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Convergence of metrics
under self-dual Weyl tensor and

scalar curvature bounds
By Yiyan Xu at Nanjing

Abstract. We establish a C 1;˛-compactness theorem for metrics with bounded self-
dual Weyl tensor and scalar curvature. The main ingredient is the C 1;˛-harmonic radius esti-
mate, where a blow up analysis as in [2] is used. Our result is motivated by, and may be applied
to, the Calabi flow on complex surfaces.

1. Introduction

In Riemannian geometry, it is interesting to consider the convergence of metrics and the
finiteness of differential structures in the presence of basic geometric data, such as curvature,
diameter and volume. One of the most prominent early work is Cheeger’s finiteness theorem
in [10]. Intuitively, the idea behind the theory is that these manifolds can be constructed from
a finite number of standard pieces, i.e. coordinate patches with certain uniform regularity. Now,
it is called the fundamental Cheeger–Gromov convergence theory, see Theorem 3.3.

To get a better estimate in the regularity problem, we use harmonic coordinates, which
goes back to DeTurck–Kazdan [13]. In [13], it was shown that, in general, optimal regularity of
the metric is obtained in harmonic coordinates. Moreover, Jost and Karcher deduced an explicit
bound for the C 1;˛-harmonic radius which depends only on lower volume, upper diameter and
sectional curvature bounds [15, 16].

However, one of the other most important features of harmonic coordinates is that the
metric is apparently controlled by the Ricci curvature. Roughly speaking, the Laplacian of the
metric is just the Ricci curvature, which is a determined system of PDE, see (3.1); whereas
assuming bounds on the full curvature corresponds to an overdetermined system. This was
exploited by Anderson [2], i.e. the bound on the Ricci curvature and the lower bound on the
injectivity radius together imply a lower bound for the harmonic radius.

Note that in Cheeger’s finiteness theorem, one can bound the injectivity radius provided
that one has lower volume bounds and bounded full curvature. Without the assumption on
injectivity radius, relaxing it to a lower bound on volume, there are examples which show
that degeneration may occur under a Ricci curvature bound, see Example 1.6. Pursuing these
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phenomena of thought, geometers had made a well-known conjecture [11]: if jRicj � n � 1,
then the convergence is C 1;˛ off a singular set of Hausdorff codimension at least four.

One of the key steps in Andersen’s proof is to establish the continuous property of the
harmonic radius, regarded as a function, under the C k;˛ (k � 1) or W k;p (k � 1) conver-
gence, which in turn ultimately depends on some type of partial differential equations estimate.
Besides the elliptic regularity theory, the main ingredient in Andersen’s results is a blow up
argument that relates the validity of rigidity theorems to the global behavior of complete, non-
compact manifolds with critical metrics. The hypotheses on the manifolds, such as curvature
and injectivity radius bounds, were basically only used in the characterization of the Euclid-
ean space, i.e. the rigidity theorem. It is likely that some other weakened hypothesis is still
sufficient to control the harmonic radius.

We proceed with another generalization of the result on metrics with bounded Ricci
curvature to bounded scalar curvature, but at the expense of some hypotheses on the struc-
ture of metric, for example, by requiring an anti-self-dual or Kähler metric. The motivation
here also comes from the Calabi flow. In estimating the long-time existence and convergence
of the Calabi flow, one crucial estimate which is still lacking is the C 1;˛-Cheeger–Gromov
compactness of Kähler metrics with bounded scalar curvature, see [7] and [12].

Theorem 1.1. Let M 4 be a compact oriented 4-dimensional manifold, and let ¹giº be
a sequence metrics on M 4 with

(1) either bounded self-dual Weyl tensor, i.e. jW C.gi /j � ƒ, or .M; gi / are Kähler metrics,

(2) bounded scalar curvature, i.e. jS.gi /j � ƒ,

(3) unit volume, i.e. jVol.M; gi /j � 1,

(4) bounded Sobolev constant CS .gi / � CS , i.e.

(1.1)
²Z
M

jvj4d�gi

³ 1
2

� CS

Z
M

jdvj2gid�gi ; for all v 2 C 0;10 .M/:

Then there exist a subsequence ¹j º � ¹iº such that .M;gj / converges to a compact multi-fold
.M1;g1/ in the Gromov–Hausdorff topology. Moreover, on the regular setM1n¹x1; : : : ; xmº,
the metric g1 is C 1;˛ and the convergence is in the C 1;˛-Cheeger–Gromov topology, while
each of the singular points xi has a neighborhood homeomorphic to a finite disjoint union of
cones C.S3=�/ with identifications of vertex, where � is finite subgroup of O.4/.

Remark 1.2. The above theorem holds, without fixing topology, under the additional
assumption that Z

M4
i

jRm.gi /j2 � ƒ1:

By the Gauss–Bonnet formula and the Hirzebruch signature formula [6], we then have

(1.2)
Z
M4

jRmj2 D �24�2�.M/ � 8�2�.M/C

Z
M

1

12
S2 C 4jW Cj2:

If the scalar curvature S and self-dual Weyl tensor jW Cj have uniformly bounded L2-norms,
then we have a prior L2-bound on the curvature tensor Rm.
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Remark 1.3. In fact, under the controlled topology, i.e. b1.M/ � b0, the Sobolev con-
stant bound can be released to a lower volume growth assumption, i.e. Vol.B.x; r// � V0rn.
Gang Tian and Jeff Viaclovsky’s proof for critical metrics [28] also holds in our case, since the
volume is continuous in the C 1;˛-topology.

Analogous convergence results also hold for metrics with bounded Bach tensor and a C 2-
bound of the scalar curvature, which is actually easier to prove since we have the precise elliptic
system (3.11).

Theorem 1.4. Let ¹Mi ; giº be a sequence of Riemannian manifolds with

(1) either bounded Bach tensor, i.e. jB.gi /j � ƒ or ¹Mi ; giº are Kähler,

(2) C 2-bounded scalar curvature, i.e. jr2S.gi /j � ƒ,

(3) unit volume, i.e. jVol.Mi ; gi /j � 1,

(4) bounded Sobolev constant CS in (1.1),

(5) bounded L
n
2 -norm of curvature: Z

Mi

jRmj
n
2 � ƒ1:

Then there exist a subsequence ¹j º � ¹iº such that .Mj ; gj / converges to a compact multi-fold
.M1; g1/ in the C 3;˛-topology outside finitely many singularities.

Example 1.5 ([23]). There exists a family of conformal flat metrics with constant scalar
curvature gt on S1 � S3 (t � 1) such that the diameter of S1 � ¹xº goes to 0 as t !1 for
a point x 2 S3. For other points y ¤ x, the diameter of the slice S1 � ¹yº is bounded from
below. The limit space is the quotient space of S4 which identifies the north pole and the
south pole.

Example 1.6 ([18, 20]). Let M1 be an orbifold given by the Z=2Z-quotient of the
complex 2- torus T 2 D C2=Z4, where �1 2 Z=2Z acts on T by

.z1; z2/ mod Z4 7! .�z1;�z2/ mod Z4:

The flat metric on T descends to an orbifold metric g1 on M1, and it is an orbifold Ricci
flat anti-self-dual metric. Moreover, M1 has a complex manifold structure (with singularities)
since the Z=2Z-action is holomorphic. Let us take the minimal resolution � WM !M1. The
singularities are sixteen simple singularities of type A1. The minimal resolution M is called
the Kummer surface and is an example of a K3 surface. Let S D ¹x1; : : : ; x16º �M1 be the
singular set, and letE1; : : : ; E16 be the exceptional divisors inM . These are complex subman-
ifolds of M biholomorphic to CP 1 with the self-intersection number �2. By the solution of
the Calabi conjecture, we have a unique Calabi–Yau metric on M in each Kähler class, which
is automatically anti-self-dual. Take a Kähler class, and there exists a sequence of Ricci–flat
Kähler metrics gi , as follows:

(1) the volume of M with respect to gi is equal to 1,

(2) the volume of the exceptional divisor Ek is equal to 1
i

for k D 1; : : : ; 16.
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It can be shown that the sequence gi converges to ��g1 overM n
S16
kD1Ek , but condition (2)

forces the metric to become degenerate along Ek as i !1, i.e. Ek collapses to a point, and
the Riemannian curvature concentrate along

S16
kD1Ek . Moreover, the curvature concentrates

so completely that the limit metric is a flat orbifold-metric.

Acknowledgement. The author would like to thank his advisor professor Gang Tian
for suggesting this problem and constant encouragement. The author would also like to thank
his friend Yalong Shi for numerous suggestions which helped to improve the presentation.

2. Self-dual Weyl tensor

Riemannian geometry in dimension 4 has some special features which are not present
in any other dimension. In dimensions n � 5 the group SO.n/ is simple, and the space of
Weyl tensors is irreducible, whereas in dimension 4 we have SO.4/ D SO.3/ �Z2 SO.3/, and
a decomposition of the space of Weyl tensors into two SO.4/-irreducible components. The fact
that SO.4/ is not simple is reflected at the Lie algebra level in the decomposition of the bundle
of 2-forms into self-dual and anti-self-dual parts under the Hodge star operator.

Let .M 4; g/ be an oriented 4-dimensional Riemannian manifold. The Hodge star opera-
tor � associated to g takes ƒ WD ƒ2TM to itself and satisfies �� D 1,

� ^ �' D h�; 'idvolg ;

where �; ' 2 ƒ and h� ; �i denotes the inner product on ƒ induced by g. Then ƒ admits a de-
composition of the form

ƒ D ƒC ˚ƒ�;

whereƒ˙ is the˙1-eigenspace of �. The curvature operator Rm, viewed as an endomorphism
on ƒ, has the following matrix expression [6]:

Rm D

24W C C S
12

IdƒC VRic

. VRic/t W � C S
12

Idƒ�

35 ;
where VRic 2 Hom.ƒC; ƒ�/ is the trace free part of the Ricci curvature, S is the scalar cur-
vature, and W ˙ 2 S20 .ƒ

˙/ is the (anti-)self-dual part of the Weyl tensor, where S20 denote
traceless symmetric endomorphisms. If we denote the projection operator by

P˙ WD
1

2
.1˙ �/ W ƒ! ƒ˙;

then
W ˙ D P˙ ı Rm ı P˙ �

S

12
Idƒ˙ :

Definition 2.1. Let .M 4; g/ be a compact 4-dimensional Riemannian manifold. The
metric g is called anti-self-dual if W C D 0 (”�W D �W ).

We note that reversing the orientation transfers the self-dual part to the anti-self-dual part.
For anti-self-dual metrics, if we reverse the orientation, then W �.g/ D 0 and g is said to be
self-dual (W �.CP 2; J; !FS/ D 0, i.e. .CP 2; gFS/ is anti-self-dual).
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There are many interesting examples of anti-self-dual metrics. First, the (anti-)self-duality
of the metric is a conformally invariant property. In particular, the conformal flat metrics will
be anti-self-dual. Second, a large number of anti-self-dual metrics are Kähler metrics with zero
scalar curvature, since the self-dual part of the Weyl tensor is given by ([6, Proposition 16.62])

W C D diag
�
S

6
;�

S

12
;�

S

12

�
:

In particular, a K3 surface with a Calabi–Yau metric is anti-self-dual. This also follows from
the Gauss–Bonnet formula and the Hirzebruch signature formula, since with the canonical
orientation � D �16 and � D 24.

Definition 2.2 (Bach tensor). Let .M n; g/ be a compact Riemannian manifold. The
Bach tensor is defined by

Bij D
1

n � 3
r
k
r
lWikjl C

1

n � 2
RicklWikjl :

The Bach tensor is a symmetric, trace free and divergence free 2-tensor. Using the Bianchi
identities, we may rewrite the Bach flat (Kähler) metric with constant scalar curvature as an
elliptic system [26]:

(2.1)

´
�Rm D L.r2Ric/C Rm � Rm;

�Ric D Rm � Ric:

In dimension 4, the Bach tensor arises as the Euler–Lagrange equations of the L2-norm
of the Weyl curvature tensor. Using the Bianchi identity, the Bach tensor can also be written as

Bij D 2r
k
r
lW C

ikjl
C RicklW C

ikjl
;

thus an anti-self-dual metric will be Bach flat. As we have mentioned earlier, the Kähler metric
on a complex surface with zero scalar curvature will be anti-self-dual, so it is also Bach flat.

Let M be a closed oriented smooth manifold. A smooth Riemannian metric g on M is a
smooth section of the bundle S2T �M of positive definite symmetric 2-tensors. The space M

of all Riemannian metrics on M is a convex open cone in �.S2T �M/. A Riemannian metric
is given locally by functions, so we can define the (Sobolev) norm on M with respect to some
fixed metric, and the prescribed curvature condition can be viewed as a partial differential
equation on M.

With this viewpoint, we want to use an a priori estimate of elliptic equations to study the
convergence theory for the metric with bounded self-dual Weyl tensor. Note that the self-dual
Weyl tensor W C.g/ is equivariant under the action of the diffeomorphism transformation and
conformal changes, but if we fix the gauge, the prescribed self-dual Weyl tensor does form an
elliptic system. In fact, it is now a standard technique when studying geometric problems, such
as compactness in geometric calculus of variations (Yang–Mills instanton, Einstein metric),
DeTurck trick for existence theory of geometric (Ricci) flow, etc. For anti-self-dual structures,
it is well known that the local structure of moduli spaces is controlled by an elliptic deformation
complex [17, 25]. For the reader’s convenience, we would like make it more clear from a PDE
point of view (2.2). As a consequence, we get the crucial estimate for this paper, i.e. an a priori
Lp-estimate (2.6) for the metric with bounded self-dual Weyl tensor and scalar curvature.
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Theorem 2.3. Let M be a closed oriented smooth 4-manifold. We consider the follow-
ing map (equation):

L WM! S20ƒ
C
˚ C1.M/˚ TM;(2.2)

g 7! .W C.g/; S.g/; �g; Ng.id//;

where ��g; Ng.id/ WD trgrg˝ Ngd.id/ is the tension field of the identity map id W .M; g/! .M; Ng/,
and Ng is some fixed background metric. Then the principal symbol �.L/ of the linearized op-
erator of L at .x; g/ is injective, which is given as follows: for any � 2 TxM and h 2 S2xTM ,

(2.3) �.L/.x; �/.h/ D

�
hƒC ;� tr.h/j�j2 C h.�; �/; h.�; � / �

1

2
tr h � �

�
;

where hƒC is defined by (2.5). In particular, equation (2.2) for the metric is an elliptic system
of partial differential equations of mixed order. Consequently, the Lp-theory holds:

kgkW 2;p � C.kgkLp C kW
C.g/kLp C kS.g/kLp C k�g; NgkW 1;p /:

Proof. Recall that the self-dual part of Weyl tensor W C is defined by

W C D PC ı Rm ı PC �
S

12
IdƒC :

Then

ıW Cg .h/ D PC ı ıRmg.h/ ı PC C ıPCg.h/ ı Rm ı PC C PC ı Rm ı ıPCg.h/

�
1

12
ıSg.h/ IdƒC �

S

12
ı Id

ƒ
C
g
.h/

D PC ı ıRmg.h/ ı PC �
1

12
ıSg.h/ IdƒC C lower order terms:

Now we need the following geometric quantities from [6] or [29] under deformation of a metric.
The first variation of curvature is

ı Rmg.h/.X; Y;Z;U / D
1

2
Œh.R.X; Y /Z;U / � h.R.X; Y /U;Z/�

C
1

2
Œr2Y;Zh.X;U /Cr

2
X;Uh.Y;Z/

� r
2
X;Zh.Y; U / � r

2
Y;Uh.X;Z/�:

Recall one can calculate the principal symbol for a kth order differential operator L in the
following way [29]: Given .x; �/, and a smooth function f with df D � ,

�.L/.x; �/h D lim
s!1

s�ke�sf L.esf h/.x/:

Then the principal symbol for the second order linear operator ıRmg is given by

�.ıRmg/.x; �/.h/.X; Y;Z;U /(2.4)

D
1

2
ŒhY; �ihZ; �ih.X;U /C hX; �ihU; �ih.Y;Z/

� hX; �ihZ; �ih.Y; U / � hY; �ihU; �ih.X;Z/�

D
1

2
h.X ^ Y.�/; Z ^ U.�//;

where
X ^ Y.�/ WD hX; �iY � hY; �iX:
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Note that the scalar curvature term ıSg.h/ IdƒC does not contribute to the principal symbol of
the operator of ıW Cg , since ıW Cg is traceless. Therefore, combining with the computation (2.4),
by taking the traceless symmetric part, the principal symbol of the operator of ıW Cg is given
by

�.ıW Cg /.x; �/.h/ D �.PC ı ıRmg ı PC/.x; �/.h/

�
1

3
trƒC.�.PC ı ıRmg ı PC/.x; �/.h//gƒC

D hƒC ;

where hƒC is defined as follows: for e, e0 2 ƒC.x/, and ¹eiº an orthonormal basis of ƒC.x/,
we have

(2.5) hƒC.e; e
0/ D

1

2
h.e.�/; e0.�// �

1

6

3X
iD1

h.ei .�/; ei .�//gx.e; e
0/:

The linearization of the scalar curvature map is

ıSg.h/ D � tr hC ı2h � g.Ric; h/:

Then its symbol is
�.ıSg/.x; �/.h/ D �g.�; �/ tr hC h.�; �/:

The linearization of the tension field map from [29] is given by

ı�g; Ng.id/.h/ D hrd.id/; hi �
�
ıhC

1

2
d.tr h/; d.id/

�
;

therefore
�.ı�g; Ng.id/g/.x; �/.h/ D h.�; � / �

1

2
tr h�:

Combining the above three symbolic computations gives (2.3).
Now we will verify that the symbol �.L/ is injective, i.e. for all � ¤ 0, �.L/.x; �/.h/ D 0

implies that h D 0. It is easy to check that �.L/.x; �/.h/ D 0 implies hƒC D 0, h.�; �/ D 0,
and tr h D 0.

First choose an orthonormal basis X1; X2; X3; X4 for TxM . Then

e1 D

p
2

2
.X1 ^X2 CX3 ^X4/;

e2 D

p
2

2
.X1 ^X3 CX4 ^X2/;

e3 D

p
2

2
.X1 ^X4 CX2 ^X3/

gives an orthonormal bases of ƒCx . For any � D � iXi with j�j D 1, we have266664
e1.�/

e2.�/

e3.�/
p
2
2
�

377775 D
p
2

2

266664
�2 ��1 �4 ��3

�3 ��4 ��1 �2

�4 �3 ��2 ��1

�1 �2 �3 �4

377775
266664
X1

X2

X3

X4

377775 WD
p
2

2
UX:
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If hƒC D 0 and h.�; �/ D 0, from (2.5), it is equivalent to"
.h.ei .�/; ej .�// 0

0 1
2
h.�; �/

#
D
1

2
UhU T

D
1

3

X
i

h.ei .�/; ei .�//

"
I 0

0 0

#
:

Since U 2 O.4/, we have

h D
2

3

X
i

h.ei .�/; ei .�//U
T

"
I 0

0 0

#
U:

Furthermore, if tr h D 0, then

0 D tr h D 2
X
i

h.ei .�/; ei .�//;

and consequently, h D 0.
Since the symbol �.L/ is injective, by comparing the dimension (dim D 10), we con-

clude that equation (2.2) is an elliptic system of partial differential equations with mixed order.
For an elliptic system (of mixed order), we have an a priori estimate, for example, the Schauder
or Lp-theory [19]. Alternatively, if we replace the tension field �g; Ng.id/ in equation (2.2)
by L�g; Ng.id/g, then it will be an overdetermined elliptic system of second order PDEs. In fact,
the a priori estimate (Lp-theory) which holds for differential operators between vector bundles
is equivalent to the injectivity of the symbol, while the ‘solubility criteria’ holds if the symbol
is surjective (see [21, Theorem 19.25] or [14, Theorem A.8]).

In local harmonic coordinates, since the metric is C 1;˛-close to the Euclidean metric, we
can if necessary make the harmonic norm C small enough so that the quasi-linear operator L
is uniformly elliptic with C 1;˛-continuous leading terms. By Lp-theory, we have the estimate

kgkW 2;p.Br /
� C.kgkLp.B2r / C kW

C.g/; S.g/kLp.B2r /(2.6)

C k�g; Ng.id/kW 1;p.B2r /
/

D C.kgkLp.B2r / C kW
C.g/kLp.B2r / C kS.g/kLp.B2r //:

The last step holds, since ��g; Ng.id/ D 0 if we identify the geodesic ball with the Euclidean ball
under harmonic coordinates.

3. Convergence theory

To generalize the convergence theory with the assumption on sectional curvature to
a weaker curvature hypothesis, it is convenient to use the concept of harmonic radius, which
was introduced and developed in [2, 4, 22].

Definition 3.1 (Harmonic radius). Let .M; g/ be a Riemannian manifold. Fixing any
m 2 N, and given any x 2M , there is a radius r D r.x/ for which we can find a harmonic
coordinate system

ˆ D .x1; : : : ; xn/ W B.x; r/ � .M; g/! Rn
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such that

(1) the coordinate function xi W B.x; r/ � .M; g/! R is harmonic, for i D 1; : : : ; n,

(2) the metric tensor gij WD g.rxi ;rxj / is Cm;˛-bounded on B.x; r/, i.e.

e�C ıij � gij � e
C ıij (as bilinear forms);

and X
1�jˇ j�m

r jˇ j sup j@ˇgij j C
X
jˇ jDm

rmC˛Œ@ˇgij �˛ � C;

for some fixed constant C � 0, where the norms are taken with respect to the coordinates
.¹xiº

n
i / on B.x; r/. We say that a point x 2 .M; g/ admits harmonic coordinates with bounded

Cm;˛-norm on the scale r , which we denote by

kx 2 .M; g/kCm;˛;r � C:

Moreover, we let rh.x/ be the Cm;˛-harmonic radius at x, which is defined as the radius of the
largest geodesic ball about x which admits Cm;˛-harmonic coordinates, i.e.

rh.x/ D sup¹r > 0 W kx 2 .M; g/kCm;˛;r � C º:

The Cm;˛-harmonic radius of .M; g/ is defined by

rh.M/ D inf
x2M

rh.x/:

In harmonic coordinates on Riemannian manifolds, the Ricci tensor has a particularly
nice formula [22]:

(3.1) �gij D �2Ricij CQij .g; @g/;

here Q is a polynomial in the matrix g, quadratic in @g.

Definition 3.2. For a compact metric space X , define the covering number of the geo-
desic ball on the scale � as follows:

Cov.�/ D min

´
N 2 N W 9¹xiº

N
iD1 � X;

N[
iD1

B.xi ; �/ D X; B

�
xi ;

�

2

�
mutually disjoint

µ
:

Now, let us state the fundamental convergence theorem:

Theorem 3.3 (Fundamental convergence theorem [2, 22]). For given n � 2, C � 0,
N > 0, ˛ 2 .0; 1� and r0 > 0, consider the class M.n; C;N; r0/ of n-dimensional Riemannian
manifolds ²

.M; g/ W k.M; g/kCm;˛;r0 � C and Cov
�
r0

10

�
� N

³
:

Then M.n; C;N; r0/ is compact in the Cm;ˇ -Cheeger–Gromov topology for all ˇ < ˛. More-
over, the theorem is also valid for bounded domains in Riemannian manifolds, as well as for
pointed complete Riemannian manifolds, provided one works on compact subsets.
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Theorem 3.4 (Volume growth and �-rigidity [9, 26, 28]). Let .M; g/ be a complete
Riemannian manifold or Riemannian multi-fold with finite point singularities, and g be a crit-
ical metric (for example, Bach flat with zero scalar curvature). Assume that .M n; g/ satisfies
the Sobolev inequality,²Z

M

jvj
2n
n�2d�

³n�2
n

� CS

Z
M

jdvj2d�; for all v 2 C 0;10 .M/I

and the curvature has bounded L
n
2 -norm,²Z

M

jRmj
n
2 d�

³n
2

� �:

Then .M n; g/ has finitely many ends, which is ALE of order 2. Moreover, the volume has at
most Euclidean volume growth,

Vol.B.p; r// � V rn

for some positive constant V D V.n; CS ; �/. Moreover, if .M; g/ is smooth and � D �0 is small
enough, which depends on n and the Sobolev constant CS , then .M; g/ is isometric to the
Euclidean space .Rn; gE /.

Lemma 3.5. Let B.r/ WD B.x0; r/ be a geodesic ball in a compact oriented Riemann-
ian 4-manifold .M 4; g/, where g has bounded self-dual Weyl tensor (or is Kähler) and bounded
scalar curvature, jW Cj C jS j � ƒ. Then there exist two positive constants �0 D �.CS / and
�0 D �0.CS ; ƒ/ such that if

(3.2)
²Z
B.x0;2r/

jRmj2d�
³ 1
2

� �0;

then for all x 2 B.x0; r/, theC 1;˛-harmonic radius rh.x/, with respect to some fixed ˛ 2 .0; 1/
and C > 0, satisfies

(3.3)
rh.x/

dist.x; @B.x0; r//
� �0 > 0:

Proof. On a fixed smooth Riemannian manifold .M; g/, it is clear that the harmonic
radius rh.x/ is positive, i.e. (3.3) holds, but �0 depends on .M; g/ and x. Thus, we must show
that �0 depends only on the hypothesis prescribed in the lemma.

We argue by contradiction, which is similar to the blow up analysis for the Ricci curvature
case as in [2]. If (3.3) is false, then there is a sequence of Riemannian 4-manifolds ¹.Mi ; gi /º

with the bounds in the lemma, and points xi 2 Bi .r/ � .Mi ; gi / such that

(3.4)
rh.xi /

dist.xi ; @Bi /
! 0; as i !1:

We may assume, without loss of generality, that the points xi realize the minimum of the left
side of (3.3), and

kxi 2 .Mi ; gi /kC1;˛;rh.xi / 2

�
C

2
;C

�
:
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By scaling theses metrics suitably, namely, Ngi D rh.xi /�2gi , then

(1) Nrh.xi / D 1 and Nrh.x/ is bounded below on balls of finite distance to xi , which follows
from the scale invariant property of harmonic norm [22],

kx 2 .M; �2g/kCm;˛;�r D kx 2 .M; g/kCm;˛;r ;

(2) dist Ngi .xi ; @Bi /!1, since the ratio in (3.3) is scale invariant,

(3) jW C. Ngi /j C jS. Ngi /j � r2h.xi /ƒ! 0, and the curvature has �-small L2-norm

CS

²Z
B.x; 2r

rh.xi /
/

jRm. Ngi /j2d N�i

³ 1
2

� �0;

with respect to the metric Ngi .

We now consider the sequence of pointed Riemannian manifolds²�
Bi

�
xi ;

r

rh.xi /

�
; xi ; Ngi

�
� .Mi ; xi ; Ngi /

³
:

By the Fundamental Convergence Theorem 3.3, the sequence is subconvergent, in the pointed
C 1;ˇ -topology (for all ˇ < ˛), uniformly on compact subsets, to a complete C 1;˛-Riemannian
manifold .N; Nx; h/.

Claim 1. The convergence is actually better, namely in the C 1;˛-topology, where ˛ is
given by the hypothesis of the lemma.

We can even prove more than we need, i.e. the convergence is in the C 1;˛ \W 2;p-top-
ology, for any ˛ < 1 and 1 < p <1. By the Sobolev Embedding Theorem, W 2;p � C 1;˛

if p > n, so it suffices to prove the convergence is in the W 2;p-topology. To see this, by Theo-
rem 2.3, we know that the prescribed self-dual Weyl tensor and scalar curvature equation (2.2)
is an elliptic system of partial differential equations of second order under harmonic coordi-
nates:

(3.5)

8<:
W C.g/ D L.g�1@@g/CQ1.@g; @g/ 2 L

1;

S.g/ D �
1

2
gijgkl

@2

@xk@xl
gij CQ2.@g; @g/ 2 L

1;

where L denotes linear combination, and Q is a quadratic term in the first order derivatives
of g. For an a priori estimate, since kgij � ıij kC1;˛ < C , if necessary we can make C small,
so that the above system actually can be viewed as a uniform linear elliptic system of gij
with C 1;˛ coefficients. By the a priori estimate (2.6), the Lp-theory for elliptic systems gives
a uniform bound on kgkW 2;p for any 1 < p <1,

kgkW 2;p � C.kgkLp C kQ.@g; @g/kLp C kW
C.g/kLp C kS.g/kLp / � C:

As a consequence, the convergence is in theC 1;˛\W 2;p-topology, for any ˛ < 1, 1 < p <1.
More precisely, the geodesic balls .Bi . r

rh.xi /
/; xi ; Ngi / are covered by harmonic coordi-

nates that converge in the C 2;˛-topology to the harmonic coordinates on limit space N , and
the metric coefficients Ngi converge in the C 1;˛-topology to h.
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Since the C 1;˛-norm and the harmonic radius are continuous with respect to C 1;˛- or
W 2;p-convergence [2, 22], we get

(3.6) rh. Nx/ D 1; k Nx 2 .N; h/kC1;˛;rh. Nx/ �
C

2
> 0:

Claim 2. The manifold .N; h/ is a smooth Riemannian manifold and isometric to the
Euclidean space .R4; gE /.

Since the convergence is in the C 1;˛ \W 2;p-topology, we can conclude that the limit
metric h is a weak C 1;˛ \W 2;p-solution of the elliptic system

(3.7)

8<:
W C.g/ D L.g�1@@g/CQ1.@g; @g/ D 0;

S.g/ D �
1

2
gijgkl

@2

@xk@xl
gij CQ2.@g; @g/ D 0;

namely, the anti-self-dual or Kähler metric with zero scalar curvature is a second order quasi-
linear elliptic system of the metric modulo diffeomorphisms by Theorem 2.3. With the a priori
estimate (2.6) and a standard bootstrap argument, and also the Sobolev Embedding Theorem,
we conclude that the metric h is actually a smooth (in fact, analytic) Riemannian metric with

CS

²Z
N

jRm.h/j2d�h

³ 1
2

� �0:

If � D �0 is sufficiently small (which will depend only on the Sobolev constant), by the
�-Rigidity Theorem 3.4, we conclude that Rm.h/ � 0, i.e. N is flat. On the other hand, the
bounded Sobolev constant implies Euclidean volume growth. Consequently, .N; h/ is isometric
to the Euclidean space .Rn; gE /.

It is obvious that the Euclidean space admits global harmonic coordinates, i.e.

rh.x/ D1; kx 2 .R
n; gE /kC1;˛;r D 0; for all r > 0:

However, this violates (3.6).

Now we can prove the Main Theorem 1.1, which is an immediate consequence of the
Main Lemma 3.5 on the harmonic radius estimate and the Fundamental Convergence Theo-
rem 3.3.

Theorem 3.6. Let ¹.Mi ; gi /º be a sequence of Riemannian 4-manifolds, which satisfy
the hypotheses of Theorem 1.1 and which also have uniformly bounded L2-curvature. Then
there exists a subsequence ¹j º � ¹iº such that .Mj ; gj / converges to a compact metric space
.M1; g1/ in the C 1;˛-topology outside the finite singular set S D ¹x1; : : : ; xmº.

Proof. As in the case of bounded Ricci curvature or Bach flat metric with constant scalar
curvature, take � D �0 in Theorem 3.4, and consider the sets

Ri .r/ D

²
x 2Mi W

Z
B.x;2r/

jRm.gi /j2 < �20

³
;

Si .r/ D

²
x 2Mi W

Z
B.x;2r/

jRm.gi /j2 � �20

³
:

Then Mi D Ri .r/ [ Si .r/, and also Ri .r1/ � Ri .r2/, Si .r1/ � Si .r2/, for any r1 > r2.
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For all x 2 Ri .r/, by the Main Lemma 3.5, we have the estimate on the C 1;˛-harmonic
radius

rh.x/ � �0r;

where �0 D C.CS ; ƒ/. On the other hand, the uniform Sobolev constant implies noncollaps-
ing, namely, Vol.B.x; r// � C.CS /r4. Then the covering number (see Definition 3.2) on any
compact subset of Ri .r/ on the scale infx2Ri .r/ rh.x/ � �0r can be bounded by

Cov
�
1

10
�0r

�
�

Vol.Mi /

Vol.B.x; 1
10
�0r//

�
C.CS ; ƒ/

r4
:

Applying now the Fundamental Convergence Theorem 3.3, the sequence .Ri .r/; gi / is
C 1;˛-subconvergent to a C 1;˛-(open) Riemannian manifold .R1.r/; g1/ on the compact set.

To construct the limit space, we will be brief since it is quite standard, see for example
[1, 5, 24], and also [3, 27].

We now choose a sequence ¹rj º ! 0with rjC1 < 1
2
rj , and repeat the above construction

by choosing a subsequence, which we still denote by ¹j º. Since Ri .rj / � Ri .rjC1/, we have
a sequence of limit spaces with natural inclusions

R1.rj / � R1.rjC1/ � � � � � R1 WD dir: lim R1.rj /:

By the C 1;˛-convergence, .R1; g1/ is a C 1;˛-(open) Riemannian manifold, and there are
C 2;˛-smooth embeddings Fi W .R1; g1/! .Mi ; gi / such that F �i gi ! g1 in the C 1;˛-top-
ology on any compact set of R1.

Letting ¹B.xi
k
; r
4
/ºk2N , r < 1

4
�0, be a collection of a maximal family of disjoint balls

in Mi , where �0 is the Euclidean volume growth scale in Theorem 4.1, we have

Mi �

[
k

B.xik; r/:

There is a uniform bound, independent of i , on the number of points ¹xi
k
2 Si .r/º, which

follows from

(3.8) m �

mX
iD1

��20

Z
B.xi

k
;2r/

jRm.gi /j2 � C��20

Z
Mi

jRm.gi /j2;

where

C D sup
x2Mi

Vol.B.x; 9r
4
//

Vol.B.x; r
4
//
� C.CS ; ƒ/:

The last inequality holds because we have an upper bound on the volume growth (4.1).
Let ¹rj º be as above. Without loss of generality, we will assume m is fixed, i.e. the num-

ber of mutually disjoint balls which are centered in Si .rj / and have radius rj
4

is independent
of i and j . As a consequence, every point of Si .rj / is contained in a ball of diameter no
greater thanmrj . Hence, most of the volume .Mi ; gi / is contained in R.rj /. Using the embed-
ding F ji W .R1.rj /; g1/! .Ri .rj /; gi /, we see that for any fixed j , and i sufficiently large,
arbitrarily large compact subsets of R1 nR1.rj / are almost isometrically embedded into m
disjoint balls of radius rj . Letting j !1, it follows that the boundary components shrink
to points with respect to g1. In other words, one can add finite points S1 D ¹x1; : : : ; xmº
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to R1 such thatM1 WD R1 [ S1 is complete with respect to the length structure g1, i.e. the
Riemannian metric has a C 0-extension across the singularity. Moreover, since we showed that
the curvature concentration part shrinks off, .Mi ; gi / is subconvergent to M1 in the Gromov–
Hausdorff topology, and the volume of the geodesic ball (which may contain singularities) is
continuous with respect to the C 1;˛-convergence (off finitely many singularities).

We now examine the topological structure near the singularity by essentially studying
the tangent cones at the singularity. Fix p 2 S1 �M1, let r.x/ D dist.x; p/ and denote the
annulus around p by

A.r1; r2/ D ¹x 2M1 W r1 < r.x/ < r2º; r1 < r2 < dist.p;S1 n ¹pº/:

By the C 1;˛ \W 2;p-convergence, recalling the C 2;˛-smooth embedding

Fi W .R1; g1/! .Mi ; gi /;

the curvature will converge in the Lp sense, and thenZ
Fi .R1/

jRm.gi /j2 <1; for all i:

In particular, for �0 in Theorem 3.4, there exists a radius r0 > 0 such that

(3.9)
Z
Fi .A.0;r0//

jRm.gi /j2 � �20 ; for all i:

Now we do blow up analysis on M1; it is equivalent to do blow up analysis on the
sequence. Namely, given any sequence rj ! 0, j !1, the metric annulus�

Fi

�
A

�
rj

j
; jrj

��
;
1

r2j
gi

�
(by taking diagonal sequence) sub-converges to a C 1;˛ \W 2;p-annulus .A1.0;1/; g1/,
where g1 is a weak solution of the anti-self-dual with zero scalar curvature equation. With
the regularity theory of elliptic equation, it follows that .A1.0;1/; g1/ is smooth. On the
other hand, by (3.9), we know

(3.10)
Z
A.0;1/

jRm.g1/j2 � �20 :

Applying Theorem 3.4 again, we conclude that each component of .A1.0;1/; g1/ is isomet-
ric to the Euclidean cone on a space form S3=� for some finite subgroup of O.4/.

If one has lower Ricci curvature, then the limit orbifold is irreducible, which is proved
in [1] by means of the Cheeger–Gromoll Splitting Theorem. In our case, there may be more
than one cone associated to one singularity. If we perform a standard bubble analysis, one
can estimate the precise bound on the end of associated ALE space, which in turn implies a
bound on the number of cones at each singular point, depending only on kRic�kL2 , CS , see [8]
and [28]. This also gives an alternative way to show the limit orbifold is irreducible if one has
lower bound on the Ricci curvature. For a Kähler metric, only irreducible singular points can
occur in limit, i.e. the singularities are orbifold points, see more details in [27].

It follows that the neighborhoods of each singular point is homomorphic to finite cones
on spherical spaces forms.
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Remark 3.7. For the proof of Theorem 1.4, the argument is similar. In fact, it is much
easier to estimate the harmonic radius as in the Main Lemma 3.5.

Using the Bianchi identity, the Laplacian of the Ricci curvature is related to the Bach
tensor (Kähler) and scalar curvature [26], so we have a coupled system:

(3.11)

8<:�Ric D 2B C
1

3
HessS C Rm � Ric;

�g D Q.@g; @g/ � 2Ric :

Under the C 3;˛-harmonic coordinates, we have the improved estimate

kgkC3;˛0 < C; for all 0 < ˛0 < 1;

kgkW 4;p < C; for all 1 < p <1:

Moreover, the blow up limit will be flat since the �-Rigidity Theorem 3.4 holds for Bach flat
(Kähler) metrics with zero scalar curvature. The left argument is similar and will be omit-
ted here.

4. Volume growth near singularity

We have already seen that the volume growth plays a crucial role in understanding the
structure near the singular set, see (3.8). By a lack of the volume comparison, we must find an
alternative approach to bound the volume growth on a fixed scale, i.e. for some � > 0, there
exists a constant V1 > 0 such that Vol.B.p; r// � V1rn, for all r < �. For Bach flat metrics
with constant scalar curvature, Gang Tian and Jeff Viaclovsky concluded that the volume does
bound on all scale, and the bound depends only on the Sobolev constant and L2-norm of
curvature [26–28]. In fact, if we check their paper carefully, we will find that the argument
also holds in our case, where we work in C 1;˛-category in place of the C1-category. The
difficulty is caused by the concentration of curvature. If we do blow up analysis carefully, as in
the Einstein case [20], there will bubble out some non-flat ALE space (tree) which will satisfy
stronger geometric conditions, and consequently, we can bound the volume growth.

Theorem 4.1. Let .M 4; g/ be a compact oriented 4-manifold with bounded self-dual
Weyl tensor and scalar curvature, i.e. jW C.g/j C jS.g/j � ƒ, bounded Sobolev constant CS ,
and also finite L2-curvature, i.e. kRmkL2 < ƒ1. For some �0 > 0, there exists a constant
V1 > !4, depending only on ƒ, ƒ1, CS , such that

(4.1) Vol.B.x; r// � V1r4

for all x 2M and 0 < r < �0.

Proof. The theorem can be established by using the same bubble procedure as Gang
Tian and Jeff Viaclovsky did in [28]. For the reader’s convenience, we will copy down their
argument with some slight modifications to give a detailed argument in our case.

In the first place, if the curvature do not concentrate too much, i.e. for � > 0,Z
B.x;2�/

jRm.g/j2 < �20 ;
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the volume growth will be controlled. In fact, by Lemma 3.5, the harmonic radius of B.x; �/ is
bounded below, namely, there is a uniform constant �0 such that, for all y 2 B.x; �/,

rh.y/ > �0�; ky 2 .M; g/kC1;˛;�0� < C;

and consequently,

(4.2) Vol.B.x; r// � e2C!4r4; for all r � �:

For any metric .M; g/, define the maximal volume ratio on the scale � as

MV.g; �/ D max
x2M;0<r<�

Vol.B.x; r//
r4

:

Note that for any compact smooth Riemannian 4-manifold .M; g/,

lim
�!0

MV.g; �/ D !4;

where !4 is the volume of the unit ball in R4.
In this paper, we consider the maximal volume ratio on finite scales rather than on all

scales. On the one hand, the local non-inflated volume is enough to shrink the singular set to
a point. On the other hand, one will see, lacking �-regularity, we cannot prove the Euclidean
volume growth on the large scale by volume comparison [28].

We argue by contradiction. If the theorem is not true, then for any sequence �j ! 0

with �jC1 < 1
2
�j , if we fix j , there exists a sequence of metrics .Mi;j ; gi;j / which satisfy

the hypotheses of the theorem, but MV.gi;j ; �j /!1. By passing to a diagonal subsequence,
for any sequence �i ! 0 with �iC1 < 1

2
�i , there exists a sequence of metrics .Mi ; gi / which

satisfy the hypotheses of the theorem, but

(4.3) MV.gi ; �i /!1; as i !1:

For this sequence, we can extract a subsequence (which for simplicity we continue to
denote by the index i ), and ri < �i such that

(4.4) 2e2C D
Vol.B.xi ; ri //

r4i
D max
x2Mi ; r�ri

Vol.B.x; r//
r4

;

where e2C comes from (4.2). We furthermore assume xi is chosen so that ri is minimal, that
is, the smallest radius such that

Vol.Bgi .x; r// � 2e
2C r4; for all x 2Mi and r � ri :

Note that the inequality

(4.5)
Z
B.xi ;2ri /

jRm.gi /j2 � �20

must hold, each ball with larger volume growth (singularity) takes at least �0 of L2-curvature.
Otherwise, by the estimate (4.2), we would have

Vol.Bgi .xi ; ri // � e
2C r4i ;

which violates the choice of ri in (4.4).
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Now, we consider the rescaled metric Qgi D r�2i gi ; so that Bgi .xi ; ri / D B Qgi .xi ; 1/.
From the choice of xi and ri , the rescaled metrics Qgi have bounded volume ratio, in all of
unit size.

From the Main Theorem 1.1, there exists a subsequence which converges on compact
subsets to a complete length space .M1; g1; x1/ in the C 1;˛-topology off finitely many sin-
gularities, where .M1; g1; x1/ is a multi-fold, and g1 is a smooth anti-self-dual metric with
zero scalar curvature. Further, from Theorem 3.4 for the multi-fold-case, see [28, Proposi-
tion 4.3 and Claim 4.4, p. 14], there exists a constant A1 such that

(4.6) Vol.Bg1.x1; r// � A1r
4; for all r > 0:

We have seen that if ri ! 0, then the blow up limit will be a smooth multi-fold with critical
metric, which is crucial to conclude that (4.6) holds. This is the main reason that we consider
the maximal volume ratio on the finite scale.

We next return to the (sub)sequence .Mi ; gi / and extract another subsequence (which for
simplicity we continue to denote by the index i ) so that

(4.7) 2600A1 D
Vol.B.x0i ; r

0
i //

r 04i
D max
x2Mi ; r�r

0
i

Vol.B.x; r//
r4

:

Again, we assume that x0i is chosen so that r 0i is minimal, that is, the smallest radius for which

Vol.Bgi .x; r// � 2600A1r
4; for all x 2Mi and r � r 0i :

Clearly, ri < r 0i < �i ! 0.
Arguing as above, we repeat the rescaled limit construction, but now with scaled metric

g0i D r
0
i
�2
gi , and base point x0i . We find a limiting multi-fold .M 01; g

0
1; x

0
1/, and a constant

A2 � 2600A1 so that

Vol.Bg 01.x
0
1; r// � A2r

4; for all r > 0:

For the same reason as in (4.5), we must haveZ
Bgi .x

0
i
;2r 0
i
/

jRm.gi /j2 � �20 :

Since the L2-curvature is finite, and each larger volume growth ball (singularity) takes at
least �0 of L2-curvature, it is reasonable to hope that the bubbling process will end in a finite
number of steps. But we need to be a little careful, as in the Einstein case [20], there could be
some overlap if any singular point lies in a ball centered at other singular point.

So we next consider the ratio r 0i=ri .

� Case (i): there exists a subsequence (which we continue to index with i ) satisfying
r 0i < Cri for some constant C .

� Case (ii): we have

lim
i!1

r 0i
ri
D1:

In Case (i) we proceed as follows: We claim that for i sufficiently large, the balls B.xi ; 2ri /
(from the first subsequence but also occurring in the second) and B.x0i ; 2r

0
i / (from the second)
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must be disjoint because of the choice in (4.7). To see this, if B.xi ; 2ri / \ B.x0i ; 2r
0
i / ¤ ;, then

B.x0i ; 2r
0
i / � B.xi ; 6r

0
i /. Then (4.6) and (4.7) imply that

2600A1.r
0
i /
4
D Vol.B.x0i ; r

0
i //

< Vol.B.x0i ; 2r
0
i //

< Vol.B.xi ; 6r 0i //

� 2A1.6.r
0
i /
4/

D 2592.r 0i /
4;

which is a contradiction (note the last inequality is true for i sufficiently large since the volume
is continuous in the C 1;˛-topology (even with finite singularity), and (4.6) is valid only in
Case (i)).

In Case (ii), if the balls B.xi ; 2ri / (from the first subsequence) and B.x0i ; 2r
0
i / (from the

second) are disjoint for all i sufficiently large, then we proceed to the next step. Otherwise, we
consider the scaled metric g0i D .r

0
i /
�2gi with basepoint x0i ; then

Vol.B.x0i ; 1// D 2600A1:

As above, we have a limiting smooth multi-fold .M 01; g
0
1; x

0
1/ satisfying

Vol.B.x01; 1// D 2600A1:

Since the metric is anti-self-dual with constant curvature, by the choice of A1, we concluded
that Z

B
g01

.x1;2/

jRm.g01/j
2 > �20 :

There is now a singular point of convergence corresponding to the balls B.xi ; ri / in the first
subsequence. But since we are in Case (ii) with limi!1 r 0i=ri D1, in the g0i -metric, these
balls must shrink to a point in M 01. The only possibility is that the original sequence satisfiesZ

Bgi .x
0
i
;2r 0
i
/

jRm.gi /j2 > 2�20 ;

for all i sufficiently large.
We repeat the above procedure, considering the possible Cases (i) and (ii) at each step.

At the kth step, we can always account for at least k �0 of L2-curvature. The process must
terminate in finitely many steps from the bound kRm.gi /kL2 < ƒ1. This contradicts (4.3),
which finishes the proof.

We note that it may happen that .M1; g1/ is a smooth Riemannian manifold, but the
convergence is not in the C 1;˛-topology. In fact, the curvature concentration part, correspond-
ing to some nontrivial 2- cycles in M , may shrink off in the limit. The topology ‘decreases’
and the singularity takes away a certain quantity of energy of curvature.

Proposition 4.2. Let .M; gi / satisfy the hypotheses of Theorem 1.1. Then

lim
i!1

Z
M

jRm.gi /j2 �
Z

R�M1

jRm.g1/j2;

with inequality if and only ifM1 is a C 1;˛-manifold diffeomorphic toM , and the convergence
is in the C 1;˛-Cheeger–Gromov topology.
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Proof. It is a straightforward consequence of the bubble analysis. Since the convergence
is in C 1;˛ \W 2;p, the measure jRm.gi /j2dvgi converges to

jRm.g1/j2dvg1 C
X
xi2S1

aiıxi

in the Lp-sense, where ıxi is the Dirac measure supported at xi , and ak is given by

ak D
X

.N�
k
;h�
k
/

Z
.N�
k
;h�
k
/

jRm.h�k/j
2:

Here .N �
k
; h�
k
/ is the bubble tree associated to the singular point xk , see the clear description

of the bubble tree in [20]. The equality implies there is no curvature concentration occurring
and thus no singularities in the limit.
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