and p is an irreducible admissible representation of J,(Q,) with
supercuspidal L-parameter. This means that under the local Langlands correspondence, the
L-parameter ¢, : Wo,, X SL2(C) — L], is trivial when restricted to the SL(C)-factor and
¢, does not factor through a proper Levi subgroup of Ly,
The Kottwitz conjecture states the following:

Conjecture 1.1 (Kottwitz conjecture, [44, Conjecture 7.3]). For irreducible admissible
representations p of Jp(Q,) with supercuspidal L-parameter; we have the following equality
in Groth(G(Q,) x WEg,,):

Mantg p ., (p) = Z [n][Hoqubp (tw(P) ® Lw(m)Y, r_p0ody) ® |- |—(pc,u)],
JTEH¢D (G,0)

where Ty, (G, 0) is the L-packet of irreducible admissible representations of G(Q,) attached
10 ¢p.
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We have not defined all the notation appearing in this conjecture, but this is described
in detail in Section 5. One can extend the conjecture to general G as in [18, Conjecture 1.0.1]
using the theory of rigid inner twists.

The main goal of this paper is to prove Conjecture 1.1 when G = GU is an unramified
unitary similitude group over Q, in an odd number of variables and the datum (GU, b, )
is basic and of PEL-type. Of course, to make sense of the Kottwitz conjecture for GU, one
needs to establish the local Langlands correspondence for this group and show it satisfies an
expected list of desiderata. In particular, one needs to check that the L-packet 14, (G, ¢) has
the expected structure determined by a certain group S related to the centralizer of ¢, in i b
and satisfies the endoscopic character identities.

Prior to this work, such a local Langlands correspondence was known for unitary groups
by the works [40, Theorems 2.5.1 and 3.2.1] and [25, Theorem 1.6.1]. These authors work with
the arithmetic normalization of the local Langlands correspondence whereby the Artin map is
normalized so that uniformizers correspond to arithmetic Frobenius morphisms. However, it
is more convenient for us to work with the opposite normalization. In Theorem 2.8 we use
Kaletha’s results in [23] on the compatibility of local Langlands correspondence and the con-
tragredient to define a local Langlands correspondence for unitary groups under the geometric
normalization whereby the Artin map takes uniformizers to geometric Frobenius morphisms.

We next construct a local Langlands correspondence for our groups GU by lifting the
result for unitary groups to the group U xZ(GU) and then descending it to GU. We can carry
out such an analysis because the map U xZ(GU) — GU is a surjection on Q,, points for odd
unitary groups. This property fails in the even case and is in fact the main reason we consider
odd unitary similitude groups. We get:

Theorem 1.2 (Theorems 2.8 and 2.12, Section 3.2). There exists a local Langlands
correspondence for odd unramified unitary similitude groups that satisfies the properties of
[25, Theorem 1.6.1], in particular, the endoscopic character identities. By construction, the
correspondence is compatible with that of [25,40] via restriction of irreducible admissible rep-
resentations to U(Q,) C GU(Q),) and projection of Langlands parameters along Lgu - Lu.

With the local Langlands correspondence in hand, we can describe our proof of Conjec-
ture 1.1 for the groups we consider. Our method of proof is similar to that of [53] and crucially
uses the endoscopic averaging formulas of [6]. We briefly describe these formulas for a con-
nected reductive group G. Suppose that e = (H, s, £7) is an elliptic endoscopic datum for G.
Then there exists a complicated map

Red; : Groth*’ (H(Q,)) — Groth(J5(Q))),

whose precise definition is given in Section 5.2. We remark that Groth®*’ (H(Q »)) denotes the
subgroup of Groth(H(Q,)) with stable virtual character. Associated to each A-parameter yH
of H, we have a stable character denoted by S® 1. Suppose that v/ is an A-parameter of G
with parameter /™ of H such that ¥+ = L5 o yH. Then the endoscopic averaging formula for G
is the following identity in Groth(G(Q,) x WEg,,):

(1.1) > Manigy , (Red§, (SOyn))
beB(Q,,G,—u)

V
= Z Z (JTp’ U(S)Sw)%np X [p ® | . |_<PG5M)]’

o 7y €lly, (G,0)
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where the first sum on the right-hand side is over irreducible factors of the representation
r—u o ¥ and V), is the p-isotypic part of r—;, o ¥. The element sy equals the image under v of
(1,1,-1) € Wg,, x SL»(C) x SL2(C), where the second SL(C) is the Arthur factor.

Note that equation (1.1) is an averaging formula in the sense that it gives a description
of Mantgp ;, o Red, summing over the set B(Q,, G, —u). One expects that this summation
results in large cancellations of the individual terms (see [8] for a description of this in the
G = GL,, case). The phrase “averaging formula” first appeared in this context in [44, foot-
note 4] while the formula itself was proven for trivial e (i.e. (H,s,Ln) = (G*,1,id)) in the
Lubin-Tate case in [19] and the EL-type case in [53]. Equation (1.1) for non-trivial e was first
formulated in [6]. For our application to the Kottwitz conjecture, it is crucial that we establish
(1.1) in cases where e is non-trivial. In general, one expects to need these endoscopic cases in
applications relating to L-parameters with non-singleton L-packets.

The averaging formula is derived in [6] for PEL-type groups under a substantial list
of assumptions. In this paper, we verify these assumptions for discrete parameters and hence
prove:

Theorem 1.3. For discrete L-parameters ¢ of GU, the endoscopic averaging formulas
hold.

For the sake of completeness, we briefly recall the strategy of the proof of this result
as well as explain the important assumptions. The proof is via global methods. Thus we con-
sider a global unitary similitude group GU defined over Q and a Shimura variety Sh attached
to GU which “globalizes” our Rapoport-Zink space. In particular, we have GUg, = GU.
We deduce the averaging formula by combining the Mantovan formula ([37, Theorem 22],
[34, Theorem 6.26])

(1.2) HX(Sh,&e)= ) Mantgup,u(H (Igy. £Le))
beB(Q,,GU,—u)

and the trace formulas for Shimura and Igusa varieties ([29, Theorem 7.2], [49, Theorem 13.1],
[50, Theorem 7.2]). We denote respectively by H}(Sh, £¢) and H;(Ig,, £¢) the alternating
sums of the compactly supported cohomology of Shimura and Igusa varieties evaluated at the
{-adic sheaf &£¢ associated to some irreducible algebraic representation & of GU.

To carry out this approach, we need to define global A-parameters of GU without refer-
ring to the conjectural global Langlands group. We do so by adapting Arthur’s approach (also
used in [25,40]) where global parameters correspond to self-dual formal sums of cuspidal auto-
morphic representations of GL,,. For us, a parameter ¥ gy of GU consists of a pair (Y. )
such that ¥y, is a global parameter of U* in the sense of [40] and y is an automorphic character
of Z(GU)(A). We attach global A-packets to these parameters in the generic case and prove
they satisty the global multiplicity formula (Proposition 2.26).

One important step in the proof of the averaging formula is the process of stabilization
and destabilization of the trace formula for the cohomology of Shimura and Igusa varieties fol-
lowing [29] and [50]. The goal is to relate both sides of equality (1.2) to the global multiplicity
Sformula. In order to achieve this, we need to prove a technical hypothesis concerning stable
orbital integrals. More precisely, let H be an endoscopic group of GU and fH a test function
satisfying some local “cuspidality” conditions. We want to show that ST.{ (/1) = ST (1),
where S Telﬁ /1) is a sum of stable orbital integrals of H with respect to ' and S Td}ilsc( fH)is,
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loosely speaking, the traces of all automorphic representations of H(A) evaluated against fH.
This hypothesis is proven in Section 4.2.

Once we have done the destabilization step, we can put everything into equation (1.2) and
derive the averaging formula. However, at this point equality (1.2) is still quite complicated and
we need to solve a lifting problem in order to extract the desired information. More precisely,
for our choice of connected reductive group GU over Q such that GUg, = GU and a discrete
L-parameter ¢y of GU, we need to construct global L-parameters ¢ gy lifting ¢gu and satis-
fying a number of conditions. For instance, we need to precisely control the centralizer group
of dgyin GU Q,- These lifting problems are studied in [5,25] and we adapt their arguments to
the unitary similitude case (Section 4.3).

With the endoscopic averaging formula in hand, we prove the Kottwitz conjecture in
Section 6. To do so, we observe that Red; (S®4n) = 0 whenever b is non-basic and ¢ is super-
cuspidal. Hence, in this case, the only term on the left-hand side of the endoscopic averaging
formula is the one for b basic. We then combine the formulas for each elliptic e to deduce the
conjecture.

2. Automorphic representations

2.1. The groups. Let F be a field of characteristic 0, £ a quadratic extension of F and
fix an algebraic closure F. Let J € GL, (F) be the anti-diagonal matrix defined by J = (J;, i)
such that J; j = (=1)T18; 41— ;. We define quasi-split groups Ug,r(n)* and GUEg/F (n)*
over F as follows. Set

Ug/F (n)*(F) = GL,(F) and GUE/F(n)*(f) = GL,(F) x GL{(F).
Then we give GUg, (n)*(F) an action of 'z := Gal(F /F) whereby o € I'r acts by

{(g,c) > (0(g), (), o eTg.

oGu - —t 71
(g.c) > (a(c)Jo(g)J " 0(c), o ¢TE.
We get an action of I'r on Ug (n)*(F) by restriction.
We also need to define slightly more general groups G(U(n1) x --- x U(ng))™* by

G(U(ny) x -+ x Ulng))
={(g1.....8k) € GU(1)" x -+ x GU(ng)* : c(g1) = - = c(gi)}-

In this paper, we only consider the case where F is one of Q, or Q. We now fix for
once and for all a prime p and a quadratic imaginary extension £/ Q that is inert at p. At each
place v of QQ we get a rank two étale algebra E,, over Q,,. Since we will not change E, we can
unambiguously use the notations U(n)* and GU(n)* (resp. U(n)* and GU(n)*) for the global
(resp. local, for v that do not split over E) quasi-split groups we have defined. To simplify
notation, we will typically refer to inner twists of U(n)* (resp. GU(n)*) by U (resp. GU).

The global groups we consider in this paper will be inner forms of GU(n)* coming
from Hermitian forms. Namely, let V' be an n-dimensional E-vector space equipped with
a Hermitian form (-,-). Let GU(V) (resp. U(V)) be the algebraic groups defined over Q
by

GU(V)(R) = {(g.¢(g)) € GL(V ®q R) x Gm(R) : (gx,gy) = c(g)(x,y),
x,y €V ®qg R}
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and
U(V)(R) = {g e GL(V ®q R) : (gx,gy) = (x,y), x,y € V ®q R}

for any Q-algebra R. To simplify notation, we will often denote these groups by GU (resp U).

In this paper we will assume that n is an odd number and that the localization GU, at
every finite place v is quasi-split. Such groups exist and the quasi-split condition we impose
at the finite places does not constrain the isomorphism class of the group at the Archimedean

place. Indeed we can define
I, O
I := ,
r,s (0 —IS)

where [, is the r x r identity matrix. Then for V' an n-dimensional E-vector space,

(x,y) = U(x)tlr,syv

for r + s odd and 0 € I'g @ the non-trivial element, gives a unitary similitude group of type
(r, s) at the Archimedean place that is quasi-split at the finite places.

Recall that a reductive group G over a number field F arises as an extended pure inner
twist of its quasi-split form G* if there exists a tuple (G, o, z) such that o : G* — G is an
isomorphism over some finite extension K/F and z € Zblas(83(K /F),G*(K)) is such that
for each 0 € '/ F and each e € E3(K/F) projecting to o, we have

0~ oa(o) = Int(z(e)).

The set Z! (83(K/F),G*(K)) is defined as in [32]. We record the following lemma.

bas

Lemma 2.1. The groups GU(V') (resp. U(V)) defined above arise as extended pure
inner twists of GU(n)* (resp. U(n)*).

Proof. 1In the case that G* has connected center, it is known by [32, Proposition 10.4]
that all inner twists of G* come from extended pure inner twists. In our case, we have

ZUm)*) =UM)* and Z(GU(n)*) =Resg;q G,

so this is indeed the case. O

We also consider extended pure inner twists for connected reductive groups over F' = Q,,.
The definition is the same except for we have z € Z! (8is0(K/F), G*(K)) (where &;so(K/F)

bas

is the local gerb &(K/F) in [32]). As in [32], we define
B(F, G)bas = @Hﬁas(gs(K/F), G(K))
K
for F' a number field and
B(F. G)oas = lim Hy, (€iso(K/F). G(K)).
K

for F a finite extension of Q,,.
A maximal torus 7 defined over Q,, of GU(n)* and with maximal split rank is given by
the diagonal subgroup. We have

T(Q,) ={(t1,....ty) € (E;)" :3c € Q) Vi €{l,...,n}, tio(tnt1—i) = c}.
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The maximal split subtorus A of 7' is isomorphic to (Qﬁ)% x Q. The relative Weyl
group is
n—1
Wie = (Z/22)"T" 5 Sus.

where S»—1 is the permutation group of {1, ..., ”2;1}. The normalizer of A inside GU(n)*(Q,)
is generated by A and the following elements:
] iij]

2 n+1 k n+1
Si:j = 1 . A =1y ? . ,

2

N
—

where 1 <1i, j.k < % and I,l;’j is the matrix with 1 in the positions (i, j), (j,i) and (k, k)
for k # i, j and O elsewhere.
A minimal parabolic subgroup of GU(n)* is

11 *

Poin = * 1, x € Ef,xo(x) =c ¢ NGUMN)*(Q,).

0 Cealt)
From the description of unitary similitude groups, we see that there is an embedding

E > Z(GU(n)*)(Q,) given by

t — diag(t,...,1).

The tuple (Prin, 7, {Ei,i+1}1§i§n/__1)\gives a g, -stable splittinggflj(n)*.

Note that we can identify GU(n)* with GL,(C) x C* and U(n)* with GL, (C). Fix the
standard F- sphttmgs of GL, (C)x C* and GL, (C) consisting of the (T B AEii+1t1<i<n—1),
where 7 and B are the diagonal subgroup and upper triangular subgroup respectively. The
action of the Weil group W, on these dual groups factors through I'g, / @, and the non-trivial
element o of Wg, g, acts via

o((g.¢) = (Jg~'J ™! cdet(g))
and
o(g) =g "J)
respectively (see [41, p. 38] for details).
A maximal torus defined over Q, of G(U(n1) x -+ x U(ng))* with maximal split rank
is given by
T ={((t1,1s s tim)se s (et oo s tomy)) € (BT e € Q)
Viel{l,....,k} Vje{l,....n;i}, ti jo(tin;+1—j) = c}.
If we denote 7, resp. J the set of indexes i such that n; is odd, resp. even, then a maximal
split sub-torus of 7" is isomorphic to

a=0p¢(TT@p™ )« (

iel

1‘[(@;)"5).

JjeJ
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The relative Weyl group is

VVre — (H(Z/zZ)nlz_l X'S”il) X (H(Z/ZZ)HZJ XISnj).

iel . jeJ
Lemma 2.2. We have the equality

G(U(n1) x -+ x U(ng))*(Qy) = (U(n1)* x -+ x Ulng)*)(Q,) Ey,
where E;\ embeds into G(U(n1) x --- x U(ng))*(Q,) via the diagonal embedding.

Proof.  For simplicity, we prove the equality when k = 1. The general case follows by
the same argument.

We just need to show that ¢(E;) = ¢(GU(n)*(Q,)). Because GU(n)*(Q,) is quasi-
split, we have the Bruhat decomposition

GU(”)*(QU) = ]_I Prin - w + Pryin.
wEW,

We see that ¢(Puin - W + Pmin) = ¢(Pmin - w) and c(w) = 1 by the above description of the
normalizer of A. Hence we have ¢(GU(n)*(Q,)) = ¢(Pnin) and then ¢(GU(n)*(Q,)) = ¢(T)
since c¢(Up,;,) = 1, where Up,_ is the unipotent radical of Pp;,. By the assumption 7 is odd
and the description of 7', we have

c(GUmM)*(Qy)) = {xo(x) : x € Ey}.
Moreover, by the above injection EX <> Z(GU(n)*)(Q,), we also see that
¢(EX) = {xo(x): x € EX}.
Therefore ¢ (EX) = ¢(GU(n)*(Q,)). o

We now recall some facts from the theory of endoscopy.

Definition 2.3 (cf. [6, Definition 2.1]). A refined endoscopic datum for G a connected
reductive group over F is a triple (H, s, n) such that

e H is a quasi-split reductive group over F,

e seZMH)TF,

e 7 H — G such that the conjugacy class of 7 is I'g-stable and n(ﬁ) = Zg(n(s))°.
Suppose that (H, s, 1), (H', 5", ') are refined endoscopic data. Then we say that an isomorphism
a : H — H’ is an isomorphism of endoscopic data if @(s") = s and n o @ and " are conjugate
in G. We say that a refined endoscopic datum (H, s, ) is elliptic if (Z(H)V'F)° c Z(G). We
denote the set of isomorphism classes of refined endoscopic data of G by &"(G).

We record a set of representatives for the isomorphism classes of refined elliptic endo-
scopic data for U(n1)* x --- x U(ng)* and G(U(n1) X --- x U(ng))*. The description for the
global case is analogous. Compare with [41, Proposition 2.3.1] but note that we have more
isomorphism classes because we consider refined endoscopic data. For each i, choose non-
negative natural numbers nlJr and n;” such that niJr +n; =n;.



Bertoloni Meli and Nguyen, The unitary Kottwitz conjecture 9

In the unitary case, let H be the group U(nf)* xU(ny)* x - x U(n,’:)* x U(ny)*, let

n be the block diagonal embedding of dual groups and let
s = (In;r’ _InT’ ey In]f’ _[n;)

These elliptic endoscopic data are all non-isomorphic and give a representative of each elliptic
isomorphism class.

In the unitary similitude case we let H be G(U(nf) xUny) x - x U(n,‘:) x U(ny))*,
let n be the block diagonal embedding of dual groups, and let

s = ([nf’_lnf’ e, In,j’_lni’ 1).

We further require that ny + - + ny_ is even.

In each case, we can extend 7 to get a map L7 of L-groups. This is done explicitly in
[41, Proposition 2.3.2] (cf. [25, p. 52]).

2.2. The Langlands correspondence for unitary groups. In this subsection, we will
review the Langlands correspondences for unitary groups in the local and global settings,
largely following the works of [25,40].

2.2.1. Local unitary groups. We start by considering a local field QQ,, for v any place
of Q. The local Langlands group is defined by £q, := Wg if v = oo and by Wg, x SL2(C)
if v = p is a prime. For a connected reductive group G, we also set LG =G x W, as atopo-
logical group where G is the Langlands dual group of G. In our case we see that

LUm)* = GL,(C) x Wy,
and the group W, acts trivially on GL, (C).

Definition 2.4. A local L-parameter for a connected reductive group G defined over
Qy is a continuous morphism ¢ : £g, — LG which commutes with the canonical projections
of £¢, and LGto W, and such that ¢ sends semisimple elements to semisimple elements.

We denote ®(G) the set of a—conjugacy classes of L-parameters. An L-parameter ¢
is called bounded (resp. discrete) if its image in LG projects to a relatively compact subset
of G (resp. if its image is not contained in any proper parabolic subgroup of LG). We denote by
Dpad(G) (resp. D2 (G)) the subset of ®(G) consisting of bounded (resp. discrete) L-parameters.

For global classifications, we will also need the notion of a local Arthur parameter.

Definition 2.5. A local A-parameter for a connected reductive group G defined over Q,,
is a continuous morphism ¥ : £¢, x SL2(C) — LG such that the projection of v(Wg,)toG
is bounded.

We denote by W(G) the set of equivalence classes of A-parameters. We also denote the
set W (G) of the equivalence classes of continuous morphisms 1 as above but where | £g, 18
not necessarily bounded . An A-parameter v (or ¥ € W (G)) is said to be generic if Vlsi,(C)
is trivial. Thus, generic A-parameters correspond to bounded L-parameters. Associated to each
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¥ € U (G) we have ¢y, € ®(G) given by

I 0
bu(w.g) =V (w,g, ('w' _))
0 |w|™2

We also have a “standard base change” morphism of L-groups ([40, p.9]):
ng : Lum)* — LResEv/Qv GL,.E,.

which allows us to identify the L-parameters of U(n)* with self-dual L-parameters of GL, g, .
More precisely, in the terminology of [40], we set k = 1 and choose y, to be trivial. Moreover,
there is a bijection

®(Resg,/ @, GLa,E,) =~ ®(GLy,E,).

given by projection of LRes E,/Q, GLn g, onto the first GL, (C)-factor. If ¢ € ®(U(n)*) is
an L-parameter, then 1 o ¢ composed with this bijection is just ¢|¢ . . By [40, Lemma 2.2.1],
the image of ®(U(n)*) by np is the set of self-dual parameters in ®(GL,, g,) with parity 1 (as
defined in [40]).

For each A-parameter ¥ € W (G) we define centralizer groups as below, which play
an important role in the local and global theory. Completely analogous definitions exist for
L-parameters:

Sy := Cent(Imy, G), Sy := Sy /Z(G) v, 8y = mo(Sy).
S5 = (Sy N Gaer)®. Sy, 1= Sy /S,

Remark 2.6. For G = U(n)*, the group Sy is in general a product of symplectic,
orthogonal, and linear groups. Therefore, mo(Sy ) will always be a finite product of groups
isomorphic to Z /2 Z coming from the component group of the orthogonal factors of Sy,. We
have .

S5/ ZUm*)Ter =8y,
(although note that it is possible that Z (U/(n\)*)r@v cS f;d). For discrete (and hence supercus-
pidal) L-parameters, Sy = S, - For G = GU(n)*, for n odd, the relevant centralizer groups of
a parameter ¥gy are completely determined by the corresponding groups for the parameter ¥y
equal to the composition of Yy with “GU(n)* — LU(n)* (see Lemma 2.18).

We also need to introduce some notation for representations. We denote the set of isomor-
phism classes of irreducible admissible representations of a connected reductive group G by
IT(G). We denote the set of tempered, essentially square integrable, and unitary representations
by Iiemp(G), I12(G), and Iy (G) respectively. Denote Iiemp(G) N IT2(G) by I3 temp(G).

The following theorem gives the local Langlands correspondence for extended pure inner
twists of U(n)* over Q,,. We first fix some more notation. Fix an odd natural number n and
let (U, g, z) be an extended pure inner twist of U(n)*. Fix a I'g, -invariant splitting of U. Then
(U, o, z) induces a unique isomorphism

Lu =~ fum)*,

preserving the chosen I'g, -splittings and we often identify these groups via this isomorphism.
The cocycle z and the map

B(Q,. U(n)*) — X*(Z(U(n)*)Iov)
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defines a character y, € X*(Z (@)F@v) by z — y;. We now fix a non-trivial character
¢ : Q, — C*. Together with our chosen splitting of U(n)*, this gives a Whittaker datum w
of U(n)*. Attached to each refined endoscopic datum (H, s, 1) of U we have a canonical local
transfer factor A[w, o, z] normalized as in [6, Section 4.1]. These transfer factors correspond
to the Ap factors of [33, Section 5]. Since U has simply connected derived subgroup, we can
extend 7 to amap L of L-groups.

Remark 2.7. We stress that in this paper, we are using the geometric normalization of
the Langlands correspondence. This means that our Artin map is normalized to map a geomet-
ric Frobenius morphism to a uniformizer and explains why we normalize our transfer factors
using the A p normalization. This normalization is consistent with [19] and [6] but is the inverse
of the normalization in [25].

Theorem 2.8 ([25, Theorem 1.6.1], [40, Theorems 2.5.1 and 3.2.1]). Fix a field Q,
over which all groups are defined, an odd natural number n, and an extended pure inner twist
(U, 0, 2) of U(n)*. Fix a non-trivial character ¢ : Q, — C*. Together with our fixed splitting
of U(n)*, this gives a Whittaker datum w of U(n)*. Then:

(1) For each generic ¥ € W(U(n)*) (or equivalently ¢ € ®paq(U(n)*)), there exists a finite
set Iy, (U, o) endowed with a morphism to I1yni(U). Our choice of w defines a map
lw HW(U’Q)%IH(SFP’XZ)v T = (ﬂ,'),
where Irr(S 5, Xz) is the set of irreducible representations of S 5, restricting on Z (ﬁ yTow
tO XZ-

(2) The morphism Iy (U, 0) — Iy (U) is injective and its image is contained in I emp(U).
If Q,, is non-Archimedean, then the map I1y (U, 0) — Irr(S Fp) is a bijection.

(3) Foreach € Myit(U) in the image of Ty, (U, 0), the central character wy : Z(U) — C*
has a Langlands parameter given by the composition

v Ly det 3 id

i@ (CXXIWQU.

v

(4) Let (H, s, Ln) be a refined endoscopic datum and let ™ € W(H) be a generic parameter
such that Lyoy™ =y, If fH e H#H) and f € #(U) are two Alw, o, z]-matching
functions, then we have

S sl | N =e@) Y (mEals) - sy)ulx | ).

mHell ,u(H) nelly (U,0)

where e(-) is the Kottwitz sign.

(5) We have
Memp(W) = [[  Tg(U.0)
$E€Pa(U(n)*)
and
MoempU) =[]  TpU.o).

¢€D2 paa(U(n)*)
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Proof. The contents of this theorem appear in the works of Mok ([40, Theorem 2.5.1])
and Kaletha—Minguez—Shin—White ([25, Theorem 1.6.1]) except using the arithmetic normal-
ization of the Langlands correspondence. Hence our main task is to explain how we can use
these results to define a geometrically normalized correspondence.

For ¢ € W(U(n)*) a generic parameter, we let HQ(U, o) denote the packet of represen-
tations assigned to ¥ by [25, Theorem 1.6.1] (the letter A stands for arithmetic normalization)
and define ITy (U, o) to consist of the contragredients of the representations in H$(U, 0). By
the compatibility of the local Langlands correspondence with contragredients (proven in our
case in Proposition 2.10, cf. [23, equation (1.2)]), this is the same as saying that the packet
ITy (U, o) of [25] is assigned to the parameter LC oy, where LC is the extension to LU (n)*
of the Chevalley involution, C, of G as described in [23, pp. 3-4].

We now define (. For convenience, we will denote by Lé the maps given by the arith-
metic normalization. Then we define for 7 € ITy (U, o) that

() =12 (m)Y,

where if w is the Whittaker datum (B, /g, ), then w~ ! is the datum (B, 1061) Equivalently
by taking the contragredient, we have

to() = A ()0 C71.

We now verify the endoscopy character identity which is (4) in the theorem. To this
end, fix £ € #(U) and fH € #(H) a A[w, g, z]-matching function. By Lemma 3.5, we have
that if iy : U(Q,) — U(Q)) is the inverse map, then fHoigand f o iy are matching for the
transfer factors A’[w™1, o, z] with respect to the endoscopic datum (H,s~!, L7). We use the
letter A (= Ap) resp. A’ to denote the transfer factors that are compatible with the geometric
normalization resp. arithmetic normalization of the local Artin reciprocity map. Then we will
show in Proposition 2.9 that

oo hspuGEt | M= Y (@) a@ ] M
JTHGHWH(H) nHenchowH(H)
= Z (M syn) ezt | fHoiy).
JTHGH:ZH(H)

We now apply the endoscopic character identity proven in [25, Theorem 1.6.1] to get that
the above equals

eU) Y () [ FnGs™Y) sy | foi)
mell} (U0)

=eU) )l |G sy uY | foi).

w€lly (U,0)

Now, since tr(zY | f) = tr(w | f oi) (by Lemma 2.11), we get that the above equals

e(U) > () | Fy(s) - sy) e | £).

welly (U,0)

as desired. O
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Proposition 2.9. Continue with the notation as in Theorem 2.8. Let ¢ € W(U(n)*) be
a generic A-parameter. Then we have the following equality for f € #(U(n)*):

Yo msylu@@ | = > (msyu(r | foiv).

A A
welly, (U) neHLCUOw(U)

Proof. Thanks to the results in [25,40], the arguments in [23, Theorem 4.8] also work
in our case. Indeed, the group U(n)™* can be extended to a (twisted) endoscopic datum

€ = (U(n)*,s, g),

of the triple (Resg/ @, GLz. 0, 1) for a suitable outer automorphism of Resg /g, GL, preserv-
ing the standard splitting. Then & o ¥ is a Langlands parameter of Resg, g, GL, and denote
by p the representation of Resg, @, GL,(Q,) = GL,(E) assigned to £ o ¥ by the local Lang-
lands correspondence. The representations p and p o 6 are isomorphic, and there is a unique
isomorphism X : p — p o f which preserves the w-Whittaker functionals. Then we have the
distribution

" TOg, (f") = tr(v > / f"(@)p(g)Xv dg)-
GL" (E)
Then by [40, Theorem 3.2.1] the linear form
[ SOu(f)= Y (msyluC|f)
nGH{Z(U)

is the unique distribution on J¢ (U(n)*) having the properties that
SOu(f) = TOR, (f")

for all f € #(U(n)*) and f" € #H(GL,(E)) such that the (6, w)-twisted orbital integrals
of /™ match the stable integrals of f with respect to A’'[w, e, z].

Once we have this characterization, the proof of [23, Theorem 4.8] works without any
change since [23, Proposition 4.4, Corollary 4.5 and Corollary 4.7] are valid for quasi-split
unitary groups. |

Proposition 2.10. Ler v € W(U(n)*) be a generic A-parameter and w a Whittaker
datum. Let 7w be a representation in Hé(U) and denote té, () = p. Then:

o the contragredient representation " belongs to the L-packet Hf Coy V),
L) = (poCThY.

Proof. These results are completely analogous to [23, Theorem 4.9]. The same argu-
ments carry over to our case since an analogue of [23, Theorem 4.8] is still valid for unitary
groups (Proposition 2.9). ]

We also have the following basic fact.

Lemma 2.11. For (7, V) an admissible representation of G(Q,) for G a reductive
group and f € #H(G), we have

tr(nY | f) =te(mw | £ oi).
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Proof.  Pick some compact open subgroup K C G(Q,) such that f is K-bi-invariant,
and let (", V') denote the contragredient of 7 so that V'V C V* is the subspace of smooth
vectors in the dual vector space V* of V. Then we note that (VYK = (VK)* since each vector
in (V*)X is by definition smooth.

The operator 7V ( f) acts on (VX)* as the dual of the operator (f o). Indeed, for
v¥ e (VEY*andw e VK,

Y (f)o*(w) = /G S @t ) dg

P

- f (f o) (g~ Yo (g~ yw) dg
G(Qp)

_ v*( [« oz’)(g)n(g)wdg)
G(Qp)
— 7 (f 0i) v (w),

where the third equality uses the fact that G is unimodular. This implies the desired equality
of traces. O

When we consider global parameters, we will also need a version of Theorem 2.8 for
¥ € WT(U(n)*). The following theorem is essentially contained within the union of remarks
in [40, p. 33] and [25, Section 1.6.4].

Theorem 2.12. Fix a field Q,, over which all groups are defined, an odd natural num-
ber n and let (U, g, z) be an extended pure inner twist of U(n)*. Fix a non-trivial character
¢ : Q, — C*. Together with our chosen splitting of U(n)*, this gives a Whittaker datum w
of U(n)*. Then:

(1) For each generic € W (U(n)*), there exists a finite set Ty, (U, 0) of possibly reducible
or non-unitary representations of U. Our choice of w defines a map

lw : H‘Q[I'(Ua Q) - IIT(SBI,XZ), T = (7[">’

where Irr(S 5/’ Xz) denotes the set of irreducible representations of sz with central char-
acter y ;. Each w € Ty (U, 0) has a central character wy, these characters are the same
for each element of T, (U, o).

(2) Let (H,s,Ln) be a refined endoscopic datum and let y¥ € Wt (H) be a generic param-
eter such that Ly o Y™ = . If f1 € H(H) and f € H(U) are two Alw, o, z)-matching
functions, then we have

Yo sy u M =e) Y (mEaGs) sy)uGr | f),

HHEHVIH(H) welly (U,0)

where e(-) is the Kottwitz sign.

Proof.  'We sketch the proof following ideas in [25,40]. The proof of (1) is in [25, Sec-
tion 1.6.4]. They choose a standard parabolic subgroup P* = M*Np« of U(n)* that transfers
to U, a parameter /ps+ € W(M ™) and a character A € Homg, (M *, G,,) that induces a central
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parameter ¢ : Wo, — — Ly satisfying that ¥a7= - ¢, agrees with ¥ under the L-embedding
LM* < LU(n)*. Choose a representative (U, o, z) in its equivalence class so that the restric-
tion (M ,OM*, ZM+) to M* is also an extended pure inner twist.

They then define ITy (U, 0) by

My (U,0) :={I5(mm ® x2) : wm € My, (M, 0p1%)}

where Ig’ denotes normalized parabolic induction and y is the character of M(Q,) corre-
sponding to A. Note that by definition of parabolic induction, if a7 has central character wx,,,
then I}DJ(JIM) will have central character 8}9/ 20n v - Since each element of T1y, . (M, opr+) has
the same central character, this will also be true of ITy (U, o).

From the explicit description of Sy given in [25, p. 62], it follows that Sy, = Sy, .. In
[25, Section 1.6.4] they show that

radZ(U(l’l) )F@U Sradz(m)r@v’

and that y; and y,,. both extend uniquely to give the same character ), of S radZ (U(n) ylaw
that is trivial on S rad Now, we have an identification

IH(SE/’ Az) = Irr(Sf},M* X zpge)s

as both parametrize irreducible representations of Sy, that restrict to Y, on Sf;dZ (Un)*)Fov,
One can now define

(m,s) = (mpr, Spr*)

for s € Slup.

It remains to verify the endoscopic character identity. Fix a refined endoscopic datum
(H, 5, L) for U(n)* such that y = L5 o yH for some yH € W (H). Then Ly(s) € Sy € M.
In view of [6, Proposition 3.10], there exist a refined endoscopic datum (Hyg, sy, Zpg)
and a parameter yv* € W(Hy+) corresponding to the pair (Y, Ln(s)). It is clear from
construction that under the map Y : §"(M*) — &7 (U(n)*) of [6, Section 2.5], the image of
the class of (Hyp+, S+, Ziv+) equals the class of (H, s, Lr)). Now by [6, Proposition 2.20], we
can choose a refined datum equivalent to (Hyg=, Syp*, nM*) fitting into an embedded datum
(H, Hy*, 5. L'n). We observe that Hy+ is a Levi subgroup of H.

Now, Ln|y+ induces a map Z (M*) — Z (HM*) and hence ¢, yields a central parameter
Yay of LHy+. It is easy to see that by definition

Y g =y,
under the natural inclusion Z“Hy« < LH. Hence, we can define a packet ITyu(H) and pairing

(+,) : Myu(H) x SWH — C*,
using the above procedure.

We need to verify that the resulting pairing satisfy the endoscopic character identity.
Let £, fH be A[w, o, z]-matching functions. Let fp € #(M*) and fP* € J (Hy+) be the
corresponding constant term functions. By [57, paragraph at the top of p. 1237 and the remark

on p.239] it follows that
w(lp(ar) | f) = (o | fp),
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and similarly for fP* We can restrict the splitting of U(n)* to M* and together with the
character ¢, this gives a Whittaker datum wy+. By [6, Proposition 5.3], the corresponding
canonical transfer factor A[wy+, op*, Zyv+] satisfies

U _1 1
Alwnge, o 2wl (v y) = (D (D72 IDE L ()2 Afw. 0. 2] (1. ¥)

for regular y € M*(Q,), y" € Hy+(Q,) and where we recall that Df’,[()/) is defined to equal

det(1 — ad(m))|Lie(G)\Lie(M)-
We now claim that fp and £} py are Alwy*, om*, Zv*|-matching. If we can show this

then we will have

Yo (aMsym)ut | M

JTHGHWH (H)

- Z <7THM* g SW) tr(7THM>:< | f};})

EHM* GHwHM* (HM*)

=e™M) D (wFn(s) sy ) Com | fp)

M€y, 1 (M, 0p*)

=eU) > (r.tnls)-sy)u(r] f).

w€lly (U,0)

as desired. Note that in the above we use that e(M) = e(U) which is part of [26, proposition
on p.292].

Suppose yy € Hy=(Q,) and y € M(Q,,) are strongly regular elements that transfer to
each other. Then by [57, Lemma 9], we have the following equality of orbital integrals (and
analogously for fH):

OY(f) = 1D ()72 O)'(fe),

and hence, since f and fH are A[w, o, z]-matching:
Hyx
SOy (fpe) = | Dijy,. (VH)|ZSOH ™

= DH w2 Y Alw.o. 2.7 OV (f)

Y'~sty
1 _1
=D . w2 IDy N2 Y Alw.o.z](vu. y) O (fp)
Y/ ~st.u¥Y
= > Alwye. ome 2ue) (v ) O (),

Y/ ~st.my

as desired. Note that we use that the number of conjugacy classes of y in the stable class is the
same for U and M (this follows from the injection H!(Q,, M) — H(Q,, U)). m)

2.2.2. Global unitary groups. We now consider the global situation. Recall that we
have fixed a quadratic imaginary extension £/ Q and are considering global unitary groups
U = U(V) that are quasi-split at the finite places and with fixed quasi-split inner form U(n)*.
By Lemma 2.1 we give U the structure (U, g, z) of an extended pure inner twist of U(n)*. We
also fix a global Whittaker datum w of U(n)*.
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Due to the lack of a global L-group, we rely on the cuspidal automorphic representations
of GL, (A g) to define the notion of global parameters as in [5] (cf. [25]). Let W(n) denote the
set of all formal sums

V' =0 Ry BB (r Ry,

where {; are positive integers, m; are cuspidal automorphic representations of GL,, (AE)
and v; are algebraic representations of SL,(C) such that 7; X v; are pairwise disjoint and
Yoy in;dimy; = n.

We denote (7 KM v)* = 7* W v, where 7* = (€)Y the conjugate dual representation
of . Now for ¢" = £1(ry Kvy) B--- B L, (7, X v,). We say that " is generic if v; is the
trivial representation of SL, (C) for all i . We say that ¥ is self-dual if there exists an involution
i —i*of{l,...,r}suchthat (7; ¥ v;)* = m;» W v;* and £; = £;+. From a self-dual formal
sum ¥”", we can construct a group &L yn and a map ([40, pp. 22-23, Definition 2.4.3])

Y7 L yn x SLy(C) — LGLy, .

We have a standard base change map 7p : LU(n)* — LGLn’ E defined analogously to
the local case.

Definition 2.13. The set of global L-parameters W(U(n)*) of U(n)* is the set consist-
ing of pairs ¥ = (Y", ¥), where ¢ is a self-dual formal sum and

¥ : Ly x SLa(C) — LUm)*

is a map such that ;ﬁv" =1ngo ’]; The parameter ¥ is called generic if ¥” is generic.

We remark that i; is determined by the base change map np and ;/7’ and as in the local
case, from the map ’1;, we can define various centralizer groups Sy, E’”’ Z,/,, SEI. lior later use,
we denote W, (U(n)*) to be the set of global parameters ¢ = (¢", ) such that [ Sy | is finite.

There is a localization morphism

YU@)) - Y UM)), ¥ = Py,

see [40, pp. 18-19]. More precisely, if v is a place of QQ that splits in £, then E, = Ey, X Ey
and U(n); = GL, E,. where w, W are the primes of E above v. Moreover, there is an iden-
tification Q,, = E,, and therefore we can define ¢, = ¥ . If v is a place of Q that does not
splitin E, then E, is a quadratic extension of Q,,. By [40, Theorem 2.4.10] the localization ¥
of ¥ factors through the base change map 7 so that it defines a parameter ¥, in W (U(n)*).

According to Theorem 2.8 and Theorem 2.12, for each ¥, € W (U(n)%) we have a
packet [Ty (U(n)y, 0v) together with a map

My, Uy, 00) = I(Sy |, 22), 7o > (0, ).
We denote

Iy (U, o) := {®nv 7y € Iy (Uy, 0y) : (my,-) = 1 for almost allv}.
1)

Since the localization maps ¥ — ¥, induce the localization maps S't}, — SE,U for cen-
tralizer groups ([25, p. 71]), we can associate to each ), 7y € Iy (U, o) a character of S 5, by
the formula

(m,s) := H(nv,sv), s € SE,,

v
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where sy is the image of s by the localization morphism SE, — S y The global pairing (, -)
descends to a character of § ¥ (see [25, p.89]).

Definition 2.14. Let I1y (U, 0,€y) := {m € Iy (U, 0) : (7, ) = €y}, where €y is the
Arthur character of 8y (see [40, equation (2.5.5)]). Recall that if ¥ is a generic parameter, then
ey = L.

Let §) be the standard maximal Cartan subalgebra in the Lie algebra of Resg ;g (U)(C)
and let | - | be a fixed Weyl-Hermitian metric on the dual of §). Let 7 be an automorphic repre-
sentation of U(A). Then the local factor 7, is unramified if v does not belong to some finite set
of places S. Thus we get a Hecke string ¢ = (c¢y)ygs, Where ¢y is the semisimple conjugacy
class corresponding to 7, via the Satake transform. Moreover, the infinitesimal character of its
Archimedean components gives a linear form @, on ). Denote im(it, ) its imaginary part.

Following [25, Section 3.3], for each global parameter ¥ we define

Liwy U@\UA) = D LI ym. U@ \U®)),
cc(¥')

where the sum runs over the set of Hecke strings ¢ which map to ¢(¢™) via the base change map
ng and where L2 dise.r.c (U(Q) \ U(A)) is the direct sum of automorphic representations 7 such
that [im(u,)| = ¢ and ¢, corresponds to 7, via the Satake transform away from a sufficiently
large finite set.

Theorem 2.15 ([25, Theorem 1.7.1]). There is an isomorphism of U(A)-modules

Ly UQ\UA) ~ P Liey UQ)\UQ)),
Yev(U(n)*)

If ¥ is generic then
y Lim U@\ UR) =0if ¢ ¢ ¥o(Um)*),
L2y U@\ UA) = Brerm, woey) 7 if ¥ € V2(Um)*).

In particular, if 7w is an automorphic representation of the unitary group U belonging to
a generic global packet, then the automorphic multiplicity, my, equals 1.

In order to show that m, =1 when & is an automorphic representation of the uni-
tary group U belonging to a generic global packet, it is enough to show that if = belongs
0 L2y (U@ \UA) and L}, (U(Q)\ U(A)), then ¢, = .

By the definition of L2 dise, ¥, (U(Q) \ U(A)), we can identify the Hecke string of ¥ and
the base change of the Hecke string c. Similarly, we can also identify the Hecke string of ¥}
and the base change of the Hecke string c. Thus ¥ and ¥’ have the same Hecke string. By
the strong multiplicity one theorem for isobaric automorphic representations of GL, (Afg), we
conclude that ¥7 = ¥} and hence | = ¢,.

Remark 2.16. We remark that the proof of the theorem as we have stated it here is
completed in [25] up to assumptions in [40]. For instance, the careful reader will note that
[25, Theorem 1.7.1] requires that U arises as a pure inner twist of U(n)*. Indeed, this will be
true since we are assuming U comes from a Hermitian form (Lemma 2.1). However, the work
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of [40] assumes that the weighted fundamental lemma and analogues of the unpublished papers
[A25], [A26], [A27] referenced in [5] hold for U(n)*, and these results are not available at the
time of writing.

2.3. The Langlands correspondence for unitary similitude groups. In this subsec-
tion, we want to transfer the results about automorphic representations from unitary groups to
unitary similitude groups (with an odd number of variables).

2.3.1. Local unitary similitude groups. Let v be a finite place of QQ that does not split
over E, let n be an odd positive integer, and let GU be an inner form of GU(n)*, defined
over Q,, and denote the corresponding unitary group by U. Fix a I'g, -invariant splitting of
GU and restrict to get a I'g, -invariant splitting of U. Fix also a character ¢ : Q, — C*. This
data gives us Whittaker data wgy and wy of GU(n)* and U(n)* respectively.

We give GU the structure of an extended pure inner twist (GU, ogu, zgu) of GU(n)*.
We also fix an extended pure inner twist (U, oy, zy) of U(n)*. Note that this induces an
extended pure inner twist of GU(n)* that on the level of cocycles is given by composing zy
with U(n)* — GU(n)* and that this induced twist is trivial since the map

B(Qy. U(m))bas — B(Qy, GU(1) ™)y

is trivial. In particular, this induced extended pure inner twist need not be isomorphic to
(GU, gGu, zgu). In fact, our constructions in this section will not depend on (U, gy, zy). Note
also that since we are assuming 7 is odd, GU will automatically be quasi-split. By Lemma 2.2,
we have GU(Q,) = U(Q,)E and then the following result:

Corollary 2.17. There is a natural bijection between the set I1(GU) and the set of pairs
(m, x), where w € TI(U) and y is a character of E} suchthat x|gx Nu@,) = @rxlEx NU@,)
for wy the central character of 7.

We use this corollary to define A-packets of representations for GU and the associated
A-parameters. Fix y a character of Z(GU) corresponding to a morphism

7: 20, = GUn)*p x Wo, = (CX xC*) x Wy, .
and a parameter Yy € W (U(n)*) given by
Yy £, X SL2(C) — LU = GL,(C) x Wo,,

such that wx|gx Nu@,) = X|EX Nu(@,) for one (hence any) 7 € Iy, (U, ou).
We can view

LGUn)* = GL,(C) x C* xWy,

as a product of LU(n)* = GL,(C) x Wy, and G/I}(T)*ab x Wo, = (C*xC™) x Wg, over
C* xWg,, where the first projection is given by g x & +> det g x « and the second is given by
(x,y) ¥ a — x x«. The above pair (Yy, ) then defines a unique morphism

Veu : £g, X SL2(C) — GL,(C) x C* xWg, .

Conversely, each Yy € W (GU(n)*) gives rise to a pair (Yy, y). We summarize these rela-
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tionships in the following commutative diagram:

:CQU x SL, ((C)

GL,(C) x C* xW, C* x C* xW,

n(©) " Get xid) @ id @
pry | pry

GL,(C) x W, det>id C* x W, .

We now define the A-packet associated to Ygy and (GU, ogu, zgu) assuming it has been
defined for Yy and (U, gy, zuy). We have

My (GU, ocu) :=A{(m, x) : € Ty, (U, 0), oxlEx Nu@,) = XlEX NU@y))-

We now use the internal structure of Iy, (U, gy) to describe that of Iy, (GU, ocu).
Let us first describe the relations between the various centralizer groups for ¥y and Ygu.

Lemma 2.18. With Yy and Yy as above, we have

Syey = SJU x C%, gWU = gWGU7 Sn

Yeu JT()(SJU) x C*,

where S = {g € Sy, :detg = 1},

Proof. For (g,c) and (x,1) in GL,(C) x C* and 0 € Wy, projecting to the non-trivial
element of I'g, @, . we have

(g,C) ' (X,Z) N0 - (g—lvc_l) = (gX,Ct) RO - (g_l’c_l)

= (gx(Jg'J "), tdetg™) x o,
where the second equality comes from the action of o on (g~ x ¢~1). In particular, we have
(g,¢) € Sy if and onlyif g € 51//U and det g = 1. In other words, SJr x C* = Syqu-
We now prove that § vy = E3 veu- BY a direct calculation, we see that

ZUm)HTev = {+id,) ~Z /27,

and Z (GU(n) y'ou = id, x C* (because n odd). Hence §. You = m)(S ) We also remark
that the equality gx(Jg’J~!) = x implies (det g)?> = 1. Therefore, for every g € Sy, we
have (det g)? = 1. Moreover, since det(—id,) = —1, we have

St = Sy, /Z(U(n)*)"er.

Thus, § Yoy = K] vy as desired. Flnally, we have S rad = (Sygy N (SLL(C) x 1))° = (S )°
which implies the description of S , in the statement of the lemma.
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We now construct a pairing
{2 )6u : Hyg,(GU, ogu) x SE,GU - C*.

Let (7, ) € Iy, (GU, ogu). Then 7 € Ty, (U, ou) and by Theorems 2.8 and 2.12 there is
an associated character (7, )y : S — C*. Note that since S rad (S + ) we can restrict
this character to

S/ Sy = mo(Sy).

We claim this character does not depend on our choice of (U, oy, zy). Indeed, all inner twists
of U(n)* are trivial so up to equivalence, the only dependence is on zy. This dependence is
described in [25, Theorem 1.6.1(2)] where they observe that modifying zy corresponds to
taking the tensor product of (7, -) with a certain character of S BIU induced from a map

— [U(n)*/U(n)* ] T

This map is induced by the determinant map on matrices and hence contains S JU in its kernel.
This implies our claim.
Via zgy and the map

k : B(Q,, GU()*) > X*(Z(GUm)*)T2v) = X*(1 x C),

we get a character yz,, of 1 x C*. In Lemma 2.18, we showed that szcu = 7o (SJU) x C*.
Hence we define

<(7Tv X)v (S’ c)>GU = (7'[, S>UXZGU(C)-
Suppose that gy € W(GU(n)*) is generic. We show that

(7w, x) = (7, 1), )ou

is bljectlve onto Irr(S o Xzqu) by constructing an inverse. To this end, we pick a character
ugu of S ., Which restrlcts on Z(GU(n)*)T'@v to the character Xzou- AS Z (U(n) y'eu and
100} (S + ) generate S d and have trivial intersection, there is then a unique character py of S
that restrlcts to Xz, on Z (U) T'ou and pugy on nO(S + ) By (2) of Theorem 2.8, there then ex1sts
am € Iy, (U, oy) that gets mapped to uy, and by construction, (7, y) maps to ugy. Hence
Ugu > (7, x) is our desired inverse.

We have now proven:

Theorem 2.19. Parts (1) and (2) of Theorem 2.8 and part (1) of Theorem 2.12 hold for
GU for non-Archimedean v.

In the Archimedean case, these results are known by work of Langlands and Shelstad.

In the next section, we will prove that this pairing also satisfies the endoscopic character
identities.

We record the following proposition for later use.

Proposition 2.20 ([39, Section 8.4.4]). Let ¢y : Wg, x SL2(C) — LUm)* be a dis-
crete L-parameter which is trivial over SLo(C). Then the packet T14,(U, ou) contains only
supercuspidal representations. These L-parameters are called supercuspidal.
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Corollary 2.21. From the above description of local L-packets of GU, it follows that
the L-packet of a supercuspidal L-parameter of GU will consist entirely of supercuspidal
representations.

Remark 2.22. Suppose that ¢ is as above and (H,s,Ln) is an elliptic endoscopic
datum and ¢ : Wo, x SL»(C) — LH an L-parameter such that Ly o ¢! = ¢. Then ¢! is
also supercuspidal and hence the packet [T (H) contains only supercuspidal representations.

2.3.2. Global unitary similitude groups. Fix a Hermitian form V' and global group
U= U(V) and GU = GU(V). As in the local case, we give GU and U the structure of
extended pure inner twists (GU, ogu, zgu) and (U, gy, zy). We begin by recalling the fol-
lowing result which relates automorphic representations of U(A) and of GU(A).

Proposition 2.23 ([12, Section CHL.IV.C, Proposition 1.1.4]). Fixn € N odd. Let &
be an irreducible automorphic representation of GU(A) whose restriction to U(A) contains
an irreducible automorphic representation o. If o has multiplicity 1 in the discrete spectrum
of U(A), then w has multiplicity 1 in the discrete spectrum of GU(A). Moreover, 7w is the
unique automorphic representation of GU(A) with central character y and containing o in its
restriction.

Let x be an automorphic central character of GU(A) and yy := x|z(u(a)) its restriction
to the center of U(A). Consider ¢ a generic A-parameter for a global unitary group whose
automorphic representations have yy as central character. The generic condition ensures the
multiplicity one property of these automorphic representations by Theorem 2.15. As in the
local case, a pair (Y, y) satisfying the above conditions determines a generic A-parameter
for GU. In the following, we will denote such an A-parameter by ¥ gy if x is clear from the
context. We define the associated A-packet Ty (GU, ogu. €y ) to consist of the 7 whose
central character is y and whose restriction to U(A) belongs to Iy (U, ou, €y ).

Now, by the proof of [12, Section CHL.IV.C, Proposition 1.1.4], we have

LX(Z\ U(A), yu) = Resga)” LA(T\ GU(A), 1),

where ' = GU(Q)Z(GU)(A) and £ = I'NU(A). In particular, it follows from Theorem 2.15
that we can lift every representation o € Iy (U, gu. €y,) to arepresentation of GU(A) whose
central character is y. Combining with Proposition 2.23, we see that there is a bijection between
[Ty, (U, ou. €y,) and Iy (GU, ogu. €y ,)-

We now give a description of Iy, (GU, ogu. €y ,,) in the spirit of Definition 2.14. We
have defined global generic A-parameters of GU in terms of their counterpart for U. We define
the centralizer groups for such parameters of GU using the analogous groups for U and using
Lemma 2.18 as our guide.

Remark 2.24. It would perhaps be possible to define these parameters and their central-
izer groups in analogy with our definitions for U using cuspidal automorphic representations
and the methods of [5,25,40]. For simplicity, we choose not to do this in the present paper.

Definition 2.25. Let Yoy = (Yy, x) € Y(GU™(n)) be a generic parameter. We define

— ot < T o +
Sy = S‘/’u x C*%, Syeu = Sy SV’GU = ﬂo(S'/,U) x C*.
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We now discuss localization. First, by the localization map for algebraic cocycles (see
[32, Section 7]), the extended pure inner twists (GU, ogu, zgu) and (U, oy, zy) give rise to
local extended pure inner twists (GUy, ocu, . zZcu, ) and (Uy, ou, . zu, ) for each place v of Q.

Let (¢¥y, x) be a generic A-parameter. At each place v of QQ, we get a local parameter
Yy, as well as a local character )(v We define the localization of (Y, x) at v to be (¥, xv)-
The localization map S vo S o restricts to give a map S +U ) +UU and hence we get
a localization map

f f
S'/’GU - S'/’(;Uu'

Similarly, we get a localization map 8y, — Sy GUb-
We now define

My, (GU, ocv)

= {®nv my € My, (GUy, 06U, ) (7w, - )gu, = 1 for almost all v}.

We associate to each 7 = ), JTU € Iy, (GU, ggu) a character of Slt}, . Each 7y cor-
responds to a pair (7, xy), where 7}, € IT1(U). We then define a global pairing by the formula

(7. (5, Nov = [ [y, 1) (50, c0))eu,,  (s.0) € Sy

where (sy, ¢y) is the image of (s, ¢) under the localization map defined above. We claim that
(,-) descends to a character on §y . Indeed, by definition we have

(m, (s.¢c))gu = H(”{;v sv)u, Xzguy (cv).

v

We showed previously that [], (. sy)u, descends to E,I,GU = ng and [, xzqu, (cv) is
trivial by [32, Proposition 15.6].

Proposition 2.26. For ¢ gy a generic A-parameter of GU, we have the following equal-
ity of sets:
My, (GU, 06U, €y ) = {m € My (GU, 06v) : (7, )6u = €y }-

We note that since we are assuming ¥ gy is generic, we in fact have €y, = 1.

Proof. 'The left-hand side consists of all pairs (7, x) such that 7 € Iy (U, ou. €y)-
By definition, we have

My (U, ou. €y) = {m € Iy, (U.ou) : (7. )u = €y }-

Hence we just need to show that (7, - Ju is trivial if and only if (7, ). - )Gu is. But this is clear
since these are the same character of § You = =5 . O

Remark 2.27. For our purposes, we also need to generalize the above description of
automorphic representations to the groups G(U(n1) x --- x U(ng))(A) withny +---+np =n
odd. In this case, Proposition 2.23 still holds true ([12, Section CHL.IV.C, Proposition 1.3.5])
and then the above process can be applied without any major change.
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3. Endoscopic character identities

Fix v a finite place of Q and let £/ Q, be a quadratic extension and n an odd natural
number. Our goal in this section is to prove the endoscopic character identities for elliptic endo-
scopic groups of G(U(ny) x --- x U(n;)) with ny + ---+n, = n and U(n;) an inner form
of U(n;)*. We prove this using the fact that these identities hold for U(ny) x --- x U(n,) as
in [25,40]. Note that we are not assuming all n; are odd, though at least one must be since 7 is.
We show that

« if the endoscopic character identities hold for U(n1) X --- x U(n;), then they also hold
for U(ny) x ---x U(n;) x Resg /@, Gm, where Resg,q, Gm embeds diagonally into
the center of G(U(n1) x --- x U(n,)),

* if the endoscopic character identities hold for U(n1) x - -+ x U(n;) X Resg; @, Gm, then
they hold for G(U(ny) x --- x U(ny)).

We recall the statement of the endoscopic character identity for an extended pure inner twist
(G, o, z) of a quasi-split reductive group G* over Q,, with refined endoscopic datum (H, s, £7).
Fix a local Whittaker datum w of G* giving a Whittaker normalized transfer factor A[w, o, z]
(as in [24, Section 4.3]) between (H, s, L) and G. Suppose that f € #(G) and fH e H(H)
are Afw, o, z]-matching functions.

Let Y € U (G*) and y € UF(H) be such that y = Lo yH. Let TTyu(H), Iy (G, 0)
denote the respective A-packets for the parameters. Then the endoscopic character identity
states that

(3.1) Yo (mhsynu@E | M =e@G) D (ms-sy)(r | f),

n’HGHwH(H) nelly (G,0)

where (7, s) is as defined in Theorem 2.8 and Theorem 2.12. The elements sy and sy are
defined to be the image of (1,—7) under ¥ and ¥ respectively and e(G) is the Kottwitz
sign.

According to a theorem of Harish-Chandra, the trace distribution f + tr(z | f) is given
by integrating against the Harish-Chandra character, which is a locally constant function ®,
of G(Q,)sr (Where G(Q,)s, denotes the strongly regular semisimple elements of G(Q,)).
Then the above identity is equivalent to the equality

/ S (nf sy) ()@ (2) dg

Qv)sr nHEHwH (H)

= ¢(G) Y (ms-sy) f(9)Ox(g) dg.

G(Qyp)sr nenw(G,Q)

We remark that a Harish-Chandra character exists for parabolically induced representations
1 }? () by [57, Theorem 3] and that this holds even in the case where the induction is not
irreducible. Hence, 7 € Il (G, o) have Harish-Chandra characters even in the case where
Vv € W (G*).

3.1. Endoscopic identities for U(ry) x --- x U(n;) x Resg; @, Gm. In this subsec-
tion we use the notation U to denote the group U(rn1) x --- x U(n,). Our goal is to prove the
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endoscopic character identities for Ux Resg, @, Gm using the fact that these identities are
known for U by [25] (Theorems 2.8 and 2.12 in the present paper).

In fact, we will prove the following more general result. Fix quasi-split reductive groups
G} for i € {1,2}. Let (G;, ;. z;) be extended pure inner twists of G}. Let (H;,s;, Lni) be
refined endoscopic data for G;. We denote by (H; x Ha, 51 x 52, L1 x L15) the corresponding
endoscopic datum of Gy x G,. Fix a character ¢ : Q, — C™ and Q,,-splittings of G*. This
induces a Whittaker datum w; of G as well as the Whittaker datum w; x w, of G} x G5. We
will prove that if the endoscopic character identities are satisfied for G; and (H;, s;, L#;), then
they are also satisfied for G; x G, and (H; x Hp, 51 X s2, Lm X an).

Fix 91 *62 € Ut (G} x G}) and suppose ¥ *H2 € W+ (H; x Hp) is such that

Y1702 = (Fyy x Epp) oyt <M,

Then yH1 XH2 factors as a product of parameters yH1 of H; and yH2 of Hy. As a result,
Y01 > G2 factors as a product of parameters ! of Gy and ¥ 92 of G, such that

o=t oyth.

We need to show that for two arbitrary A[w; X wy, 01 X 02,21 X z3]-matching functions
f € #(G1 xGy) and f’ € J(H; x Hy), the following identity holds:

(3.2) [( Y {msymn) f1(9)On(g) dg

Hi xH2)(Qy),
)( U)Yr n/eHle XH2

= ¢(G1 x Ga) D (s syexa) f(9)Ox(g) dg.
(G1 xG2)(Qy)sr nenl/,Gl G

The packets TTyHi <82 (Hy x Hp) resp. Ty 61 %62 (Gy X Ga, 01 X 02) consist of represen-
tations of the form 7wt X 712 resp. 761 ® 792, where 7t resp. 75 are representations in
[Tyt (H;) resp. Iy (G;, 0;). The pairings (7 X 712 .) resp. (G X 792, .) are defined
as () o (mH2 ) resp. (701, - ) - (702, -). Tt is not difficult to see that

®TEGI |Z]1:GZ == ®TEGI ® ®JTGZ'

It is also a basic property of the Kottwitz sign that e(G; x G2) = ¢(G1)e(G).

Moreover, a function f € # (G x Gz) can be written as a sum of functions of the form
f1 ® f2, where f1 € #(Gy) and f> € #H(G). Hence, for every such f; ® f> we have an
equality between the quantities

e(Sl X GZ) <:l"S .S GIXGZ>(ﬁ 8 fé)('():” (’()a’{’
’w
((}1 X(}z)(Qv)sl 77:6”1/,0 %G

and

e(G1) Do (7O 5y61) fi(x)O 0 (x) dx

G1(Qy)sr 261 anGl

-e(Ga) Z (JTGZ,S'Ssz)fz(y)(anGz(J’) dy.
G2(Qy)sr er2€HwG2
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Similarly, for every lel ® f2H2 with f1H1 € J¢(H;) a matching function of f; and
sz2 € J¢ (Hz) a matching function of f> we have an equality between

/( S (asynn) (FF R ) (0@ () dx

Hy xH2)(Qy)s
Qs et o

and

/ S sy ) £ ()0 e () dx
Hl (Qv)sr

H
k4 IEHV/Hl

- [ S (22 sym) £ ()0 (7) dy.
H2(Qv)sr

H
b4 261_[10“2

In order to prove equation (3.2), it suffices to prove that for each f1 ® f» € H(G; X Gy),
we may choose a A[w; X wy, 01 X 02,21 X z1]-matching function fIH1 ® szz € J¢(Hy xHp)
such that fl-H € J(H;) and f; € #H(G;) are Alw;,0;, zj]-matching. This follows from the
following lemma.

Lemma 3.1. Iffl-Hi € JH(H;) and f; € H(G;) are Alw;, 0;, zi|-matching functions,
then
M@ M2 e ge(Hy xHy) and i ® f» € #(Gy xGa)

are A[wy X w3, 01 X 02,21 X z2]-matching functions.

Proof.  Pick yu = (yu,.yn,) € (H1 xH3)(Q,) such that yy is strongly regular and
transfers to a strongly regular y = (y1, y2) € (G1 X G2)(Q,). Then we need to show that

33) SO pfl g £i2)
= Y Alwi xwz,01 % 02,21 X 21](yw, Y) O P (f1 ® fo),
Y ~stY
where the sum is taken over the set of y’ that are stably conjugate to .
By definition, for y; € G; and f; € C>°(G;) we have
OyL552 (i ® f2) = Op! (f1) 02 (fa).

Moreover, an element (y1,y5) € Hi x Hy is stable conjugate to (y1.y2) € Hy x Hy if
and only if y] is stable conjugate to y; in Hy and y} is stable conjugate in y» in H,. Therefore
we have

SOMIH2 (£l g £f2) = SOM (£{1)SOM (£3)

YH Ho

and similarly

(3.4) Z Alwy X w2, 01 X 02,21 X 21]()/1-1,1/)031 2@ fr)
Y'~sty

= > Alwy x w2, 01 X 02,21 X 21](y1. YOG (/1) OF2 (f2).

Vi~stV1 Va~st V2

We will prove in Lemma 3.4 that

Alwy X w2, 01 X 02,21 X z1](yu. ¥') = Alwi, 01, 21](u, . Y1) Alw2, 02, 22] (VH,. ¥3)-
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We can then rewrite the right-hand side of (3.4) as

3 A[ml,gl,zﬂ(m,yi)oy‘il(fl))( 3 A[wz,gz,n](m,yé)o;‘;%fz)),

Yi~stV1 Y5~stV2

and because fl.Hi and f; are Alw;, 0;, z;] matching functions, this is exactly
SO, (f1NS50,2 (f31).

In other words, equation (3.3) is true. O

3.2. Endoscopic identities for G(U(ny) x - -+ x U(n,)). We now have the endoscopic
character identities for U X Resg/ @, Gm and need to show they also hold for GU, where we
use the letter GU to denote the group G(U(n1) X -+ X U(n,)) until the end of this section. We
have a surjection of algebraic groups

P :UxResg/q, Gn —> GU,

with kernel isomorphic to U(1).
We fix quasi-split groups U* x Resg, Q, Gm and GU* as well as an extended pure inner
twist (GU, oGu, zgu) of GU*. The projection P induces a surjection

B(QU’U* XReSE/QU Gm) — B(Qv’ GU*),

hence (after possibly modifying (GU, ogu, Zgu) in its isomorphism class) we can choose an
extended pure inner twist (U x Resg; @, Gm, ou. zu) such that P takes oy to ogu and zy
to zgu. The extended pure inner twist (U X Resg /@, Gm, ou. zu) restricts to give (U, oy}, z{;)
and (Resg; @, Gm, 0G,,» 2G,,)- We fix compatible I'g ,-splittings of these groups as well as
a character ¢ : Q, — C*. Hence we get compatible Whittaker data which we denote by wy
and wgy respectively.

A crucial input in the case we consider (where n = ny + --- + n, is odd) is that the
projection P is also a surjection on Q,-points. This follows from Lemma 2.2. Hence we get
a map

Irr(GU(Qy)) < Irr((U xRes g/ @, Gm)(Qy)).

given by pullback. The image of this map is the set of irreducible representations = X y such
that wx [u(1)(@,) = Xlu(1)(@,)» Where wy is the central character of 77 and the U(1) in question
is the kernel of P. If this is satisfied by a single member of an A-packet of U x Resg, g, Gm,
then it will be satisfied by the entire packet since elements of an A-packet have the same central
character ([25, Theorem 1.6.1] and Theorem 2.12). In light of Theorem 2.19, the A-packets of
GU are in a natural way a subset of the A-packets of U x Resg /g, Gm.

Since the kernel of P is compact, it follows that any f € # (GU) lifts to an element
f' e H(UxResg;q, Gm). Suppose 7 is an admissible representation of GU(Q,) and 7" is
the pullback to Irr(U x Resg /@, Gm). Then to prove the endoscopic character identities for
GU it will be necessary to relate tr(sr | /) and tr(sr” | f'). We have

7' (f ) = / (&)’ (g)vdg
(UxResg/Qy, Gm)(Qy

- / F(&)m(g)v dg / dz = Vol(U() Q)7 ().
GU(Qy) Uu(1)(@Qy)

where the middle equality holds by [43, equation (3.21)].
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Analogously in the endoscopic case, we have a map
PY:HxResg; g, Gm — G(H),

with kernel U(1), where H = ]/ _; U(nl.+) x U(n; ) such thatn; = nlJr + n; is an endoscopic
group of U and G(H) is the associated similitude group. Suppose n = nj + --- + n, is odd.
By Lemma 2.2, the map is a surjection on QQ,-points.

We fix a refined endoscopic datum (G(H), s, L) for GU as in Section 2.1. The map
Resg/ @, Gm C Z(GU) — GU induces a map of L-groups LGu — L(ResE/Qv Gm). We
get an analogous map for G(H) and one checks there is an induced map

Ly L(ResE/Qv Gm) — L(ResE/Qv Gm),

giving a commutative diagram

LG(H) » LGU

L !

A
L(ResE/@v Gm) — L(ResE/@U Gm).
We now fix an endoscopic datum of U x Resg /@, Gm which we denote by
(HxResg/q, Gm, s, Ln/)

as follows. We set s’ = £ PH(s) and we fix L’ such that the restriction to H induces an elliptic
endoscopic datum for U as in Section 2.1 compatible with our fixed datum for GU and such
that L restricted to Resg /@, Gm 18 just Ly In particular, we have a commutative diagram:

L/
L(HxResE/QU Gm) LN L(UxResE/Qv Gm)

(3.5) L PHT TLP

LG(H) » LGU.

Ly

We now prove the following lemma.

Lemma 3.2. Using the above normalizations, if f € #(GU) and 1 € 3(G(H)) are
Alwgu, ocu, zgu]-matching, then the pullbacks

f’e]f(UxResE/QUGm) and f/HG%(HXReSE/QUGm)

are Alwy, oy, zy|-matching.
We begin by proving an auxiliary lemma.

Lemma 3.3. For (y,z) € UxResg;q, Gu(Qy), the map P gives a bijection between
conjugacy classes in U x Resg @, Gm(Q,) that are stably conjugate to (y, z) and conjugacy
classes in GU(Q,) that are stably conjugate to yz. The analogous result also holds for the
map PH.
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Proof. If (y’,z') is conjugate or stable conjugate to (y,z) in UxResg/q, Gm(Q,),
then it is clear that y’z and yz are conjugate or stably conjugate in GU(Q,,). Now, suppose that
g,yz € GU(Q,) are conjugate or stably conjugate. Then they must have the same similitude
factor. In particular, this means that gz~! has trivial similitude factor and so

(gz_l, z) e UxResg; @, Gm(Qy),

and clearly P(gz7!,z) = g.

We now aim to show that (gz~!, z) is conjugate or stably conjugate to (y, z). To simplify
the notation, we just show that (gz~!,z) and (y, z) are conjugate (although the argument to
show stable conjugacy is similar).

Let x € GU(Q,) be such that xgx~! = yz. We want to show that x can be chosen to be
an element of U(Q,). Since the map P is surjective on QQ,, points, we can write x = ur such
that u € U(Q,) and r € Resg; @, Gm(Q,). Then r lies in the center of GU(Q,) and hence
we have ugu~! = yz as desired. Finally, we finish the argument by observing that

u, D(gz"" D), )7 = (r,2)

since the restriction of P to the first component is an injection. |
We now prove Lemma 3.2.

Proof. We choose a strongly regular semisimple (yn,z) € HxResg;q, Gm(Q,) that
transfers to a strongly regular (y,z) € U xResg; @, Gu(Q,). Then we need to show that

SOwun(f™ =" Y Alwu,ou. 2ul((v1. 2), (', 2) Oy, (f)-
.2)~st (¥,2)

Expanding this is equivalent to showing that

2.

Wips2)~st (vu,2)

/ S i 2h ™ty dh
HXResg/Q, Gm/T(ylfl.z)

equals

> Afwu.ou. zul((m. 2). (', 2)) fl(g(y.2)g Y dg.
(y/rz)NSl (J/sZ) Ux ReSE/@U Gm /T(V,Z)

Note that the kernels of PH, P are contained within 7{,, ,) and 7(, ;) respectively. Hence we
have (UxResg; @, Gm)(Qy)/T(y,2)(Q,) = GU(Q,)/Ty:(Q,) and the analogous statement
also holds for PH.

By Lemma 3.3, we can rewrite the equation above as

> S hyzh™") dh
viz~smz L O Tz

equals

> Alwvov. (). 02 | o Sz dg

V'Zr~styz
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In Lemma 3.8 we prove that there is an equality of transfer factors

Alwy, ou, zul((yn. 2), (¥', 2)) = Alwgu. 0cu. zaul(yuz. y'z).

Hence, the above equation reduces to

SOy (f1) = Z Alwgu. ocu. zcul(yuz. y'z) Oy (f),

V'z~g1yZ

which is true by assumption. O

With this lemma in hand, we now prove the endoscopic character identities. Pick a param-
eter Yy € W (GU™) and let y' € ¥+ (U* xResg,/, Gm) be the composition of ¥ with the
map YGU* — L(U* xResg /@, Gm). We suppose ¥ factors through LG(H) and pick VG (H)
sothaty = Lpo VGm)- We can write ' = Yy X ¥g,,, where ¥y is the image of 1 under the
map GU — L'U. Diagram (3.5) implies that there is a parameter y; such that ' = L5/ o .

Fix matching functions f € #(GU), fH € #(G(H)). Write

s=(§,c)eﬁx@;=(?(i?).

Now, for ¥ in the previous paragraph with packet Iy, (GU, ocu, zgu), we have by the defini-
tion of the pairing (7, - )gu in Section 2.3.1 that

e(GU) > (7.5 sy)eutr(T | f)

7€y, (GU,06u,zGu)

=¢(GU) Y (7.5 -5y )uzay () (T | 1),

ﬁGHW

where on the right-hand side, 7 corresponds to 7 X y € Irr(U x Resg/ g, Gm)-
We showed above that there is a natural bijection

H,/,(GU, oGu) —> HI//’(U X ReSE/QU Gm, ov),

and we related the traces of corresponding representations. The pairing

('W)UxResE/@U G, Hw’(UXReSE/QU Gm) x Slup, — C*

is given as a product of the pairings for U and Resg @, Gm, and we remark that the pairing on
Resg /@, Gm is given by y;,, from the way we chose (Resg,q, Gm. 06, ZG,,).- Hence we
have the above equals

e(GU)

1
W@ L s 5w uxress o, 60 00 | £,

JT/GHW/
Now, using that ¢(GU) = e(U) = e(U xResg,q, Gm) (see [26, p.292]) we can apply the

previously established endoscopic character identity for U x Resg /@, G to get that the above

equals
1

Vol(UM(@Qv))

Z (7{]/-], Swﬁ)HXReSE/@v Gn tr(”ll-l | f/H)'

EHVJ/I/{



Bertoloni Meli and Nguyen, The unitary Kottwitz conjecture 31

Finally, we relate this to G(H) using that G(H) and H x Resg, ¢, G are both assumed to be
trivial extended pure inner forms so that the pairings are especially simple. We get

Y (T Syem o tlaan | 7).

TTG(H) GHWG(H)

which is the desired formula.

3.3. Transfer factor identities. In this subsection, we prove a number of identities
relating various transfer factors. These identities are used in the previous subsections. Remark
that we use the letter A resp. A’ to denote the transfer factors that are compatible with the
geometric normalization resp. arithmetic normalization of the local Artin reciprocity map.

3.3.1. Transfer factors of a product. We temporarily return to the notation of Sec-
tion 3.1. We denote by G the group G; x Gz and by G* the group GT x GJ.
We prove the following lemma

Lemma3.4. Let(y1,y2) € (Hy xH2)(Qy)sr and (61,02) € (G1 X G2)(Q,)sr be related

elements. We have

Alw X w1, 01 X 02,21 X 22)((y1. ¥2). (61.62))
= Alwi,01.21](y1.61) Alwa, 02. 22](¥2. 62).

Proof. Each transfer factor is a product of terms

*

GF . % _
(VG ,<p)A AH A A (inv([z;](8;, 6, si) L

1>, p

We state everything for G; but the definitions are analogous for G. We now explain
the terms in the above formula. Notably, all the terms except the last only depend on G}
and H; (as opposed to G;). Fix a § € G (Q,) such that §* is stably conjugate to Ql-_l(5).
Recall that we have fixed Q,-splittings (7;, B;,{X; o}) for G as well as the Q,-splitting
(T T1 XTz,B Bl XBZ {X(x} = {X1 a}]_[{XZ (x}) of G*.

Now, V' is the degree 0 virtual Galois representation X *(7;) @ C —X* (T ) ® (C and ¢
is the additive character we fixed in order to define our Whittaker datum. The term €% I (V’ ®)
is the local e-factor of this representation normalized as in [56, Section 3.6]. We also know that
e (V, p) is additive for degree 0 virtual representations V' (see [56, Theorem. 3.4.1]), therefore

* * G* * G* *
STV 0) =€, (VO p)e, > (V92 ).

We denote by S; the centralizer of §; * and S; Hi' the centralizer of y; sothat S = S; x S,
and SH = §] Hix S;{z are the centralizers of (61, 82) resp. (¥1,72).
We put

1

T8 -1,

o

Dg((81.62)) =

where the product is over all roots of S in G. Similarly

DG,' (81) =
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where the product is over all roots of S; in G;. In particular, we have
D ((81,62)) = Dg,(81) Dg,(82).

We define Dy(y1, y2) and Dy; (y;) analogously and we also have the equality

Du(y1,y2) = Du, (y1) Dn, (y2).

By definition, Ary = DDy 1 50 that we have

AR ((11,72), (61,82)) = AR (11,81 AZ (72, 82).

For the other terms in the definition of the transfer factors, we need to explain the notions
of a-data and y-data. A set of a-data for the set R(T, G) of absolute roots of S in G is a function

R(T,G)—>@:, o> dy

which satisfies a_j = —ay and asy = o(ay) for o € ', . We recall the notion of y-data. For
o € R(T, G), we set

Iy = Stab(ew, T') and T'yy = Stab({e, —a}, T'),
and denote Fy, F1 the fixed fields of ['y resp. I'+4. A set of y-data is then a set of characters
Yo Fy — C*

satisfying the conditions
Yoo = Xa©0 . fea = Xg
and if [Fy : F1q] = 2, then yq |Fi is non-trivial but trivial on the subgroup of norms from F}.
Since I'g, acts on GT@ and preserves (G*)@v, it follows that if (aq)ye R(S:,GY) and

(Xa)aeR(S, Gr) are a- -data resp y-data of (S;, G*) then (ao)yer(s,c*) and (Xo)acRr(s,G) are

a-data resp y-data of (S, G*).
Now, we define
G* a(8;) —1
Ay' = l_[ Xa (l—)
o da

where the product is taken over the set R(S;, G;) \ go* 1 R(SH’ H;).
We have a similar formula for Aci’ in which the product runs over the set

R(S,G*)\ ¢y5 ' R(S" H)
= R(S1.GY) \ @5 " R(S{"" . H1) U R(S2.G3) \ @75 ' R(S,”. Ha).
In particular, we have
Ag = A111 A
Next, we want to show that
f = a1’

To this end, for i € {1,2} one constructs an element A; € H! (I'g, . (Si)sc) and then uses the
Tate—Nakayama duality for tori in order to get a pairing (-, ) between H I(FQU (Si)sc¢) and
77.'()([ i/Z (G* ]F@v). One can view s; as an element of [Z (H) /Z (G* ]F'@v, embed the latter
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into 3‘;1\{ /Z ((/}? ), and transport it to S; /Z (é? ) by the admissible isomorphism ¢,, 5. We then
define o
7= (Aisi).
Because S = S x S% and Sg¢ = (S1)sc X (52)s¢, to show the necessary product relation for
this term, it is enough to show that A = A1 x As.

We recall the construction of A for G* and S. Write (7, G*) for the absolute Weyl group
and let g € G* be such that gTg~! = S.Foreacho € Ig, there exists w(0) € (7, G*) such
that forallt € T,

A

w(0)o(t) =g lo(grg™ g
01

Let w(0) = sq, - Sq, be areduced expression and let n; be the image of (_1 0) under
the homomorphism SL, — G™ attached to the simple root vector Xg,. Then n(e) = ny ---ng
is independent of the choice of the reduced expression. So A € H'! (I'g, » Ssc) is defined by the
following 1-cocycle:

o g([[e¥ (@)n)g o] g™

where the product runs over the subset {& > 0,0 'a < 0} of R(S,G*), where positivity is
determined by the Borel subgroup gBg~!. The construction is analogous for G}.
Now, we have

(1) B = B1 X Bz,
) T=T1xT3, S =851 x9,,
(3) R(S.G*) = R(S1.G}) LI R(S2.G3) so that (Xo)g+ = (Xa)gr LI(Xa)as-

We see that
Q(T,G*) = Q(T1,GY) x Q(T2,G3),

and we can take g = g1 X g2 so that w(0)g* = a)(a)GT X a)(a)G;. Therefore,
n(o)g+ = n(o)gr x n(o)cs-

We conclude that A = A1 X A5.
We are now going to show that

Gy
1>,

G
s, p -

AICI"Iz,D =A A
The construction is as follows. First, we associate to the fixed y-datum a G* -embedding (see
[36, Section (2.6)])

tgr 1 LS — LG

Next via the admissible isomorphism ¢, s the y-datum can be transferred to § H and gives
an L-embedding &1 : £SH — LH. The admissible isomorphism @y,s also provides dually an
L-isomorphism ¢, 5 : £S — £ SH. The composition

g =Ltnogfoly s

gives another L-embedding Ls  LG* Via conjugation by an element of G* , We can arrange
that £+ and £’ coincide on S so that §’ = a - &g for some a € Z'(Wg,, ).
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The term AIH is given by (a, §), where the paring (-, -) is the Langlands correspon-
dence for tori under the geometric normalization. More precisely, the element a of Z ! (Wg, S )
is an L-parameter of S. By the local Langlands correspondence for tori, a gives rise to a char-
acter {a,-) of S.

In our case, we have

S=8 xS and §=(81.6),

so it suffices to show that a = a1 X az. In order to verify that, we need to review carefully the
formation of the L- embeddlng £ L S — LG associated to a x-datum [36, Section (2.6)].

Fix a Borel pair (B T) of G* as well as a Borel subgroup Bg (possibly not defined
over Q,) of G* containing S. The pair (Bg, S) yields a set of positive coroots of S and equlv—
alently a set of elements of X* (S ). Then £ is defined so that the restriction to S maps StoT
by the unique 1som0rph1sm mapping our chosen subset of X* (S ) to the set of positive roots
of T determined by T.

To specify &, we have only to give a homomorphism

w > §(w) = &o(w) X w,

where &o(w) € Norm(?, (/}\*) We require that if w = o under Wg, — I'g,, then Int(§ (w))
acts on+T as the transport by & of the action of o € I'g, on S.
We then define
§(w) = rp(w)n(o) x w

forw € Wg, and w — o under Wg, — I'g, . The term n (o) is defined above, in the definition
of Ay and we have already seen that n(o0) = n(o)g, x n(0)g,-

We recall briefly the construction of r,(w). We denote by R the set RV (G, S) and
define X to be the group of automorphisms of R generated by I'g, and €, where € acts on
X«(S) by €(t) = —t (as in [36, Lemma 2.1A]). The group X acts on R and divides it into
Y-orbits R = R U--- U Rg. For each X-orbit R;, we define an element r;; (w) and then
take the product over the orbits to obtain r,(w). Since R+ = ‘RGT L J?G; and the group X
preserves ‘RGT’ ‘RGT’ we have

rp(W)g* = rp(w)gr X rp(w)gs.

This implies the desired product identity for A%
Finally, we show that

HIZ D"

(inv[z1 x 22]((81,62), (8T, 83), 51 x s2) = (inv[z1](81, 87), 51)(inv[22] (82, 63), 52).
We have a natural isomorphism
B(Qy.S) = B(Q,, S1 x $2),

that maps the class of g~ (z; X z2)0(g) to the product of the classes of gl_lzla(gl) and
g5 12,0(g2). Moreover, this product decomposition respects the Kottwitz maps

ki B(Qy, Si) — X*(Si)Tov,

defining the above pairings. This implies the desired product formula. m)
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3.3.2. Transfer factors and changing the normalization.

Lemma 3.5. Let f € #(U) and 1 € 3 (H) be Alw™!, o, z]-matching functions for
an endoscopic datum (H,s,Ln) of U. If iy : U(Q,) — U(Q,) and iy : HQ,) — H(Q,) are

the inverse functions, then ¥ o iy and f o iy are matching for the transfer factors A'[w, 0, z|

with respect to the endoscopic datum (H, s~ L n).

Proof. 'We consider first the ordinary endoscopic case. Suppose yg € H(Q,,) is strongly
regular and transfers to a strongly regular element y € U(Q,). By hypothesis, we have

Sop(fM= > Al o.zl(m.y)0)(f).
Y/ ~st¥
Then we need to show that
SON (fMoin) = Y Aw.o.zl(yu.y)OJ(f oiv).
Y/ ~st¥
Since
SOy, (fMoin) = SO (f1) and  0,(f oiv) = Oy (f),

it suffices to show that the transfer factor A[w~!, g, zl(vy L (y")~1) with respect to the endo-
scopic datum (H, s, L'n) is the same as the transfer factor A’[w, 0, z](yu, y’) with respect to the
endoscopic datum (H, s ™1, Lp).

Recall that the transfer factor A’[w, g, z] is a product of terms

er, (V, o) A7 AnAm, Ay (inv[z] (y, y*), 5)

which we need to use y-data and a-data in order to define and moreover the transfer factors do
not depend on the choices of y-data and a-data.

By [33, Section 5.1], the transfer factor A[w, g, z] is defined by the same formula, except
that one replaces the term Ay, by Ay, p, inverts Ay and inverts (inv[z](8, %), s). If one keeps
track of the dependence on y-data and a-data, then Ay, p -1 (Vﬁl L)Y = Ay (va, ).

By using the definitions of the terms appearing in the transfer factors which we recalled
in Lemma 3.4, we have

et (V.9)ALals AN (. Y) = e (V. @) Arals] A (v (V) 7).
since these terms do not depend on y-data and where the Ay 4[s] notation keeps track of whether
we plug in s or s~ ! into the pairing defining A;. Moreover,

AH,)(_l,a—1 ()/1;1’ (V/)_l) = AH,X,a(VH’ V/)

Thus we have

A'w. 0. z](yu. ¥') = e (V. @) Ay Is ™ 1AW (v ¥) At ya (v V)
+ Amty,y (v, Y V2] (v, %), s71)
= e (V. 9) AralsIAnv (v () DAL 101 (i ()7
Ay, g (' ) Hnv[zI L () ).s) T
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Therefore Afw, 0, z](yy L (y")™1) with respect to the endoscopic datum (H, s, L) is
nearly the same as A’[w, o, z](yu, y’) with respect to the endoscopic datum (H, s~1, £7). The
only difference is that in the above second product, the term Ay is defined with respect to
a-data and the term Ay is defined with respect to the a~!-data. However, the A7 and €7 (V, ¢)
terms also depend on the Whittaker datum. According to [23, p. 16], we have

er(V.9) Aarr. (V)™ D) = e (Voo™ - Apg—1 (it () 7).

Since inverting the character ¢ leads to the inverse Whittaker datum w™!, the second
product is actually the transfer factor A[w™!, o, z](y !, (¥)~1) with respect to the endoscopic
datum (H, s, L'n).

For the twisted endoscopic case, the same arguments still work. Indeed, in this case
H = G x 0 and we need to show that

Son(ffoim)= Y Alw o.zl(yu.y)O5(f o iv).
y/ ~sty
Since
SOy, (fMoin) = SO/ (f) and  0}(f oiv) = OF-1(f).

it suffices to show that the transfer factor Alw™!, 0, z](yg !, (y’)~!) with respect to the endo-
scopic datum (H, s, L'7) is the same as the transfer factor A’[w, o, z](yi. ¥") with respect to the
endoscopic datum (H, s Ln). By the results in [33, Sections 5.3 and 5.4], we know that the
twisted transfer factor A’[w, o, z] is a product of terms

eL (V. o) (AT ApAqy Ary (inv[z] (8, 8™). 5)
and the twisted transfer factor Ap[w, o, z] is a product of terms
eL (V. @) APV A Al Ay (inv[z] (8, 6*).5) 7"

Since A?I‘“i‘; is the term Ay, computed for the inverse set of y-data, we see that

new

AR i )T = A (v
Moreover,
AF) o y)Is ™ = AT (vn. y)s]

Thus we have

A'Tw, 0. z)(yu. ¥) = e (V.)(AIS) " s AN (1. ) Ay (Y. )
A e ) v [Z] (v ). s 7T
=L (V. o)A 1AV () ™D A g1 a1 i ()7
Al i )TV (D)) T

As in the standard endoscopy case, the second product is actually the twisted transfer
factor Alw™!, 0, z](y !, (y¥')~1) with respect to the endoscopic datum (H, s, Ly). m|

3.3.3. Endoscopy for Resg; @, Gm. We now study the endoscopy of Resg/ g, Gm.
We must have H = Resg /g, Gm and pick s € HT'@v . We will be most interested in the
case where L’7|ﬁ is the identity map and so we assume this is the case. Then L7 is determined
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up to conjugacy by an element of H'! W, - m). By the Langlands correspondence
for tori, this cocycle corresponds to a character A of Resg/ g, Gm(Q,) = E*.

We now study transfer factors for the endoscopic datum (H, s, L/\) of Resg/q, Gm.
Recall that we have fixed an extended pure inner twist (Resg; @, Gm. 0G,,- ZG,,). Consider
zy € H(Q,) which transfers to z € Resg, g, G and z* € (Resg/ g, Gm)™*. Our goal is to
compute the transfer factor Alwg, . 0G,, . 2G,,](ZH. 2).

Lemma 3.6. We have

AlwG,, G, 2G,) (21, 2) = A(z*)(inv[zg, ] (2, 2%), 5) 7.

Proof. 'We will calculate each term in the definition of transfer factor. The virtual repre-
sentation V in this case is 0 so that the factor €(V, ¢) = 1. The terms Ay, Ay are trivial since
Resg /@, Gm has no absolute roots. The term Ay is trivial since the group §/ Z(Resg/ @, Gm)
is trivial.

We now compute Ayy,. The L-maps §res ;) o, Gu)*» £ and Ly 2+ 7+ are all the identity.
Hence, by comparing £ = no & o Lp,« ,« with ERes ) @, Gm» WE se€ that A, = A(z7).

The final term then contributes the factor (inv[zg,_](z,z*),s)~!, completing the argu-
ment. |

3.3.4. Transfer factors for GU and U x Resg; @, Gm. We use the notation of Sec-
tion 3.2. We denote the Whittaker datum and extended pure inner twists of U induced by
restriction from U x Res g/ @, Gm by wy; and (U, oy}, z{;). We record the following lemma:

Lemma 3.7. Suppose yg € H(Q,) and y € U(Q,) are strongly regular and related.
Then we have the following equality:
Alwy, oy, z5](ve . v) = Alwgu. ocu, zeul(vn. ¥)
~(inv[zgul(y, ), s){inv[zg1 (v, ). 5) 1
Proof. This is [58, Lemma 3.6] adapted to the non-quasi-split setting. |

Finally, we prove the following lemma:

Lemma 3.8. Suppose
(r.2) € (UxResg/q, Gm)(Qy)sr

and
(yn.zn) € (Hx Resg/ @, Gm)(Qy)sr

are related. Then we have an equality of transfer factors

Alwuy, ou. zul((yn. zn). (v. 2)) = Alwgu, ocu. zcul(VH zH. VZ).

Proof.  First of all, by Lemma 3.4 we have
Alwy. ou. zu)((yn. zn). (1. 2)) = Alwy, oy 20l (va . ¥) - Alwg,,. 06, 26, 1(z1. 2).-
By Lemma 3.6, this equals

Alwy, 0y 261 (va» y) - M) (inv[zg, ) (2, %), 5) 71,
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and by Lemma 3.7 we have

Alwy, oy, zul(va . ¥) = Alweu, ocu. zcul(Ya . ¥)
(inv[zaul(y, ™). s) (inv[z{](y, y*), ) 7"

Since the Kottwitz set and the Kottwitz map x respect products, we get

(inv[z(](y, ¥). s)(inv[zg, ] (z. 2%). 5) = (inv[zu] (7. 2). (¥, 27)). 5).

By the functoriality of the Kottwitz map,

(il’lV[ZU](()/, Z)v (V*v Z*))’ S) = (inV[ZGU](VZ? V*Z*)’ S)'

Hence we get

Alwuy, ou, zul((yn, zn), (v, 2)) = Alweu, ocu, Zcul(VH > V)
- (inv[zgul(y. *). s)(inv[zgu] (yz. y*2%).5s) 7.

On the other hand, by [36, Lemma 4.4A], there is a character A’ on (Resg, @, Gm)(Q,) such
that

Alwgu, ocu. zcul(yuzu, yz) = Alwgu, ocu. zaul(yu, ¥)A'(z¥)
(inv[zgul(y, ™). s)(inv[zgul(yz. y*z*).s) 7"

Hence, it remains to show that A’(z*) = A(z*). We recall that A is the character aris-
ing from the construction of the Ayy,-term of the transfer factor for Resg; g, Gm. From
the description in [36, Lemma 4.4A], A’ is the restriction to Z(GU) = Resg /@, G of the
character arising from the Ay, -term of the transfer factor for GU.

The characters A and A’ are determined by the failure of the following diagram to com-
mute:

L(ReSE/QU Gm) < L(RCSE/QU Gm)

L‘/’z* z*
LsG(H) . . LS

SG(H)\L l GU
LeH) —— fGU
/ '

“(Resg/ @, Gm)

~ |

? (ResE/Qv Gm).

We explain this diagram. The objects S G and S are maximal tori in their respective groups
that are isomorphic by an admissible embedding L¢ z*,z*+. The maps EG(H) and £9Y are the
L-embeddings constructed in [36, Section (2.6)] from a choice of y-data. The lower two diag-
onal maps in the diagram are induced by the embeddings Resg, g, Gm = Z(GU) < GU and
Resg/ @, Gm = Z(G(H)) < G(H). Since the images of these embeddings lie in the image of
the embeddings S < G and SO < G(H) respectively, we get induced maps

Resg/ @, Gm — SO and Resg/ @, Gm = S.
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These induce the upper diagonal maps in the above diagram. The outer vertical arrows are
then defined so that the left and right trapezoids commute. Note that by definition of n(w)
and rp(w) the vertical maps L (Resg/ @, Gm) — L(Res E/Q, Gm) are both the identity. The
bottom trapezoid commutes by construction. Finally, the top mﬂ@the\diagram is defined
so that the top trapezoid commutes and will agree with L7 on Resg /@, Gm and map (1, w)
to (1, w). -
Then the outer square fails to commute by the cocycle A € v!(Wg, . Resg /@, Gm) and
the inner square faivs to commute by A’ € Z 1(WQU, /7:). Since the trapezoids all commute,
these cocycles agree under the natural map Z ! W, v/f) — 71 W, m). This is
the desired result. O

4. Properties of the local and global correspondences

In this section we prove a number of properties and compatibilities of the local and global
Langlands correspondences. These properties are needed to derive our main theorem.

4.1. Unramified representations. In this subsection we suppose that v is a finite place
of Q and that £,/ Q, is unramified. We let (GU, id, 1) and (U, id, 1) be the trivial extended
pure inner twists of GU(n)* and U(n)™* respectively. Let GU(Z,) be the standard hyperspecial
subgroup. Then we say that 7 is GU(Z,)-spherical if it has non-trivial GU(Z,)-invariants.

Proposition4.1. Let Yy : Lg, — LGU(n)* € W (GU(n)*) be a generic parameter
Then Iy, (GU,id) contains a GU(Zy)-spherical representation if and only if ygu is unrami-
fied. In that case, Iy, (GU,id) contains a unique GU(Zy)-spherical representation m, which
satisfies (r,-) = 1. The same results hold true for U.

Proof. Suppose 7 € T1(GU) and 7 € T1(U) such that 7 is a lift of . By Corollary 2.17,
we see that 77 is spherical if and only if 7 is. Moreover, by the construction local packets for
GU(Q,), we have that (,-) = 1 if and only if (77,-) = 1. Therefore it suffices to prove the
proposition for unitary groups.

We mimic the proof of Lemma 4.1.1 in [54]. Denote by f the characteristic function
of the standard special maximum compact subgroup of U(Q,). If ¥y is unramified, then by
proposition [40, Proposition 7.4.3] we have

= > u]/f)

mellyy (U,id)

In other words, the packet Ty, (U, id) contains an unramified representation. The uniqueness
comes from Theorem 2.5.1a in [40].

Suppose now that Yy is ramified. Then the base change L-parameter np o Yy is also
ramified. By the local Langlands correspondence for GL, (Ey ), one gets a representation 7 of
GL, (Ey) corresponding to np o Yry. Then, as in [40, Section 3.2], one lifts 77 to a representa-
tion 7 of GLy(Ey) x 0 C GL,(Ey) x (0), where 6 is the automorphism g + J,0(g) ™" J, !
of Resg, /@, GLx,E,- Hence the corresponding representation of GL, (O, ) x 0 is ramified.
We want to show that Znenw (m,x)tr(mw | f) = 0forevery x € 8y,. If we denote fy the
characteristic function of GL,(Og,) x 0, then fn(np o Yuy) = 0. The twisted fundamental
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lemma implies that fy is the twisted transfer of f and hence by [40, Theorem 3.2.1 (a)] we
have

Yo u@|H= > (mlu(|f)=fnGpoyuy) =0.

w €Iy (U,id) ey (U,id)
By the same argument we have

Y. (FLhuE"| fi) =0,

mHell  n(H,id)
U

for every refined endoscopic datum (H, s, Ln) of U, where fy is the characteristic function of
a hyperspecial subgroup H(Z,) of H. By the fundamental lemma, fy is the transfer of /. Then,
again by [40, Theorem 3.2.1], we have

Y. lmxu@|H= ) (@Lhu@| ) =0

; H
wellyy (U,id) T el'[wg(Hgid)

where (1y, x) corresponds to (H, s, Ly, wl}}) under [6, Proposition 3.10]. Hence we conclude
that tr(sr | ) = 0 for every m € Iy, (U, id). Therefore the packet ITy,, (U, id) does not con-
tain any unramified representations.

We now consider the case of general Yy € W1 (GU(n)*). This follows from the fact
that IEU(n) is GU(Q,)-spherical if and only if 7 is M(Q,)-spherical for M a standard Levi
subgroup with parabolic subgroup P. O

4.2. On the hypothesis ST elﬁ( i =S8T d]TIlsc( ™). In this subsection, we prove that

for (H, s, 1) a refined elliptic endoscopic datum of GU = GU(V) and fH ¢ C°(H(A)) that
is stable cuspidal at infinity and cuspidal at a finite place v, we have an equality of traces:

STH( M) = ST (f ™).

We begin with some preparatory notation and lemmas. Let G be a connected reductive
group defined over Q and let v be a sufficiently regular (in the sense of Lemma 5.11) quasi-
character of Ag(R)? and C2°(G(R),v™1) be the set of functions fs : G(R) — C smooth,
with compact support modulo Ag(R)? and such that for every (z, g) € Ag(R)? x G(R),

foo(28) = v71(2) foo(8)-

Fix K¢ a maximal compact subgroup of G(R).

Definition 4.2 (Stable cuspidal function at infinity). We say that foo € C2°(G(R),v™1)
is stable cuspidal if f is left and right Kg-finite and if the function

iemp(G(R),v) > C, 7> (7 | foo)

vanishes outside g5 (G(R)) and is constant in the L-packets of I14isc (G(R), v).
Definition 4.3 (Cuspidal function). We say that f, € C2(G,(Q,),v™!) is cuspidal
if for each proper Levi subgroup M C G we have that the constant term, f;, m, vanishes (as

defined in [16, equation (7.13.2)]).

We record the following well-known lemma.
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Lemma 4.4. If foo € CX®(G(R),v™ 1) is a stable cuspidal function and (H, s, n) is an
endoscopic triple of G, there exists a stable cuspidal transfer function fofoI € CP(H(R), 1

of foo-

Proof sketch. Due to [48], we can find a function fX € C(H(R),v™!) that transfers
t0 foo. Define the function F on the set of unitary tempered representations of H(R) by setting

1
Fir)= ————— Y u(@|f5).
e HRDI i Gim)y)
where ¢ is the L-parameter of v. Then F must be supported on finitely many discrete series
packets since foo is stable cuspidal and (H, s, ) is elliptic. Hence, by [11, Theorem 1] there
exists a function £ € C(H(R), v™!) that is stable cuspidal and F () = tr(r| £1). Thus,
O’? has the same stable orbital integrals as fcg This implies that fo’g is a stable cuspidal
transfer of foo. O

We recall that S Te}ﬁ( fH) is defined by the formula
STHU™ =)t )S0y, (f™),
YH

where the sum is over a set of representatives of the (GU, H)-regular, semisimple, Q-elliptic,
stable conjugacy classes in H(Q).

Definition 4.5. We define the term S Td}ilsc( M) to equal
1

Yo = >, (Lmu| M,

¥ e, (H) 18yl melly (H,id)

where ¥ is such that on (hence any) 7 in ITy (H, id), the restriction of the central character of
7 to Ag(R)? is equal to v.

Note that we have suppressed the term ey (sy ) from this expression because our assump-
tion on v implies that all ¥ are generic by Lemma 5.11.

Separately, we have for every Levi subgroup M of H the term S TI\}/II defined in [41, p. 86]
as well as the term S TH defined by

STH : =) "(nf) ™' STyy.
M

for certain constants (nﬁ)_l.
We prove the following standard result.

Lemma 4.6. Suppose h = h®°hs, € C°(H(A)) is stable cuspidal at infinity and cus-
pidal at a finite place. Then:

» Forany M # H we have
ST () = 0.

* If M = H, then
ST (h) = STH(h).
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Proof. To prove the first part, we note that by definition, for M a proper Levi subgroup,
the “constant term” Ag; is O (for instance see the definition before [1, Theorem 7.1]). This
implies that ST (h) = 0.

We now prove the second part. We first show that SO (YH, hoo) = SOyy(hoo). By
[2, Theorem 5.1], we have

Oy (hoo) = Pu(yi. hoo) = v(Iy) ™' Y~ ulyy ' T tr( | hoo),
I1

where the sum is over discrete series L-packets of H(R) with central character vy (the unique
character of Ag(R)° such that if a parameter ¥ has central character restricting to vy, then
Lyo ¥y has central character v). The representation  is some representative of II, and the
value of tr(r | hoo) does not depend on the choice of representative since /o is stable cuspidal.
The y~! in this formula that is seemingly at odds with the formula of Arthur is explained
by [16, Section (7.19)].

Therefore we have

SOpy(hoo) = Y e()Pulyn, hoo).
Vﬁ"’st}’n
Now, by definition,

SOu(ym, hoo) = 0(Iyy) ™" Y Py, T tr(TT | heo).
I1

Since ho is stable cuspidal, we have tr(I1 | hso) = |IT| tr(;r | hoo). Furthermore, it follows
from the definitions and basic properties of the Kottwitz sign that

e(Iy)0(Iyy) = (=175 Vol (T (R) / Au(R)®) = v(Iy)d (1),
where d(1,,) = |ker(H'(R, T) — H(R, I,,,)| for T an elliptic maximal torus of /,,,.
Finally, we put everything together to get

SOpy(hoo) = Y e()Pu(vip hoo)
Yﬁ’”st}’l—l

d(I,;) .
= > ﬁzéﬂml,n)tr(ﬂhm)
Yu I

’
Yu~~'stVH

= 2

Vﬁ"’st YH
= SCDH()/H, hoo)
The last equality follows from the fact that S®g(yH, o) only depends on the stable class

of yg and
Z d(ly)

, |1
Yu~'stVH
Indeed, |I1| is well known to equal |ker(H (R, T) — H'(R,H))| for T an elliptic maximal
torus of H. Hence, it suffices to show that
> dy) = [ker(H'(R,T) > H'(R,H))|.

’
YH"™~stYH

|1

SPu(yg. hoo)

1.
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To see this, first note that the set of conjugacy classes that are stably conjugate to yy is in
natural bijection with ker(H (R, lyy) — H 1(R,H)). For each such conjugacy class, we can
choose a representative yg € T. This follows from the fact that since H contains an elliptic
maximal torus, any elliptic element of H(R) is contained in an elliptic maximal torus and all
elliptic maximal tori are conjugate in H(IR). Then the set of classes in H!(R, T) mapping to
the class of yy; in H' (R, Iy,) is in bijection with ker(H ' (R, T) — H'(R, I,;1)).
It then follows that
ST () = ©(H) ) SOy (h),
YH

where the sum is over stable conjugacy classes in H(Q) that are semisimple and elliptic
in H(R).

Since oo is stable cuspidal, its orbital integrals vanish on yg that are not elliptic at R, so
we may as well impose this condition. By [41, Proposition 3.3.4, Remark 3.3.5] we may also
restrict the sum to yy that are (GU, H)-regular. We then see that this is equal to S Tﬁ(h). |

S

Suppose now that f € #(GU(A)) is stable cuspidal at infinity and cuspidal at a finite
place. Then by the above Lemma 4.4 and [3, Lemma 3.4], for each elliptic endoscopic datum
(H, s, n), we can find a function fH that is stable cuspidal at infinity, cuspidal at a finite place,
and a transfer of f.

Our proof of the main result of this section will be by induction. We now state the key
formulas we will need. First, we have the following theorem of Morel:

Theorem 4.7. See [41, Theorem 5.4.1] Let G be a connected reductive group over Q.
Let f = [ foo, where foo € C°(G(R),C)and f° € C°(G(Ay), C). Assume that foo is
stable cuspidal and that for every (H, s,n) € &(G), there exists a transfer fH of f. Then

T¢H= D WGHSTH(M,
(H,s,m)€&(G)
where &(G) is the set of isomorphism classes of elliptic endoscopic triples in the sense of

Kottwitz and we recall that TC( f) is defined to be the trace of f on L2 (G(Q) \ G(A)).

disc

Fix an odd positive integer n. By Proposition 2.23 and Remark 2.27 we have the following
formula for each group G’ of the form G(U(n1) X - -+ x U(ng))* such that Zf;l n;i =n. We
note that all such groups are quasi-split.

For a function /& € H#(G/(A)),

T = > > w | £,
'/’e‘l’z(G’)ﬂenw(G’,Q,l)

where ITy (G’, 0, 1) is the subset of ITy (G’, ) containing those 7 with trivial character (-, ).
We will now prove by induction that for each group G’ that we consider and for each
f G ey (G/(A)) stable cuspidal at infinity, we have

STE(f¢) = STE.(f9).

We induct on Zf’c=1 n?. Hence, the base case is when each n; = 1. Such a group G’ is a torus
and hence has no non-trivial elliptic endoscopy. In particular, by Theorem 4.7 we have that

¢ (%) =sT%(f%)
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and hence it suffices to show that 76" (f¢') = STd(fs/C( 7€), By property (v) since there is no
non-trivial endoscopy, each g,/, = 1 and hence (7, - ) is the trivial character for all 7. The result
follows.

We now settle the inductive step. Suppose we have shown STC (f¢) = § T(ES/C( 7€)
for each G’ satisfying Zle nl-2 < N, and suppose that G’ satisfies Zf-czl nl-2 = N + 1. Pick
a function f G’ e #(G'(A)) that is stable cuspidal at infinity and for each elliptic endoscopic
datum (H, s, n) of G’ we pick by Lemma 4.4 a transfer fH € J¢(H(A)) that is stable cuspidal
at infinity.

Then we can write Theorem 4.7 in the form

T =T+ Y (G mSTH(M),
(H,s,m€E&(G)

where for each non-trivial elliptic endoscopic group H appearing in the sum on right-hand side,
we have verified STH( /M) = STH (/M) by inductive assumption.
To conclude, it suffices to show that we have an equality

T =STE.(fH+ > uG ST (/™).
(H,s,n)€&(G)
We prove this by arguing as in [55, p. 30] (cf. [27, Section 12]). Indeed, we have
Y. G ST

(H,s,n)€€(G’)

= Y «(@G@.mw Y ﬁ > (Layu(r | M.

(H,s,m€&(G") Y eV (H*)

Now, we apply at each place the endoscopic character identity we proved in Section 3 and
argue as for the equation [55, equation (11)] to get that the above equals

> ZL Yoo s | £9).

yeinG) sezy ¥ e @0

Now we use that

Z _1 (s, )

SEE,/, |/S¢|
is 1 if w € Iy (G, id, 1) and O otherwise to get that the above equals
> ) el
VeV, (G*) welly (G/,id,1)

which equals TS (£¢) as desired.

4.3. Some special global liftings. In this subsection, we work over QQ,, for a fixed finite
place v. Now consider ¢y : Wo, x SL2(C) — LGU(n)* = (GL,(C) x C*) x Wg, a dis-
crete L-parameter. We denote by vy the L-parameter of U(n)* obtained from ¢gy by the
projection “GU(n)* — LU(n)*. There is a (standard) base change morphism

4.1) ne.cu : ¥(GUn)*) - W(GLE, (n) x Gp).
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Denote by ¢¢; the image of ¢gy by this morphism. Then ¢g; is just the restriction
of ¢gu to WEg, x SLy(C). Since Wk, acts trivially on GL,(C) x C*, if we denote ¢ the
projection of ¢¢; to GL, (C), then it is an n dimensional representation of Wg, x SL»(C) and
moreover ¢{; is the image of ¢y by the (standard) base-change morphism for U.

Since ¢y is a discrete L-parameter, the group Sy, is finite (see [27, Lemma 10.3.1])
and we can write ¢} = (¢p1 ® V1) D --- D (¢ ® v;), Where ¢; are simple L-parameters of
general linear groups and v; are irreducible representations of SL,(C). By the computation in
[25, pp. 62-63], all the ¢; are conjugate-orthogonal and we have

r r
See = Sg. =~ [Jow.O) =[]z /2z.
i=1 i=1
Moreover, the group
Z(Um)*")'er = {£id)
embeds diagonally into Sg,. Furthermore, det(—id) = —1 and Sy, = {£id} x Sd;;. By Lem-
ma 2.18, we have

Spoy = By = Sp/{xid} = Sf ~[]z /22
i=1

and

r—1
Spau = S, = SF x C* = (HZ/ZZX) x C*
i=1
Let y gy = (Yy. x) be a discrete (in particular generic) global A-parameter of GU(A).
The corresponding A-packet consists of automorphic representations of GU(A) whose central
character is y and whose restriction to U(A) is an automorphic representation in the A-packet
of Y¥y. Again, we denote by Y{; = I1; B - - - H I, the isobaric sum of automorphic represen-
tations of GL, (A g) corresponding to ¥ . As in the local case, we see that Sy is finite and
by [25, p. 69] we have then

~ Sy ]_[ 0(1,C) ~ ]‘[Z/M,
i=1 i=1
with the group Z (ﬁ(n)*)FQ = {*id} embedded diagonally into Sy, and an isomorphism
Sy, = {+id} x S;U. Thus

Syey = Swy, = Sy, /{Eid} = ]‘[ Z/27Z
i=1

and

m—1
Sy = SE’GU ~ S;U x C* ~ ( 1_[ Z/ZZ) x C*
i=1
We say that a global parameter ¥ gy = (Yy, x) is a global lifting of ¢guy if we have
(Yyy: Xv) = $cu. In this case, there exist morphisms A : Sy, — Sgy, e Sveu = Segy an
A8 vy > E7 #u- Since the local and global parameters ¢y and ¥y, are discrete, these maps are
injective (see [40, pp.28-31] for more details). In this subsection, we construct some global
liftings ¥ gy = (Y. x) such that the above maps A, 7 and A have some special properties.
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4.3.1. First construction. (Cf. [25, Lemma 4.2.1].) We choose auxiliary places u, u’
of Q such that u splits over E as u = ww and u’ is inert. Therefore U(Q,,) is isomorphic
to GL, (Eyw). By [52, Theorem 5.7], there exists a cuspidal automorphic representation IT of
U(A) satisfying the following properties;

(1) I is discrete series corresponding to a regular highest weight and with sufficiently
regular infinitesimal character in the sense of [42, Definition 2.2.10],

(ii) IT, belongs to the packet Iy (Uy, ou,),
(iii) IT, is a supercuspidal representation of GL, (Ey,).
(iv) II,- is any prescribed supercuspidal representation of U(Q,,/).

Note that such a IT will be cohomological by the first condition and the remark at the end of
[30, Section 2].
By [17, Lemma 4.1.2], we can extend I1 to an algebraic cuspidal automorphic represen-
tation IT of GU(A). Furthermore, we can assume that IT is cohomological since IT is.
Consider the exact sequence

15 U>GUS Gy — 1.

Since IT, belongs to the packet Iy, (Uy, ou, ), the central character wg o, and the central
character wg,, of any representation in ITg, (GUy, oGu, ) must agree on (Z (GU) NU)(Q,).
The map c restricted to Z(GU) has kernel equal to Z(GU) N U so that R, ® ¢GIU factors to
give a character of im(c) which (since n is odd) is the norm subgroup N EZ/Qx C Q. We
can choose a lift of this character to Q;; and hence we conclude that there is some character
w : Q) — C* such that TT, ® (w o ¢) belongs to the packet Mg, (GUy, 0Gu,,)-

There is an isomorphism of topological groups

Q* xRsg x HZ; — Gm(A), (rt,(up)) — (rt,ruz,rus,...).

Then there is a character Q of Q™ x R~ x I1 Z; such that € is trivial on Q™ x R~ and satis-
fies €2, zx = o)z and 2(—1, 1, (—1)) = 1. This character descends to a Hecke character 2 of
Gm(Q)\ Gm(A) such that 2, = w ® k, where k : Q,; — C* is an unramified character and
Qo s trivial. In particular, if we denote =T (2 o ¢), it is still cohomological (since TT
is) and the local representation o, belongs to the packet Iy, (GUy, ocu, ) up to an unramified
character twist.

Therefore the global parameter ¥ gy = (Y. x) is a globalization of ¢y, up to an unram-
ified twist (where y¥y; is the global parameter of I1 and y corresponds to the central character
of ﬁ). Since I has sufficiently regular infinitesimal character, ¥ is generic (Lemma 5.11).
The third condition implies that ¥, is a cuspidal automorphic representation of GL,(AEg)
which is self-dual and conjugate orthogonal. Therefore we have Sy, = {£id} ([25, p. 69]) so
8y, = {id}. The above second condition implies that ¥y is a global lift of ¢y. Since the map
A is injective, we see that A is the diagonal embedding of {j: id} into Sgy,.

Moreover, since 8 pq; = 8¢, = - {id} and 8y ey = vy the map A is the trivial map. The
group S + is also trivial and the map X is given by

Spau = CC = Spgy = Sg x C*, 1 (id,1).

Thus, we have proved the following lemma.
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Lemma 4.8. Let ¢y be a discrete L-parameter of the group GU(n)* defined over Q,,.
Then there exists a generic global parameter ¥ gy such that:

(1) V¥ qu is a globalization of ¢gu up to an unramified twist.
(ii) We have Sy, ~ C* and the map A is given by
Speu = C* = Sgey Sd—; xC*, ¢+ (id,1).

(iii) Any automorphic representation 1 in the global packet My, (GU, ogv) is cuspidal and
cohomological.

4.3.2. Second construction. (We adapt [25, proof Ef Lemma 4.4.1].) Consider an ele-
ments = (x;);_; € Sg, = [Ti=1 Z /2 Z whose image in § 4, is denoted by 5. We can suppose

thatx; = 1fori e X C {1,...,r}andx; = —1fori € Y C {l,...,r}. Denote
o =De" ad gy =D
ieX ieY

(whereny = Zie x niandny = ZieY n;). We choose an auxiliary inert place u’ and a super-
cuspidal L-parameter ¢ of U, such that ¢, = ¢ ¥ & ¢,,) and the parameters ¢~ (resp.
(bs/y ) are simple and of degree nx (resp. ny). In particular, the packet Iy ,(Uy’, 0u,, ). 0U)
contains only supercuspidal representations.

Since all the ¢f ! are conjugate orthogonal, by [40, Lemma 2.2.1], the L-parameters ¢;’(X
resp. ¢>;Y come from L-parameters ¢y (resp. ¢y ) of unitary groups U(ny ), (resp. U(ny)y) by
the base change map np (see (4.1)). Similarly, the L-parameters qﬁZ,X (resp. qﬁZ/Y) come from
L-parameters ¢y’ x (resp. ¢, y) of unitary groups U(ny ), resp. U(ny ), by the base change
map np. Now as in the first construction, for these L-parameters we can construct cuspidal
automorphic representations ITx resp. I1y of Uy, (A) resp. Uy, (A), in particular, (ITx ),
resp. (ITy ), are the supercuspidal representations whose L-parameters are ¢y’ x, resp. ¢y’ y .
These cuspidal automorphic representations give rise to cuspidal automorphic representations
H;}X resp. H';,Y of GL, (Ag) resp. GL,, (A g). Since these automorphic representations are
self-dual and conjugate-orthogonal, the isobaric sum H;'(X H H';Y factors through the base
change map np ([25, Proposition 1.3.1], [40, p.27]). Denote this global L-parameter of U(A)
by ¥y. Again by [25, p. 69] we know that Sy, ~ ]_[ie{X’Y} 7 /2 7.. As in the first construc-
tion, the L-parameter ¥y is generic (Lemma 5.11) and is a global lift of ¢y. Moreover, the
localization map A is defined as follows:

Sy, = Spy» (¥1.x2) = (X1,..., X1, X2,...,X2).

ieX ieY
Taking the quotient by {£ id}, we see that E,I,U = Sy, /{Fid} =~ Z /27 and the map A
is given by

gl"u — §¢U, (=1) 5.

Now take an automorphic representation IT of U(A) in the packet [Ty (U, gy). The
automorphic representation [T is cuspidal since I, is a representation whose L-parameter
is ¢,7. By the same argument as in the first construction, we can extend it to an automorphic
representation I of GU(A) such that o, belongs to the packet 14, (GUy, 0Gu, ) up to an
unramified twist. Thus the global parameter ¥ gy of Hisa globalization of ¢gy. We have then
Sy, = Z/2Zand Sy, = Sy x C*.
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Furthermore, if the element s belongs to S + , then (x1, x2) belongs to S;’U since the
map A is injective and restricts to a map from S + to S + . Therefore, we have the following
description of the map x:

S¢GU:Z/2ZXCX—>S¢GU:S(ZJX(CX, Ixt—1xt, —1xtrsxt.

Thus we have proved the following lemma.

Lemma 4.9. Let ¢gu be a discrete L-parameter of the group GU(n)* defined over Q,,
and s € Sq‘;. Then there exists a generic global parameter ¥ ¢y and an inert place u' such
that:

(1) Yy is a globalization of ¢Gu up to an unramified twist.
(ii) We have Sy, ~ Z /27 x C* and the mapx is given by

S,/,GU:Z/ZZXCX—>S¢GU2S(;JX(CX, Ixt—=>1xt, —1xt+>sXt.

(iii) Any automorphic representation T1 in the global packet My, (GU, ogu) is cohomolog-
ical. Moreover, T,/ is supercuspidal.

4.4. Galois representations associated to global cohomological generic parameters.
We have fixed a quadratic imaginary extension £ of Q. In this subsection, we associate repre-
sentations of I'g to certain global parameters.

Let (Y y. x) be a global A-parameter of a global unitary similitude group GU. In partic-
ular, ¥y is a global parameter for the corresponding unitary group U. We suppose further that
the localization at infinity (Y y., Xoo) is regular and sufficiently regular so that ¥y will be
generic.

We first associate a I'g representation to ¥y. Associated to ¥y, we have the quadratic
base change, ¥{;, which is an automorphic representation of GL, (A g ). Since the global param-
eter is generic, the representation ¥{; is of the form ITy H - - - B Iy, where II; are self dual
cuspidal generic and cohomological automorphic. Now, fix a place £ of Q and an isomorphism
t¢ : Q4 — C. Then by [51, Theorem 1.2], for each representation I1; there is a unique ¢-adic
I'g-representation p; such that for each place # of E not dividing £, we have the following
isomorphism of Weil-Deligne representations:

WD (pi|ry,)"™ = i ' L((T) 2),

where £((T1;) ) is the local parameter associated to (I1;)» under the local Langlands corre-
spondence.

Similarly, if we denote p = p; @ -+ @ pg, then for each place & dividing ¢ and not
dividing £, we have

WD(plry, )" = £ B --- B i) ).

Denote by ¥y the localization of ¥y at . By the definition of localization map
of global parameters ([40, pp.18-19]), we see that the local L-parameter (not necessarily
bounded) corresponding to WD(,O|FEO)F'SS is Yy if g is splitin E. If g is inert in £ then
q = P and Ep is a quadratic extension of Q. In this case WD(p|r Ep )F=s$ corresponds to the
image of ¥y p via the base change map 7p and equals Yy p| £,
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The central character y gives rise to a character of GL; (A g) and hence an {-adic char-
acter y’. The pair (p, y’) then gives us a morphism

—_~ — —X
0:TE — GLi(Q) x Q.
From the local-global compatibility properties of p, we conclude that for every place &
dividing a prime g # ¢, the restriction’,Z)]WE? equals (Yu,q4, )(q)|WE? , where (Yu 4, xq) is the
localization of the global parameter (Y, y) at the prime g.

5. Rapoport-Zink spaces and an averaging formula

5.1. Rapoport-Zink spaces. We continue with our fixed prime number p as before.

Let -
Qp = Q) = Frac W(F )

be the completion f)f the maximal unramified extension of Q, and o the geometric Frobenius
automorphism of Q,/ Q,,.

We will be interested in the subset B(Q,,, G, 1) of B(Q,,, G) associated with a minuscule
cocharacter u : Gy, /Q, G@p as defined in [31, Section 6.2]. The Bruhat ordering on the
image of the Newton map induces a partial order on B(Q,, G, ).

Definition 5.1. A Rapoport—Zink data of simple unramified unitary PEL type (Ep, *, V/,
(-1-),GU, u, b) consists of the following:

* an unramified extension £ of degree 2 of Q,, with a non-trivial involution *,

* a Ej,-vector space V' of dimension n,

* a symplectic Hermitian form (-[-) : V x V' — Q,, for which there is a self-dual lat-
tice A,

* aconjugacy class of minuscule cocharacters u : Gm@p — GU@D, where GU is the simil-
itude unitary group defined over Q, by

GU(R) ={g e GL(V®R) : (gv,gw) =c(g){v,w), v,w eV ® R}

for all Q,-algebras R and c(g) € R*; we also suppose that ¢ o j(z) = z, where c is the
similitude factor of GU,

* ao-conjugacy class b € B(Q,, GU, —u).

The cocharacter  is determined by a pair of integers (d,n — d) such that d (resp.n — d)
is the dimension of the weight 1 (resp. 0) weight space of 1.

To such a data, we associate the isocrystal N = (V ®q,, Q p»b o (id®0)) \ivith an action
t: O, — End(N) and an alternating non-degenerate form (-[-) : N x N — Q,(n), where
n = valy(c(b)). By Dieudonné’s theory, the isocrystal N corresponds to a p-divisible group
(X, t, 1) defined over I, provided with an action of E, and a polarization A.

Theorem 5.2 ([45, Theorem 3.25]). Let M be the functor associating to each O g
p
scheme S on which p is locally nilpotent the set of pairs (X, p), where:

* X is a p-divisible group over S with a p-principle polarization Ax and an action tx
such as the Rosati involution inducing by Ax induces x on O,,.
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* a Og,-linear quasi-isogeny
p:X Xxg S—>X XSPec(?,,) E,

such that p¥ oAx opisa Qp-multiple of Ax in Homg,, (X, XV)®z Q (here, S is the
modulo p reduction of S).

We also require that (X, tx) satisfies the Kottwitz determinant condition. More precisely, under
the action of E,, we have a decomposition Lie(X) = €, Lie(X ), then Lie(X). is locally
free of rank p-. This functor is then represented by a formal scheme defined over Spf((9@p).

In order to introduce the usual level structures, we work with the rigid generic fiber M*"
of M over Q,.SetCo = {g € GU(Q,) : gA = A}, amaximal compact subgroup of GU(Q,,).

Definition 5.3. Let 7 /M™ be the local system defined by the p-adic Tate module of
the universal p-divisible group on M. For K C Cp we define Mg as the étale covering of
M™ which classifies the @ g ,-trivializations modulo K of T by A. We also require that the
trivialization preserves the alternating form up to Q;.

We have, in particular, that M*" = Mc,. We then get a tower (Mg, )k, of analytic
spaces on QQ,, provided with finite €tale transition maps

CDKL,K,; . MK;, — eMKp

(for K ;, C Kp) which forget the level structure. The map @/ g, is Galois of Galois group
Kp/ K, if K}, is normal in K.

Let J5(Q,) be the group of Of,-linear quasi-isogenies g of X such that Ao g is
a Q*-multiple of g¥ o A. The group J,(Q,) acts on the left on M by the formula

(X.p)-g=(X.pog™ ') forallge Jp(Qp) and all (X, p) € M.

We say that a simple unramified unitary Rapoport—Zink datum (Ep, *, V, (-|-),GU, u, b)
is basic if the associated group J;(Q),) is an inner form of GU. The above datum is basic if
and only if b is the unique minimal element in B(Q,, GU, ). In this case, we also say that b
is basic.

Let £ # p be a prime number. Let K, C Co be a level. As in [14, Remark 2.6.3] we
denote

H? (M, Q) = limlim H:(V ®g Cp.Z /" 2) ® Qy,
vV n
where V' runs through the relatively compact open subsets of Mg,

The group J5(Q,) acts on M¢, and this action extends to Mg, so that J;(Q,) acts
on H?(Mg,,Qy). Since n is odd, the reflex field of the conjugacy class of w is E,. We
can also define an action of the Weil group WEg, on these cohomology groups thanks to the
Rapoport—Zink descent data defined as below.

Letog, : Q p —> Q  the relative Frobenius automorphism with respect to E,. We denote
by 6 g, the Frobenius morphism induced on IF .. For X a p-divisible group defined over I, we
note Fg, : X — E]"EPX the relative Frobenius morphism. We construct a functor isomorphism
o M— O'EPM as follows.
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For S a (9 scheme on which p is nilpotent as well as a point (X, p) € M(S), the point
(X%, p%) assomated in OE M(S) is defined as follows: X% := X with the action of 1y« 1= ty,
with the polanzatlon )LXa ;= Ax and p* :=po F pl Note that the isomorphism of functors
o M— UE M is the Rapoport—Zink descent data associated with M. As the descent data
commute with the action of J »(Q,), the groups H (M Ak, Q) has an action of J, (Q p) X WE,.
In addition, when K, varies, the system (H7 (Mk, . Q¢))k, has an action of GU(Q,). Thus,
this system has an action of GU(Q,) x J,(Q,) x WE,. Let p be an admissible £-adic repre-
sentation of J,(Q,), we define

H' (GU.b. w)p] := imExt], o \(H{ (M. Qo). p).
Kp
By [38, Theorem 8], the H'*/ (GU, b, j1)[p] are admissible and are zero for almost all
i, j > 0. Finally, we define the homomorphism of Grothendieck groups

Mantgy p,,, : Groth(J5(Q,)) — Groth(G(Q,) x WEg,

by
Mantgu b, (p) := Y (=)' H" (GU, b, w)[p](— dim M*).
i,J

5.2. An averaging formula for the cohomology of Rapoport-Zink spaces. In this
subsection we deduce an averaging formula for the cohomology of Rapoport—Zink spaces using
the results of [6].

We begin with some endoscopic preliminaries. To state the formula, we need the follow-
ing notion of endoscopic data for Levi subgroups.

Definition 5.4 (cf. [6, Definition 2.18]). Let M C G be a Levi subgroup. We say that

* (H,Hwm, s, n) is an embedded endoscopic datum of G relative to M and a fixed split-
ting (Tu, Bu, {Xu,e}) if (H, s, n) is a refined endoscopic datum of G and the restriction
(Hm, s, ’7|}fM) gives a refined endoscopic datum of M.

« two embedded endoscopic data (H, Hy, s, 7) and (H', H'y, s, ) are isomorphic if there
exists an isomorphism « : H — H’ of refined endoscopic data (H, s, n) and (H',s’, )
whose restriction oy to Hyy gives an isomorphism of (Hy, s, 7) and (Hy, s',1'). We
denote the set of isomorphism classes of embedded endoscopic data of G relative to M
by §¢(M, G).

We now fix a refined elliptic endoscopic datum (H, s, n) of GU. Note that for each
standard Levi subgroup M C G, there is a natural forgetful map

¢ . §¢(M,GU) — & (GU).

We define &' (M, GU; H) to be the set of embedded endoscopic data (H', Hy,, s, 1) such that
H’ = H and whose class lies in the fiber (Y¢)~!((H, s, 7)) modulo the relation that two data
(H,Hw, s,n) and (H, H},,s’, n’) are equivalent if there exists an inner automorphism « of H
inducing an isomorphism of the embedded endoscopic data.

Fix a maximal torus 'I/‘;[ C H and define

T := (Tn) C GU.
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By [6, comment before Proposition 2.27], we have that the set & (M, GU; H) is parametrized
by the set of double cosets W(T, M)\W(M, H)/ W("I/";I, H), where W(T, M) and W(TAH, ﬁ) are
the Weyl groups of M and H respectively and W(M, H) is defined in [6, Definition 2.23].

Finally, for an inner form J of M, we define the subset Eéff(J ,GU:;H) C & (M, GU;H)
to consist of those equivalence class of endoscopic data (H, Hyr, s, ) such that there exists
a maximal torus of H that transfers to J.

We now fix b € B(Q,,GU, ) and let be GU(QP) be a decent lift. We get a standard
Levi subgroup My, of GU and an extended pure inner twist J of Mp,. Let vy : D — Ay, (Where
Aw,, 1s the maximal split torus in the center of M) denote the image of the Newton map applied
to b. Fix (H, s, Ln) an elliptic endoscopic group of GU and a set, X eb, of representatives of
& éff(J », GU; H). Furthermore, for each (H, Hyy,, 5, 7') € X Jeb we may choose an extension

Ly :tH—tcu

of 7. We also get a natural map Ay, — An,, induced by n’ and we define v to be the com-
position of v, with this map. The cocharacter v, defines a parabolic subgroup P(vp) of GU as
follows. Choose m € Z™T so that mvy, € X« (Am,). Then mvy gives also a cocharacter of T,
and this defines a parabolic subgroup by

P(vp)(R) = {x € GU(R) : lim (mvp) (1) (mvp) ™" (1) exists}.

It is clear that P(vp) does not depend on m and also, since vj is dominant, that P(v) is a stan-
dard parabolic subgroup. Similarly, v defines a standard parabolic subgroup P(v) of H and we
let P(v)°P denote the opposite parabolic subgroup relative to By. The Levi subgroup associated
to P(vp) is the centralizer of mvy in GU, which is My Similarly, Hy,, is the centralizer of mv
in H and hence Levi subgroup of P(v) (indeed, mv is non-vanishing on the roots of H outside
of Hpy, since mvy is non-vanishing on these roots thought of as roots of GU via Ly,

We then make the following definition.

Definition 5.5. We define

Redj : Groth®' (H(Q,)) — Groth(J5(Q,))

- _1
T Z TranstM” (Jacg(v)op () ® 513(%),
be

where TransEMb denotes the endoscopic transfer of distributions from Hy,, (Q,) t0 J5(Q,) and
Groth(J5(Q,)) denotes the Grothendieck group of admissible representations of J,(Q,) and
Groth®* (H(Q p)) is the subgroup of Groth(H(Q))) consisting of those elements with stable
distribution character.

Our aim in this subsection is to establish the theorem below using the results of [6].

Theorem 5.6. Let (H, s, L) be a refined elliptic endoscopic datum of GU. Let

¢ : W, > LGU
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be a discrete Langlands parameter such that there exists a Langlands parameter ¢ of H with
¢ = Lno @M. Then we have the following equality in Groth(GU(Q ) X WE,):

> Mantgy p. . (Red$ (SOgn))
beB(Q,,GU,—1)

=2 2 (w ﬂ(S))an R [p® |- |~fPour),

dim
o mp EHq) (GU,p)

where the first sum on the right-hand side is over irreducible factors of the representation
r—u o ¢ and V), is the p-isotypic part of r—, o ¢.

This theorem is [6, Theorem 6.4]. To verify this theorem, we essentially just need to
check a number of hypotheses from [6].

First, we need a global group GU such that GUg, = GU and such that there exists
a Shimura datum (GU, X) of PEL type such that the global conjugacy class of cocharacters {u }
of GU associated to X localizes to the conjugacy class of w. Since pu is assumed minuscule, its
weights are equal to 1 and 0. In particular, x is determined by a pair (p, g) suchthat p + ¢ = n
and p denotes the number of 1 weights and g denotes the number of O weights.

We fix n an odd positive integer and define GU to be the group GU( p, ¢) coming from the
Hermitian form 7, 4 as in Section 2. Following [41, Section 2.1], we have a PEL Shimura datum
(GU, X) for this group (in Morel’s notation, this is the datum (GU, X, 1)). As we observed
in Section 2, the group GU can be equipped with the structure of an extended pure inner twist
(GU, g, z). As in [7], this twist gives us for each refined endoscopic datum (H, s, ) of GU
a normalized transfer factor at each place v.

We observe that, in accordance with [6, Sections 4.1 and 5.1], we have GUyge, is simply
connected and GUgq,, is unramified. The center Z(GU) is isomorphic to Resg; @ Gm which
has split rank equal to 1. Since £/ Q is an imaginary quadratic extension, the split rank of
Z(GU)R also equals 1.

We verify that GU satisfies the Hasse principle. By [27, Lemma 4.3.1] it suffices to show
that ker! (Q, GU/GUyge,) = ker' (Q, G,,) vanishes but this latter group is trivial.

We now note an important difference between the exposition in [6, Section 4] and our
current situation. This is that the group GU will not in general be anisotropic modulo center.
For this reason, the stabilization of the trace formula carried out in that paper does not carry
over exactly to our case.

Instead, we use Morel’s work on the cohomology of these Shimura varieties to estab-
lish the desired stabilization. However, Morel’s work is on the intersection cohomology of
Shimura varieties whereas we need to study compactly supported cohomology. We introduce
some necessary notation.

Let K C GU(Af) be a compact open subgroup that factors as K” K, where K, is
a hyperspecial subgroup of GU(Q,). Following the notation of [41], we let M K(GU, x)*
be the Baily-Borel-Satake compactification of the Shimura variety M X (GU, X). Fix primes
p and £ and an algebraic representation V' of GU, where we choose the highest weight of V' to
be “sufficiently regular” in the sense of [42, Definition 2.2.10]. Let L C C be a number field
containing the field of definition of V' and let A be a place of L over £. Then let 1ck V, denote
the intersection complex on M X (GU, X)* with coefficients in Q, and where V, is the evident
A-adic realization of the local system associated with V. Then we define an element WAI’ g In
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the Grothendieck group of Hg x I'g,, representations on L vector space by

Wil :=> (-D'[H (M¥GU. X)5: 1ICXv)].

i>0

Similarly, we define the element WAC x in the Grothendieck group of Hx x I'g,, repre-
sentations on L) vector spaces by

Wik =Y (~D)'[H(MX(GU, X)g. V)]

i>0

Fix a place p of E, above p and let ®, be a lift of the geometric Frobenius at p and
fix a positive integer ;. We will consider functions f* € J#k such that f = f°PV1g  fy foo,
where f, is cuspidal and fo is stable cuspidal. For instance, f, could be a coefficient for
a supercuspidal representation. Recall that these terms were defined in Section 4.2.

Lemma 5.7. Suppose that f is cuspidal at a finite place. Then we have
(W | [ x @) = (W) ¢ | [ x D).

Proof. Indeed, this follows from the fact we have a natural ["-equivariant morphism for
eachi,

HI(M®(GU. X)g. V2) — H'(M® (GU. X)5.1CEV;),

and the cuspidal part of H! (M X (GU, X)%, ICXV,) lies in the image of this map (see, for
instance, [42, Proposition 3.2]). D

We remark on the definitions of the functions fH, fél ) e g (H(A)) defined in [6, Sec-
tion 4] and [41, Section 6.2] respectively. These functions depend on the chosen normalization
of transfer factors at each place of Q. We explain in the following paragraph that a priori these
functions differ by a constant, but if one modifies Morel’s normalization of transfer factors to
agree with that of [6, Section 4], then the resulting function flg] ) can be chosen to equal fH.

Morel’s normalization of transfer factors away from p and oo is arbitrary up to the global
constraint given by [28, Conjecture 6.10 (b)]. At v # p, oo the definitions of fH and fé‘/ )
coincide up to differences in transfer factor normalization. At p, Morel normalizes her transfer
factors as in [29, p. 180]. If one chooses a different normalization at p, then Kottwitz explains
([29, pp. 180-181]) how to modify the function fé’ ; by a constant such that it satisfies and
analogous fundamental lemma formula. At v = 0o, Morel uses the normalization given in
[29, p. 184]. We can again modify the function féjo)o by a constant so that it satisfies the same
formulas. Hence, so long as one modifies the normalizations of the transfer factors at each place
in such a way that the global constraint is still satisfied, one gets an analogous modification of
the function fé] ) satisfying the same transfer formulas. By examining the constructions at
each place, it is clear that if fé’ ) is modified to be compatible with our chosen normalization
of transfer factors, then the functions féj ) and fH can be chosen to be equal.

Since the transfer of a cuspidal function is cuspidal [3, Lemma 3.4] and f is stable
cuspidal by definition, we have that fH satisfies the hypotheses of Lemma 5.7 and Lemma 4.6.

In particular, we have the following proposition.
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Proposition 5.8. Suppose f°° is cuspidal at a finite place and factors as [P 1k,.
Then .
e(Wg | fCxdp = > (GUHSTH(fM.
(H,s,n)€&(GU)

Proof. By Lemma 5.7 and [41, Theorem 7.1.7] (keeping in mind her remark that the
result holds for general p) we have

tWg | fOx@p) = Y «(GUHSTH(M).
(H,5,n)€&(GU)

Now, we apply Lemma 4.6 to the right-hand side to get the desired equality. |

At this point, we have finished using the work of Morel and have arrived at the formula
[6, equation (4.17)]. We now need to show that we can perform the destabilization procedure
as in [6, Section 4.7]. To do so we need to prove that we have a sufficiently good theory
of the Langlands correspondence for GU and its localizations. Globally, we will work with
“automorphic parameters” in the style of [5,25] and as we defined in Section 2.3.2. Since our
ultimate goal is to prove a local formula, these parameters are sufficient for our purpose. We
list the following properties we need and where these facts have been proven.

(i) We need a construction of local Arthur packets of generic parameters at all localizations
of GU and descriptions of the elements in each local A-packet in terms of representations
of the various centralizer groups (Theorem 2.19).

(i) The local packets must satisfy the endoscopic character identities (Section 3).

(iii) A local generic A-packet contains a K -unramified representation if and only if the param-
eter is unramified. In the case that an A-parameter is unramified, this K-unramified
representation is unique (Section 4.1).

(iv) We need a construction for global Arthur packets for generic “v-cuspidal” parameters.
These consist of parameters that are supercuspidal at some fixed local place v. We need
a description of the global A-packet in terms of the local packets (Section 2.3.2).

(v) We need v-cuspidal parameters to satisfy a version of [6, Proposition 3.10]. This propo-
sition gives a bijection up to equivalence between pairs (v, s) € W(G) x Sy and tuples
((H, s, Ln), y™) for (H,s,7n) € 8" (G) and Y™ € W(H). (This is discussed in [5, p. 36].)

(vi) We need a decomposition of the generic v-cuspidal part of L(ziiSC(GU(Q) \ GU(A)) in

terms of global Arthur packets and this decomposition should satisfy the global multi-
plicity formula (Section 2.3.2).

(vii) We need to attach to a global generic parameter a global Galois representation whose
localizations at each place are compatible with the corresponding localization of the
global parameter (Section 4.4).

With these properties in hand, we can now apply the results of Section 4.2 (which is
analogous to [6, Assumption 4.8]) to get

e(Wg [ fCx@) = > (GUHSTH.(fY).
(H,s,n)€&(GU)
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Following the argument of [6, Section 4.7], we derive the formula
(W g | f20])

=) 2 Yoo mEe o u™ | ) AW, ).

[¥] veX*(Sy) wPell, 00 (GU,p%°)

where the first sum is over equivalence classes of v-cuspidal parameters and A(Y,, v) is the
@{, -trace of a certain representation determined by v.
We now define
Wi = lim Wik,
K

in the Grothendieck group of GU(A ) x I'g-representations. Suppose 77 is a representation
of GU(A ) appearing in WC whose associated automorphic A-parameter is v-cuspidal. We
need to compute the 7y - 1sotyplc part, WC [r], of WC To do so, we apply the argument at the
end of [6, Sectlon 4.7]. This argument requires the ex1stence of a compact open K C GU(Ay)
such that n # {0} and a function > € #(GU(Ay)), K) that is non-vanishing on 7 but
vanishes on every other admissible GU(A r)-representation appearing in WC Our present
situation is complicated by the fact that we also need f to be v-cuspidal. More precisely, for
the argument at the end of [6, Section 4.7] to go through, we need the following lemma.

Lemmas.9. Let iy be an admissible representation of GU(A r) such that the A-param-
eter at v is supercuspidal. There exists a compact open K C GU(Ay) such that an # {0} and

K factors as KV K, and there exists a v-cuspidal function f*° € #H(GU(Ar), K) such that
tr(my | f°°) # 0 and for any n} with non-trivial K-invariants and appearing in either WAC

>0 > m(x*, ) (sy) (= DTV RV (Y, )z,

W] v x®ell,o00(GU,0™)

we have

tr(n} | %) =0.

Proof. The set R of isomorphism classes of n} satisfying the above conditions is finite.
Hence we can find a function f¥>°° such that tr((n )| fY%°) =0 for all 7/, € R’ unless
(JT )V = ¥ in which case the trace is non-zero. Now at v we have that (7¢), is supercuspidal
and so we choose f, € #(GU(Q,), Ky) to be a coefficient for (7f),. Then f¥*° f, has the
desired properties. Indeed, any 7. not isomorphic to 7y will differ from 7 either at v or away
from it, and hence tr(n} | £ f,) =0. O

Following the argument at the end of [6, Section 4.7], we conclude that

(5.1) W/1 [mr] = (ZZ Z m(w ™, v)

[¢] v nooenwoo(GU,Ziso.oo)
(sp) (~DTCD (%°) & Y (y, vu) /]

in Groth(GU(Af) x Wg,,).
So far we have discussed the computation of the cohomology of Shimura varieties and
arrived at equation (5.1). We now want to carry out an analogous computation for the com-
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pactly supported cohomology of Igusa varieties as in [6, Section 5] starting from the stable
trace formula as in [50, Theorem 1.1]. In this case the stabilization in [6, Section 5] does not
require that GU is anisotropic modulo center and so that argument goes through essentially
unchanged. The only difference is that in this paper, we only prove the equality of S Tell'{( H
and S Td}ilsc( fH) in the case that fH is cuspidal at a finite place. In particular, this means that
we again need a lemma analogous to Lemma 5.9. In this case, the precise conditions on f are
slightly different since the trace formula for Igusa varieties is stated for acceptable functions

in the sense of [49, Definition 6.2].

Lemma 5.10. Let s be an irreducible admissible representation of GU(AJIZ) xJp(Qp)
such that the corresponding local A-parameter at v is supercuspidal. Let

K C GU(A]’Z) xJp(Q,)

be a compact open subgroup such that & ;( # @ and K factors as KV"P Ky, Kp. Let R be a finite
set of isomorphism classes of irreducible admissible GU(A}J ) xJp(Q)) representations such
that ¢ € R. Then there exists a v-cuspidal function f>° € %(GU(A})) xJp(Qp), K) that
is acceptable in the sense of [49, Definition 6.2] such that f*° factors as fP°V"*° f, f, and
tr(n]/, | 1°°) # 0 for JT} € Rifand only if n, = my.

Proof. Consider the linear map from v-cuspidal functions to C IR|

[ (@ | f2), ... (| f),

given by

where R = {my, ..., m,}. It suffices to show this map is surjective. If the map is not surjective,
then its image is a proper subspace and hence lies in a hyperplane of C IRl Hence we can find
some element cq, ..., c, € C[R] such that for all v-cuspidal f°°, we have

crtre(my | ) + -+ entr(my | f7°) = 0.

Now, by the argument of [49, Lemma 6.4] and also [49, Lemma 6.3] it follows that every
Jo° = [PV f, fpy that is cuspidal at v satisfies

tr(cimwy + -+ + camtn | £°°) = 0.

By the argument of Lemma 5.9, we can find an f*° that does not vanish at cywy + «-- + ¢, 7y
This is a contradiction and implies our desired result. |

At this point, we have verified the assumptions of [6, Sections 4-5]. It remains to check
those of [6, Section 6]. We first note that the Mantovan formula is known for the PEL-type
Shimura varieties we consider. Indeed, this is [34, Theorem 6.32].

It remains to check [6, Assumptions 6.2 and 6.3]. We record some useful lemmas.

Lemma 5.11. Suppose r is a discrete automorphic representation of GU(A) contained
in an A-packet 1. Suppose further that the infinitesimal character of 7w is sufficiently regular

in the sense of [42, Definition 2.2.10]. Then the A-parameter associated to Tl is generic.

Proof. Standard. For instance see [25, Lemma 4.3.1]. O



58 Bertoloni Meli and Nguyen, The unitary Kottwitz conjecture

Lemma 5.12. Suppose 7 is a discrete automorphic representation of GU(A) contained
in an A-packet and such that e has sufficiently regular infinitesimal character. Then this is
the unique A-packet containing mwso. Moreover, if T is another discrete automorphic represen-
tation of GU(A) such that o has sufficiently regular infinitesimal character and such that
7 = 7 then w and 7 are in the same A-packet.

Proof. Suppose 7 belongs to two A-packets with associated A-parameters (Yy, 1)
and (Y y,, x2)- Since x1 and y» correspond to the central character of m, they are equal. We
need to show that ¥y, Y, are also equal. At almost all finite unramified places v where m,
is unramified, the localizations (¥y;)» and (¥ y,)y are equal. Indeed, our sufficiently regu-
lar assumption implies that these parameters are generic. Following [40, p. 189], these local
parameters factor through “M where M is the minimal Levi subgroup of U,, and correspond to
the same spherical parameter of M (for more details, see [40, p. 189]). This implies that ¥ yf
and ¥ 5 give rise to the same Hecke string. Then, by [22] and [4, Theorem 4.3], we see that
Yy, and ¥y, are equal. It is clear that the second statement also follows from exactly the
same argument. m]

Before verifying [6, Assumptions 6.2 and 6.3], we need to understand the effect of an
unramified twist on the Mantgy p,,, map. Letc : GU(Q,) — Q; be the similitude factor char-
acter. For b non-basic, the group J;(Q)) is an inner form of a Levi subgroup M (Q,) of
GU(Qp). Then the similitude character c¢ restricted to My(Q,,) can be transferred to J;(Q)).
Hence by abuse of language, we also denote ¢ the corresponding character on J;(Q,,).

Lemma 5.13. Let (Ep, *, V. (-|-),GU, u,b) be an unramified unitary Rapoport—Zink
—X
PEL datum and suppose that o : Q; — Qy is an unramified character. Then the following
holds in Groth(GU(Q,) x WEg,):

Mantgy p,,, (0 ® (woc)) = MantGU,b’M(p) Q(woc)® (wo ArtE;).

Proof.  This lemma is an analogue of [53, Lemma 4.9] and the same proof applies in our
situation. Thus we just briefly give an idea of how to proceed.
Define a character y of J;(Q,) x GU(Q,,) x W, such that
y li=(woc)®woc)® (wo ArtE}l)).
In Groth(GU(Q,,) x WE,) we have
li_r)nExtgb(Qp)(ch (Mk,. Q). p® (woc))
Kp
~ limExt], o ) (H! (Mk,. Q) ® 1. p) ® (@0 ¢) @ (@ 0 Artg)).
Kp
Then we prove that for each level K, there is an isomorphism of Q-vector spaces
HY (M, Qo) ~ H! (Mx,. Qp) ® X
such that the resulting bijection of direct limits
lim H/ (Mk,. Qq) =~ lim H/ (Mxk,. Qo) ® x
K, K,
is compatible with the action of J(Q,) x GU(Q,) x WE,,.



Bertoloni Meli and Nguyen, The unitary Kottwitz conjecture 59

Note that there is a J,(Q,)-equivariant map (see [45, Section 3.52])
L Mg, = A :=Homgz(X™*(GU),Z),

and moreover there is a natural way to define an action of GU(Q,) x Wg, on A. We can then
prove the lemma by using the fact that y acts trivially on (J5(Q,) x GU(Q,) x WEp)l and
that there is an J;(Q,) x GU(Q,) x WE,-equivariant bijection ([14, Remark 2.6.11]).

lim H/ (Mx,,. Qe)

KP
- 6 (Qp)XCUQp) X Wi, ( . o) = )
= D ¢ —ind(y, @,)xcu@p)x Wi, UM He (M, Qo) ),
i€A/15(Q,)XGU(Q,) X W, Ky
where QME() is the inverse image of i by ¢ and (J5(Q,) x GU(Q,) x WEp)1 is the subgroup
of J5(Q,) x GU(Q,) x WE, that acts trivially on A. ]

We can now settle [6, Assumptions 6.2] in the cases we need. Let 7, be a representation
of GU(Q,) and 7y a discrete automorphic representation of GU(A) such that (1), = 7.
Suppose further that 777° appears in either the formula for the cohomology of Igusa varieties
or WAC. Then since V' has sufficiently regular infinitesimal character, it follows that the same is
true of (711)s0. Now suppose 15 is a discrete automorphic representation of GU(A) appearing
in either of the above formulas and such that 7{° = 75°. We then have by Lemma 5.12 that
75 and 77 are in the same packet.

We now tackle [6, Assumptions 6.2]. For a fixed discrete series representation 7, of
GU(Q,) with local parameter ¢y, we have the local centralizer group Sg,,. For any global
A-parameter ¥ gy such that ¥ gy, = ¢Gu, we have a natural embedding Sy, — Sg,. Note
that [6, formula immediately before Assumption 6.3] includes a sum indexed over a set of
representatives Xy ., of g,/, cu- We must show that we can pick different globalizations, ¥ gy,
of ¢gu to derive the formula below [6, Assumption 6.2] for each element of Sy, .

Suppose first that s € Sy, projects to the identity element of §¢GU such that

s =(1,1) € Spq, = S;U x C*.

By Lemma 4.8, we can choose ¥ gy so that the image of Sy, in Sy, is {(1,¢): ¢t e C*}
and the packet Iy, (GU(Qp), ocu) differs from the packet Iy, (GU(Q,),0cu) by an
unramified twist of the form w o ¢. Then we simply pick Xy, to contain the unique element
of Sy, mapping to s. This establishes the formula for s projecting to the identity of Sy cUp”
By Lemma 5.13, we obtain the formula for s projecting to the identity of & 4.

Now suppose we pick s € Sy, that projects to a non-identity element 5. By Lemma 4.9,
we may choose ¥ gy such that the image of Sy, in Sy, = is precisely the pre-image of {1, 5}
under the map

S'/'GUp - ngUp’

and the packet Iy, (GU(Qp)., ocu) differs from the packet g, (GU(Q,),0cu) by an
unramified twist of the form w o ¢. Choose Xy, to contain the unique elements mapping to
s, 1 and denote these x5 and x; respectively. Then each side of the formula before [6, Assump-
tions 6.2] for the parameter ¥ gy, has two terms indexed by x, and x; respectively. Again, by
Lemma 5.13, we can derive the same formula for ¢gy. The x; terms are already known to be
equal by the previous paragraph. It therefore follows that the x terms are equal as well.

This completes the verification of Theorem 5.6.
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6. Proof of the main theorem

To prove the Kottwitz conjecture for the groups we consider, we use Theorem 5.6. We
remark that since GU is quasi-split, the sign e(GU) = 1, and since we consider only super-
cuspidal parameters in this section, the elements sy, syu are trivial. We recall that we have
fixed an extended pure inner twist (GU, g, z) of GU(n)*, where all groups are defined over
Q,, and that J;, has the structure of an extended pure inner twist (Jp, 05, z5) of GU and hence
(Jp,0p 00,z + zp) of GU(n)*.

First of all, we show that

Red; ( Z (mH, S¢H)7TH) =0
ﬂHEH¢H(H)

for b non-basic, (H, s, 1) an elliptic endoscopic datum of GU and ¢ a supercuspidal parameter.
Indeed, the parameter ¢! is again a supercuspidal L-parameter. In particular, the repre-
sentations ! are supercuspidal. Now by definition we have

_1 Hy H
Red; = ZS},(%) ® Trans;, " Jacp o
Xy

As b is non-basic, the group J is an inner form of a proper Levi subgroup of GU. Suppose
that P(v)°? = H. In this case H equals Hy; and is isomorphic to an endoscopic group of Jp.
This is a contradiction because by the classification of the endoscopic groups of GU and its
Levi subgroups, we know that the elliptic endoscopic groups of GU are not endoscopic groups
of any proper Levi subgroup of GU. We conclude that P(v)°? is a proper parabolic subgroup

of H so that
Red,‘;( Z (JTH,S¢H>T[H) =0,
HHEHQbH (H)

as desired.
Now, for b basic, the main formula of Theorem 5.6 becomes

MantGU,b,M(Transi( Z (nH,l)nH))

HH€H¢H
V
= X br»”@))%[n][p@|.|_(PGU,M)].
P melly(GU,0)

The endoscopic character identity (Equation (3.1)) and definition of Transg) (see [20, p. 1634],
for instance) immediately implies that

H H H
Transjb( Z (™, Dy ) = Z (75, n(s))my, .
mHell 4u 75, €My Jp,0p00)
Substituting into the previous equation gives

MantGU,b,M( Z (ﬂJb’ U(S))”Jb)

7y, €y Up.0p00)

- Z Z (, n(s))%[n][p ®|- |_(PGU,M)].

P mwelly(GU,Q)
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Now, fix 7y, € IIy(Jp, 0p © 0) and multiply the above equation (where we renotate the mj,
in the summation as JTJ ) by (75, 1(s)) L. One can check that at (7, n(s))~ <JTJ ,1n(s)) and
(71,5 (), n(s)) tr(n(s) | V) depend only on the i image 7 n(s) € 8¢ Indeed, it suffices to
show each expression vanishes on Z (GU)F@P since S¢/Z (GU)FQP =3 #- The first t expres-
sion does so since (an, ) and (7y,, - ) have the same central character restricted to Z (GU) Top
(see the definition of this pairing in Section 2.3.1). The second does so because (ry,,, )~ (r, )
has central character equal to k(b)~! = p while the action of 7(s) on the image of r_ wodis
by —p. Therefore, by a slight abuse of notation, we may regard these expressions as func-
tions of s € § ¢- We remark also that every element of K3 ¢ has a representative of the form
n(s) for an elliptic endoscopic datum (H, s, Lp). Indeed, this is [6, Corollary 3.13] (see also
[6, Remark 3.14]).
We then average over §¢. This gives an equality between

MantGU’b’M(lg | > > (mb,s)—l(ﬂf,,,s)m/b)

s€84 mj, €My (Tp.0500)

and

% X2 X dmes)” 1<n,s>“§#[ o ® |- [~ tPeui].

se8, P welly(GU.0)

Now, for any irreducible representation y of 8, #> we have — B0 8 ‘ > seB, x(s) is 1 if y is trivial
and 0 otherwise. Hence we get the equality

Mantgy s (my,) = =— > D Y {m,.8) (ms)

se8y P melly(GU,0)
tr(s | V,
.M[ e® |-~ pcu,u)]'
dim p

We now isolate the term for a fixed gy € I1(GU, ) and representation p. It is

1 v,
(6.1) — (mb,s)_l(ﬂGU,s)%

[rGullp ® | - |~tPovsH].
N

S€§¢
We would like to relate this to the term
dim Homyg,, (1w (773,,) ® tw(7rG0) ", Vp).

which appears in the statement of the Kottwitz conjecture. Note that the dimension does not
change if we tensor both t, (775,) ® tw(7gu)" and V), by the character t (11y,)" ® tx (nGU) We
observe that the resulting representation Vy ® (1 (773,)Y ® tw(mgu) is trivial on Z (GU) oy
and hence factors through § ¢- Hence, it suffices to compute the dimension as an E3 p-represen-
tation where it is given by the formula

1
(6.2) m tr(s | Vp ® tw(7,)" ® tw(mGu))
¢ Segd,
1 _
= m (mr3,,8) " Ymau, s) tr(s | V),
¢

N €§¢,
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where we have the same abuse of notation as before that (1, 8) " Ymgu, s) tr(s | V) only
depends on s € &4 but the individual terms in the product require taking a lift to S¢. Comparing
equations (6.1) and (6.2), we see that the expression in equation (6.1) becomes

dim Homyg,, (tw (713,) ® tw (rcu)¥. Vp)
dim p

[7Gullp B | - |~tPous].

This equals
[rul[Homs, (tw(m1,) ® tw(Gu) ¥ V) @ | - |~ o0],

and summing over p, we get

Mantgy,p,,, (73,)

= Y [rculHoms, (tw(75,) ® tw(mGu) ", r—y 0 ) ® | - |~ 1Pov-14)].
ngu€lly (GU,0)

In conclusion we have proven

Theorem 6.1 (Kottwitz conjecture). For irreducible admissible representations my, of
Jp(Qp) with supercuspidal L-parameter ¢, we have the equality

Mantgy p, . (73,)

= Z [nGU][Hode,p (tw(my,) ® lw(mgu) Y, r—uod)®|- |_<pGUsM)]
ﬂGUerpr (GU,0)

in Groth(GU(Q,) x Wg ).

A. Some computations with GU(3)

In this appendix we use the averaging formula (Theorem 5.6) to compute Mantg 5, (0)
in a few cases for G = GU(3) where the parameter of p is not supercuspidal.

Let £/ Q, be the quadratic unramified extension with non-trivial Galois automorphism
o and corresponding quasi-split unitary group GU(3)*. Recall that the diagonal torus 7' gives
a maximal torus of GU(3)* of maximal split rank and satisfies

&1 0 O
T(Q,) = 0 1 0),c]|:t10(t3) =c =1t0(t2), t; withc € E
0 0 13

The torus 7 is a Levi subgroup of GU(3)*.
Let GU be the trivial extended pure inner form of GU(3)*. We let u be the cocharacter
of GU given by

z 0 0
Z = 01 01,z
0 0 1

Let P be the parabolic subgroup with Levi factor equal to 7" and such that y is dominant with
respect to the positive root system determined by P. Let pg be the half sum of the positive
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absolute roots of GU. Then we have

—{pG. n) = —1.

The modulus character §p on T is given by ¢ — |pG (®)].

We now describe the set B(GU, ). To begin, we have that Z (GU)F consists of pairs
(I,¢) € GL3(C) x C* and hence X *(Z (GU)F) =~ 7. Then there is a unique basic element b
of B(GU, i) whose image under the Kottwitz mapis 1 € X*(Z (@)F).

We also have

t 0 0
T = 01 0 |.cl:tecC
0 0 ¢!

Hence X *(:FT) =~ 7 x 7 and the non-basic elements of B(GU, i) are in bijection with pairs
(x,y) € Z xZ such that x > 0. Moreover, the pair (x, y) corresponds to an element whose

slope cocharacter has weights ((x;ry, 3.255). ). As fi = p +0/(u) has weights ((1,1,0).1),

one can check that the element (1,1) € Z xZ = X* (TF ) has slope cocharacter equal to that
of f1 and gives the other element b’ of B(GU, ). We have J,, =~ GU and J,, =~ T.

Let ¢ be an Sty (§) parameter of GU(3)™* in the notation of [46, Chapter 12] and [21].
Then r—, 0 ¢ = (v ®std”) + (§ ® triv) for certain characters § and v. The L-packet of ¢
is {m®, w2}, where ® is supercuspidal and 72 is discrete series but not supercuspidal. The
representation 772 shows up as the parabolic induction Ip (i) for a certain character y of T. This
induction is reducible and the other Jordan—Holder factor is a non-tempered representation 7.

We first consider the averaging formula for the trivial endoscopic group. This gives

Mantb(n —I-JTS)—I-Mantb/(Jpop(T[ )®5 )
= [7% + 7’| ® [(=3) + v(=3) + E(=D)].

On the other hand, by the Harris—Viehmann conjecture (known in our present situation since
GU is HN-reducible, cf. [44, Theorem 8.8 ]), we get that

Manty (Jpor (72) ® 52 2) = Indp Mantr (Jpor (7%) ® 52 ?)
= [lp Jpor (%) ® v(—3),
for a certain b” € B(T). Hence, we have

Mant, (7> + 7°) = [ + 7] ® [v(—3) + v(—3) + £(—1)]
— [Ip Jpor ()] B v(—3).
Now, we consider the non-trivial endoscopic group
H=G(U(@2) xU()),

with s = (=12, I1). We pick 7 such that

b a 0 b
c d
c 0 d
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We need to compute W(T, H). These are the w € W(T, G) such that (w o 7)1 (TT) is
I"-invariant up to conjugacy in H. This implies that

w € {0, (13)}.

It follows that W(T,G) \ W(T,H)/W(H, n) has a single element which we can take to be
the endoscopic datum (T, s,id). We fix Py the parabolic of H with Levi factor equal to T
determined by . We have §p, is given by t > |p7(t)].

Let ¢¢ be the parameter of H whose composition with L7 is ¢. Let 7¢ be the unique
element in the packet of ¢€. Then we have that the left-hand side of the endoscopic averaging
formula is:

Manty, (Trans5° (7¢))) + Manty, ((Trans Tpor (7)) ® 8 2);

where the Trans% term denotes endoscopic transfer between (T, s, id) and T. The representation
J P (r®) is a character of T with parameter yr. The local Langlands correspondence associates
to thls representation an irreducible representation of the group S . Which in this case equals
Tl In particular, J P (7°) is associated to the character [is Wthh is the image under the
Kottwitz map of b”. Hence we get

1 1
Transy Tper(€) = [i(s) I por (1) ® 5 = —Jpor (1) ® 8.

To figure out the right-hand side of the averaging formula, we need to understand which
representations of the centralizer group of ¢ correspond to 7* and 72. The centralizer group
of ¢ (according to [35]) corresponds to the matrices

©c o .
S = o
CEE==
(9
Q
Il
H_
e

In the unitary case, [46, Proposition 13.1.3 (d) ] indicates that the unitary group represen-
tations corresponding to 72 corresponds to the trivial character of the centralizer group and 7*
corresponds to the non-trivial character. By our parametrization of the L-packets in the unitary
similitude case, we get that the characters attached to both 772 and 7* are trivial on the simil-
itude factor that the 72 character corresponds to the trivial character of the Z /2 Z factor and
7% corresponds to the non-trivial character.

Hence, the endoscopic averaging formula becomes

Manty, (72 — 7%) 4+ Mant, (— Tpov (7% ® 8 B
=22 R [-v(=3) = v(=3) + ED]+ 7° B (=) +v(=3) —E(=D].
Using Harris—Viehmann to compute Mant,, as above, we get
Manty: (~J (%) © 83) = ~[1p I o ()] 8 (=)
Hence,
Manty (7* — 7%) = 722 B [-v(=3) = v(=3) + §(=1)]

+ 70 B [v(=}) + v(=3) — £
+[Ip Jpor ()] B [v(=3)]-
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To finish the computation, we use that Ip Jpop (72) = 12 + 7" =1p ] por- We then get
Manty (72 + 7°) = [1? + 7°] K [V(=3) + v(=3) + £(=D)]
—[7?+ "R v(—%),
Manty (7> — 7°) = 7% B [-v(=3) —v(—3) + §(=1)]
+ 7 B [v(=3) +v(=3) —E(-1)]
+[7? + 7" R v(—%).
Proposition A.1. We have
Manty,(7°) = 7° B E(=1) + 72 Rv(—3) — 7" Rv(—3)

and
Mant, (72) = 7° K [v(—3) + v(=3)] + 7? R E(-1).

Additionally, we can consider the A-parameter ¥’ whose associated A-packet is {7", 75}
and do the same computations. We remark that we have not proven the averaging formula in
this case although we still expect it to hold. We also remark that the element sy is non-trivial
and so the stable distribution attached to the packet {z#”, 7*} is actually n” — 7* while the
distribution 7" + ¥ is unstable.

In this case, the trivial endoscopic group gives us the formula

Manty (7" — 7¥) + Manty (Jpor (7") ® 5}%))
=" ®[v(—%) +v(=3) + (D] = 7° B [v(—=3) + v(=3) + (=D
and hence

Manty (7" — %) = 7" X [v(—%) + V(—%) +&§(=1)]
— 7 B (—1) + (=) +E(=D] - [72 + 7" R v(-D).

In the non-trivial endoscopic case, we get
1
Manty, (7" + 7*) 4+ Manty, ((Trans?. Tpor (") ®6p)
= 7" B [-1(=3) = v(=3) + (D] + 7° B [-v(—3) —v(=3) + §(=D)].
Hence,

Mant, (7" + %) = 7" K [—v(—%) - v(—%) + E(—1)]
+ 7 W [—v(=2) —v(=3) + E(=D] + [ + 7" R v(=3).

Using these equations, we deduce
Manty(x") = 7" B (1) = 7° B (=) + v(=3)]

and
Manty (7°) = =" R v(—3) + 7° RE(=1) + 7> K v(-3).
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We briefly explain how these results relate to Ito and Mieda’s computation in [21]. Firstly,
we note that our definition of Mant has a twist by | - | ~{°G-#) which explains why our Galois
parts have different twists from theirs. Secondly, we do not restrict to supercuspidal parts and
so we have several extra terms that do not appear in their computation. Thirdly, Mant, is an
alternating sum of ext groups of cohomology whereas they compute isotopic components of
cohomology. So for instance, their computation of M (") contains a 7% X v(—%) piece in
the i = 3 degree (middle degree is i = 2). In our computation, this corresponds to the fact
that our 75 X v(—%) term appears with a negative sign. The supercuspidal part of Manty, (")
also contains an extra 7° term as compared to M’ (") because 7" appears in a non-trivial
extension with 2.
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