Home Compatibility of Kisin modules for different uniformizers
Article
Licensed
Unlicensed Requires Authentication

Compatibility of Kisin modules for different uniformizers

  • Tong Liu EMAIL logo
Published/Copyright: December 18, 2015

Abstract

Let p be a prime and T a lattice inside a semi-stable representation V. We prove that Kisin modules associated to T by selecting different uniformizers are isomorphic after tensoring a subring in W(R). As consequences, we show that several lattices inside the filtered (φ,N)-module of V constructed from Kisin modules are independent on the choice of uniformizers. Finally, we use a similar strategy to show that the Wach module can be recovered from the (φ,G^)-module associated to T when V is crystalline and the base field is unramified.

Award Identifier / Grant number: DMS-0901360

Award Identifier / Grant number: DMS-1406926

Funding statement: The author is partially supported by NSF grants DMS-0901360 and DMS-1406926.

Acknowledgements

The author would like to thank Brian Conrad for raising this question and Bryden Cais for very useful comments.

References

[1] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), no. 2, 219–284. 10.1007/s002220100202Search in Google Scholar

[2] L. Berger, Limites de représentations cristallines, Compos. Math. 140 (2004), no. 6, 1473–1498. 10.1112/S0010437X04000879Search in Google Scholar

[3] C. Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (1997), no. 2, 191–224. 10.1007/s002080050031Search in Google Scholar

[4] C. Breuil, Construction de représentations p-adiques semi-stables, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), no. 3, 281–327. 10.1016/S0012-9593(98)80136-5Search in Google Scholar

[5] B. Cais, The geometry of Hida family and Λ-adic hodge theory, preprint (2012), http://arxiv.org/abs/1209.0046. Search in Google Scholar

[6] M. Emerton, A local-global compatibility conjecture in the p-adic Langlands programme for GL2/, Pure Appl. Math. Q. 2 (2006), no. 2, 279–393. 10.4310/PAMQ.2006.v2.n2.a1Search in Google Scholar

[7] J.-M. Fontaine, Le corps des périodes p-adiques, Périodes p-adiques. Séminaire de Bures-sur-Yvette 1988, Astérisque 223, Société Mathématique de France, Paris (1994), 59–111. Search in Google Scholar

[8] J.-M. Fontaine and G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér. (4) 15 (1982), no. 4, 547–608. 10.24033/asens.1437Search in Google Scholar

[9] M. Kisin, Crystalline representations and F-crystals, Algebraic geometry and number theory, Progr. Math. 253, Birkhäuser, Boston (2006), 459–496. 10.1007/978-0-8176-4532-8_7Search in Google Scholar

[10] T. Liu, Torsion p-adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), no. 4, 633–674. 10.1016/j.ansens.2007.05.002Search in Google Scholar

[11] T. Liu, On lattices in semi-stable representations: A proof of a conjecture of Breuil, Compos. Math. 144 (2008), no. 1, 61–88. 10.1112/S0010437X0700317XSearch in Google Scholar

[12] T. Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), no. 1, 117–138. 10.1007/s00208-009-0392-ySearch in Google Scholar

[13] T. Liu, Lattices in filtered (φ,N)-modules, J. Inst. Math. Jussieu 11 (2012), no. 3, 70–96. 10.1017/S1474748011000235Search in Google Scholar

[14] T. Liu, Filtration attached to torsion semi-stable representations, preprint (2014), https://www.math.purdue.edu/~tongliu/pub/filtrationnew.pdf; to appear in Ann. Inst. Fourier (Grenoble). Search in Google Scholar

Received: 2013-12-04
Published Online: 2015-12-18
Published in Print: 2018-07-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0074/html
Scroll to top button