Home Endoscopic character identities for metaplectic groups
Article
Licensed
Unlicensed Requires Authentication

Endoscopic character identities for metaplectic groups

  • Caihua Luo
Published/Copyright: January 17, 2020

Abstract

In this paper, we prove the conjectural endoscopic character identities for tempered representations of metaplectic groups Mp ( 2 n ) based on the formalism of endoscopy theory by J. Adams, D. Renard and W. W. Li.

Acknowledgements

The author is much indebted to Professor Wee Teck Gan for his guidance and numerous discussions on various topics. The author would like to thank Professors Jeffrey Adams and Wen-Wei Li for discussions on this paper during a conference at CIRM, Luminy, France. The author would also like to thank Professor Atsushi Ichino for inviting me to visit Kyoto University to give a talk on this paper. Thanks are also due to the referee for his/her detailed comments.

References

[1] J. Adams, Genuine representations of the metaplectic group and epsilon factors, Proceedings of the International Congress of Mathematicians. Vol. 1, 2 (Zürich 1994), Birkhäuser, Basel (1995), 721–731. 10.1007/978-3-0348-9078-6_65Search in Google Scholar

[2] J. Adams, Lifting of characters on orthogonal and metaplectic groups, Duke Math. J. 92 (1998), no. 1, 129–178. 10.1215/S0012-7094-98-09203-1Search in Google Scholar

[3] J. Adams, Discrete series and characters of the component group, On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl. 1, International Press, Somerville (2011), 369–387. Search in Google Scholar

[4] J. Adams and D. Barbasch, Genuine representations of the metaplectic group, Compos. Math. 113 (1998), no. 1, 23–66. 10.1023/A:1000450504919Search in Google Scholar

[5] J. Adams, D. Barbasch and D. A. Vogan, Jr., The Langlands classification and irreducible characters for real reductive groups, Progr. Math. 104, Birkhäuser, Boston 1992. 10.1007/978-1-4612-0383-4Search in Google Scholar

[6] J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), no. 3, 501–554. 10.1090/S0894-0347-1988-0939691-8Search in Google Scholar

[7] J. Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, American Mathematical Society, Providence (2005), 1–263. Search in Google Scholar

[8] J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, Amer. Math. Soc. Colloq. Publ. 61, American Mathematical Society, Providence 2013. Search in Google Scholar

[9] A. Borel, Automorphic L-functions, Automorphic forms, representations and L-functions (Corvallis 1977), Proc. Sympos. Pure Math. 33 Part 2, American Mathematical Society, Providence (1979), 27–61. 10.1090/pspum/033.2/546608Search in Google Scholar

[10] P.-S. Chan and W. T. Gan, The local Langlands conjecture for GSp ( 4 ) III: Stability and twisted endoscopy, J. Number Theory 146 (2015), 69–133. 10.1016/j.jnt.2013.07.009Search in Google Scholar

[11] K. Choiy and D. Goldberg, Invariance of R-groups between p-adic inner forms of quasi-split classical groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 1387–1410. 10.1090/tran/6485Search in Google Scholar

[12] W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, On the conjectures of Gross and Prasad. I, Astérisque 346, Société Mathématique de France, Paris (2012), 1–109. Search in Google Scholar

[13] W. T. Gan and A. Ichino, The Shimura–Waldspurger correspondence for Mp 2 n , Ann. of Math. (2) 188 (2018), no. 3, 965–1016. 10.4007/annals.2018.188.3.5Search in Google Scholar

[14] W. T. Gan and W.-W. Li, The Shimura–Waldspurger correspondence for Mp ( 2 n ) , Geometric aspects of the trace formula, Simons Symp., Springer, Cham (2018), 183–210. 10.1007/978-3-319-94833-1_6Search in Google Scholar

[15] W. T. Gan and G. Savin, Representations of metaplectic groups I: Epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), no. 6, 1655–1694. 10.1112/S0010437X12000486Search in Google Scholar

[16] D. Goldberg, Reducibility of induced representations for Sp ( 2 n ) and SO ( n ) , Amer. J. Math. 116 (1994), no. 5, 1101–1151. 10.2307/2374942Search in Google Scholar

[17] B. H. Gross and D. Prasad, On the decomposition of a representation of SO n when restricted to SO n - 1 , Canad. J. Math. 44 (1992), no. 5, 974–1002. 10.4153/CJM-1992-060-8Search in Google Scholar

[18] T. C. Hales, On the fundamental lemma for standard endoscopy: Reduction to unit elements, Canad. J. Math. 47 (1995), no. 5, 974–994. 10.4153/CJM-1995-051-5Search in Google Scholar

[19] T. K. Howard, Lifting of characters on p-adic orthogonal and metaplectic groups, Compos. Math. 146 (2010), no. 3, 795–810. 10.1112/S0010437X09004618Search in Google Scholar

[20] A. W. Knapp, Local Langlands correspondence: The Archimedean case, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence (1994), 393–410. 10.1090/pspum/055.2/1265560Search in Google Scholar

[21] R. E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. 10.1007/BF01458611Search in Google Scholar

[22] S. Kudla, Notes on the local theta correspondence, 1996, http://www.math.toronto.edu/skudla/castle.pdf. Search in Google Scholar

[23] W.-W. Li, Transfert d’intégrales orbitales pour le groupe métaplectique, Compos. Math. 147 (2011), no. 2, 524–590. 10.1112/S0010437X10004963Search in Google Scholar

[24] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 5, 787–859. 10.24033/asens.2178Search in Google Scholar

[25] W.-W. Li, Le lemme fondamental pondéré pour le groupe métaplectique, Canad. J. Math. 64 (2012), no. 3, 497–543. 10.4153/CJM-2011-088-1Search in Google Scholar

[26] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes III: Le développement spectral fin, Math. Ann. 356 (2013), no. 3, 1029–1064. 10.1007/s00208-012-0867-0Search in Google Scholar

[27] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin, J. reine angew. Math. 686 (2014), 37–109. 10.1515/crelle-2012-0015Search in Google Scholar

[28] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. IV. Distributions invariantes, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 6, 2379–2448. 10.5802/aif.2915Search in Google Scholar

[29] W.-W. Li, La formule des traces stable pour le groupe métaplectique: les termes elliptiques, Invent. Math. 202 (2015), no. 2, 743–838. 10.1007/s00222-015-0577-9Search in Google Scholar

[30] W.-W. Li, Spectral transfer for metaplectic groups. I. Local character relations, J. Inst. Math. Jussieu 18 (2019), no. 1, 25–123. 10.1017/S1474748016000384Search in Google Scholar

[31] C. Luo, Spherical fundamental lemma for metaplectic groups, Canad. J. Math. 70 (2018), no. 4, 898–924. 10.4153/CJM-2017-013-2Search in Google Scholar

[32] C. Moeglin and D. Renard, Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-déployés, Relative aspects in representation theory, Langlands functoriality and automorphic forms, Lecture Notes in Math. 2221, Springer, Cham (2018), 341–361. 10.1007/978-3-319-95231-4_8Search in Google Scholar

[33] D. Renard, Endoscopy for Mp ( 2 n , 𝐑 ) , Amer. J. Math. 121 (1999), no. 6, 1215–1243. 10.1353/ajm.1999.0045Search in Google Scholar

[34] J. P. Schultz, Lifting of characters of SL ( 2 ) ( F ) and SO ( 1 , 2 ) ( F ) for F a nonarchimedean local field, ProQuest LLC, Ann Arbor, 1998; Thesis (Ph.D.)–University of Maryland, College Park. Search in Google Scholar

[35] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. 10.2307/1971524Search in Google Scholar

[36] S. W. Shin, Automorphic Plancherel density theorem, Israel J. Math. 192 (2012), no. 1, 83–120. 10.1007/s11856-012-0018-zSearch in Google Scholar

[37] J.-L. Waldspurger, Correspondance de Shimura, J. Math. Pures Appl. (9) 59 (1980), no. 1, 1–132. Search in Google Scholar

[38] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), no. 3, 219–307. 10.1515/form.1991.3.219Search in Google Scholar

[39] J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269, Société Mathématique de France, Paris 2001. Search in Google Scholar

Received: 2018-09-10
Published Online: 2020-01-17
Published in Print: 2020-11-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2019-0042/html
Scroll to top button