Abstract
Let p be a prime and T a lattice inside a semi-stable representation V. We prove that Kisin modules associated to T by selecting different uniformizers are isomorphic after tensoring a subring in
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-0901360
Award Identifier / Grant number: DMS-1406926
Funding statement: The author is partially supported by NSF grants DMS-0901360 and DMS-1406926.
Acknowledgements
The author would like to thank Brian Conrad for raising this question and Bryden Cais for very useful comments.
References
[1] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), no. 2, 219–284. 10.1007/s002220100202Search in Google Scholar
[2] L. Berger, Limites de représentations cristallines, Compos. Math. 140 (2004), no. 6, 1473–1498. 10.1112/S0010437X04000879Search in Google Scholar
[3] C. Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (1997), no. 2, 191–224. 10.1007/s002080050031Search in Google Scholar
[4] C. Breuil, Construction de représentations p-adiques semi-stables, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), no. 3, 281–327. 10.1016/S0012-9593(98)80136-5Search in Google Scholar
[5] B. Cais, The geometry of Hida family and Λ-adic hodge theory, preprint (2012), http://arxiv.org/abs/1209.0046. Search in Google Scholar
[6]
M. Emerton,
A local-global compatibility conjecture in the p-adic Langlands programme for
[7] J.-M. Fontaine, Le corps des périodes p-adiques, Périodes p-adiques. Séminaire de Bures-sur-Yvette 1988, Astérisque 223, Société Mathématique de France, Paris (1994), 59–111. Search in Google Scholar
[8] J.-M. Fontaine and G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér. (4) 15 (1982), no. 4, 547–608. 10.24033/asens.1437Search in Google Scholar
[9] M. Kisin, Crystalline representations and F-crystals, Algebraic geometry and number theory, Progr. Math. 253, Birkhäuser, Boston (2006), 459–496. 10.1007/978-0-8176-4532-8_7Search in Google Scholar
[10] T. Liu, Torsion p-adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), no. 4, 633–674. 10.1016/j.ansens.2007.05.002Search in Google Scholar
[11] T. Liu, On lattices in semi-stable representations: A proof of a conjecture of Breuil, Compos. Math. 144 (2008), no. 1, 61–88. 10.1112/S0010437X0700317XSearch in Google Scholar
[12] T. Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), no. 1, 117–138. 10.1007/s00208-009-0392-ySearch in Google Scholar
[13]
T. Liu,
Lattices in filtered
[14] T. Liu, Filtration attached to torsion semi-stable representations, preprint (2014), https://www.math.purdue.edu/~tongliu/pub/filtrationnew.pdf; to appear in Ann. Inst. Fourier (Grenoble). Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Compatibility of Kisin modules for different uniformizers
- Stably uniform affinoids are sheafy
- Non-minimal modularity lifting in weight one
- Hausdorff theory of dual approximation on planar curves
- Every conformal minimal surface in ℝ3 is isotopic to the real part of a holomorphic\break null curve
- Exotic crossed products and the Baum–Connes conjecture
- Directions in hyperbolic lattices
- Analysis of gauged Witten equation
- The completion problem for equivariant K-theory
Articles in the same Issue
- Frontmatter
- Compatibility of Kisin modules for different uniformizers
- Stably uniform affinoids are sheafy
- Non-minimal modularity lifting in weight one
- Hausdorff theory of dual approximation on planar curves
- Every conformal minimal surface in ℝ3 is isotopic to the real part of a holomorphic\break null curve
- Exotic crossed products and the Baum–Connes conjecture
- Directions in hyperbolic lattices
- Analysis of gauged Witten equation
- The completion problem for equivariant K-theory