Abstract
Let
Funding statement: The author is supported by two JSPS Grant-in-Aid’s for Scientific Research (C) (Grant No. 80287440, 18K03224).
Acknowledgements
I would like to express my sincere gratitude to F. Yobuko
for sending me very attractive articles [48] and [49].
Without his articles, I could not write this article.
I would also like to express my gratitude to the referee
for recommending me to give more examples of (log) varieties
such that the strict inequality
References
[1] M. Artin and B. Mazur, Formal groups arising from algebraic varieties, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), no. 1, 87–131. 10.24033/asens.1322Search in Google Scholar
[2] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton University, Princeton 1978. Search in Google Scholar
[3] S. Bloch, Algebraic K-theory and crystalline cohomology, Publ. Math. Inst. Hautes Études Sci. 47 (1977), 187–268. 10.1007/BF02684340Search in Google Scholar
[4] S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107–152. 10.1007/978-1-4757-9284-3_2Search in Google Scholar
[5] S. Bloch and J. P. Murre, On the Chow group of certain types of Fano threefolds, Compos. Math. 39 (1979), no. 1, 47–105. Search in Google Scholar
[6] A. Chambert-Loir, Cohomologie cristalline: un survol, Expo. Math. 16 (1998), no. 4, 333–382. Search in Google Scholar
[7]
P. Deligne,
Relèvement des surfaces
[8]
P. Deligne and L. Illusie,
Relèvements modulo
[9] T. Ekedahl, Diagonal complexes and F-gauge structures, Hermann, Paris 1986. Search in Google Scholar
[10] M. Gros and N. Suwa, Application d’Abel–Jacobi p-adique et cycles algébriques, Duke Math. J. 57 (1988), no. 2, 579–613. 10.1215/S0012-7094-88-05726-2Search in Google Scholar
[11] A. Grothendieck, Cohomologie l-adique et fonctions L, Lecture Notes in Math. 589, Springer, Berlin 1977. Search in Google Scholar
[12] M. Hirokado, A non-liftable Calabi–Yau threefold in characteristic 3, Tohoku Math. J. (2) 51 (1999), no. 4, 479–487. 10.2748/tmj/1178224716Search in Google Scholar
[13] O. Hyodo, A note on p-adic étale cohomology in the semistable reduction case, Invent. Math. 91 (1988), no. 3, 543–557. 10.1007/BF01388786Search in Google Scholar
[14] O. Hyodo and K. Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Périodes p-adiques, Astérisque 223, Société Mathématique de France, Paris (1994), 221–268. Search in Google Scholar
[15] L. Illusie, Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), no. 4, 501–661. 10.24033/asens.1374Search in Google Scholar
[16] L. Illusie, Réduction semi-stable ordinaire, cohomologie étale p-adique et cohomologie de de Rham, Séminaire du Bures-sur-Yvette, Astérisque 223, Société Mathématique de France, Paris (1994), 209–220. Search in Google Scholar
[17] L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de de Rham–Witt, Publ. Math. Inst. Hautes Études Sci. 57 (1983), 73–212. 10.1007/BF02698774Search in Google Scholar
[18] K. Joshi, Exotic torsion, Frobenius splitting and the slope spectral sequence, Canad. Math. Bull. 50 (2007), no. 4, 567–578. 10.4153/CMB-2007-054-9Search in Google Scholar
[19] K. Joshi and C. S. Rajan, Frobenius splitting and ordinarity, Int. Math. Res. Not. IMRN 2003 (2003), no. 2, 109–121. 10.1155/S1073792803112135Search in Google Scholar
[20] K. Kato, On p-adic vanishing cycles (application of ideas of Fontaine–Messing), Algebraic geometry, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam (1987), 207–251. 10.2969/aspm/01010207Search in Google Scholar
[21] K. Kato, Logarithmic structures of Fontaine–Illusie, Algebraic analysis, geometry, and number theory, Johns Hopkins University, Baltimore (1989), 191–224. Search in Google Scholar
[22] K. Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. 10.2307/2374941Search in Google Scholar
[23] Y. Kawamata and Y. Namikawa, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi–Yau varieties, Invent. Math. 118 (1994), no. 3, 395–409. 10.1007/BF01231538Search in Google Scholar
[24] P. Lorenzon, Logarithmic Hodge–Witt forms and Hyodo–Kato cohomology, J. Algebra 249 (2002), no. 2, 247–265. 10.1006/jabr.2001.8802Search in Google Scholar
[25] H. Matsuue, On relative and overconvergent de Rham–Witt cohomology for log schemes, Math. Z. 286 (2017), no. 1–2, 19–87. 10.1007/s00209-016-1755-1Search in Google Scholar
[26] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. 10.2307/1971368Search in Google Scholar
[27] M. Mustaţă and V. Srinivas, Ordinary varieties and the comparison between multiplier ideals and test ideals, Nagoya Math. J. 204 (2011), 125–157. 10.1215/00277630-1431849Search in Google Scholar
[28]
Y. Nakkajima,
Liftings of simple normal crossing log
[29] Y. Nakkajima, p-adic weight spectral sequences of log varieties, J. Math. Sci. Univ. Tokyo 12 (2005), no. 4, 513–661. Search in Google Scholar
[30] Y. Nakkajima, Congruences of the cardinalities of rational points of log Fano schemes and log Calabi–Yau schemes over the log points of finite fields, J. Algebra Number Theory Adv. Appl. 21 (2019), 1–51. 10.18642/jantaa_7100122080Search in Google Scholar
[31] Y. Nakkajima, Limits of weight filtrations and limits of slope filtrations on infinitesimal cohomologies in mixed characteristics I, preprint (2019), https://arxiv.org/abs/1902.00182. Search in Google Scholar
[32]
Y. Nakkajima and F. Yobuko,
Degenerations of log Hodge de Rham spectral sequences, log Kodaira vanishing theorem in characteristic
[33] N. O. Nygaard, Closedness of regular 1-forms on algebraic surfaces, Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), no. 1, 33–45. 10.24033/asens.1360Search in Google Scholar
[34]
N. O. Nygaard,
The Tate conjecture for ordinary
[35]
A. Ogus,
Supersingular
[36] A. Ogus, F-crystals, Griffiths transversality, and the Hodge decomposition, Astérisque 221, Société Mathématique de France, Paris 1994. Search in Google Scholar
[37] A. N. Rudakov and I. R. Šafarevič, Inseparable morphisms of algebraic surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1269–1307. 10.1070/IM1976v010n06ABEH001833Search in Google Scholar
[38] S. Schröer, Some Calabi–Yau threefolds with obstructed deformations over the Witt vectors, Compos. Math. 140 (2004), no. 6, 1579–1592. 10.1112/S0010437X04000545Search in Google Scholar
[39] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City (1958), 24–53. Search in Google Scholar
[40] V. Srinivas and S. Takagi, Nilpotence of Frobenius action and the Hodge filtration on local cohomology, Adv. Math. 305 (2017), 456–478. 10.1016/j.aim.2016.09.029Search in Google Scholar
[41] J. Stienstra, Deformation of the second Chow group, Thesis, Utrecht University, 1978. Search in Google Scholar
[42] J. Stienstra, The formal completion of the second Chow group, a K-theoretic approach, Journées de Géométrie Algébrique de Rennes, Astérisque 64, Société Mathématique de France, Paris (1979), 149–168. Search in Google Scholar
[43] N. Suwa, Sur l’image de l’application d’Abel–Jacobi de Bloch, Bull. Soc. Math. France 116 (1988), no. 1, 69–101. 10.24033/bsmf.2090Search in Google Scholar
[44] T. Tsuji, Syntomic complexes and p-adic vanishing cycles, J. reine angew. Math. 472 (1996), 69–138. 10.1515/crll.1996.472.69Search in Google Scholar
[45] T. Tsuji, Poincaré duality for logarithmic crystalline cohomology, Compos. Math. 118 (1999), no. 1, 11–41. 10.1023/A:1001020809306Search in Google Scholar
[46]
G. van der Geer and T. Katsura,
On a stratification of the moduli of
[47] G. van der Geer and T. Katsura, On the height of Calabi–Yau varieties in positive characteristic, Doc. Math. 8 (2003), 97–113. 10.4171/dm/140Search in Google Scholar
[48] F. Yobuko, Quasi-Frobenius splitting and lifting of Calabi–Yau varieties in characteristic p, Math. Z. 292 (2019), no. 1–2, 307–316. 10.1007/s00209-018-2198-7Search in Google Scholar
[49] F. Yobuko, On the Frobenius-splitting height of varieties in positive characteristic, Algebraic number theory and related topics 2016, RIMS Kôkyûroku Bessatsu B77, Research Institute for Mathematical Sciences, Kyoto (2020), 159–175. Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Artin–Mazur heights and Yobuko heights of proper log smooth schemes of Cartier type, and Hodge–Witt decompositions and Chow groups of quasi-F-split threefolds
- Kazhdan–Lusztig conjecture via zastava spaces
- Monodromic model for Khovanov–Rozansky homology
- Hyperbolic secant varieties of M-curves
- On the sharp lower bounds of modular invariants and fractional Dehn twist coefficients
- Degeneration of curves on some polarized toric surfaces
- Noether–Severi inequality and equality for irregular threefolds of general type
- Erratum to Table of Contents (J. reine angew. Math. 785 (2022), i–iv)
Articles in the same Issue
- Frontmatter
- Artin–Mazur heights and Yobuko heights of proper log smooth schemes of Cartier type, and Hodge–Witt decompositions and Chow groups of quasi-F-split threefolds
- Kazhdan–Lusztig conjecture via zastava spaces
- Monodromic model for Khovanov–Rozansky homology
- Hyperbolic secant varieties of M-curves
- On the sharp lower bounds of modular invariants and fractional Dehn twist coefficients
- Degeneration of curves on some polarized toric surfaces
- Noether–Severi inequality and equality for irregular threefolds of general type
- Erratum to Table of Contents (J. reine angew. Math. 785 (2022), i–iv)