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Convergence of metrics
under self-dual Weyl tensor and
scalar curvature bounds

By Yiyan Xu at Nanjing

Abstract. We establish a C "*-compactness theorem for metrics with bounded self-
dual Weyl tensor and scalar curvature. The main ingredient is the C *-harmonic radius esti-
mate, where a blow up analysis as in [2] is used. Our result is motivated by, and may be applied
to, the Calabi flow on complex surfaces.

1. Introduction

In Riemannian geometry, it is interesting to consider the convergence of metrics and the
finiteness of differential structures in the presence of basic geometric data, such as curvature,
diameter and volume. One of the most prominent early work is Cheeger’s finiteness theorem
in [10]. Intuitively, the idea behind the theory is that these manifolds can be constructed from
a finite number of standard pieces, i.e. coordinate patches with certain uniform regularity. Now,
it is called the fundamental Cheeger—Gromov convergence theory, see Theorem 3.3.

To get a better estimate in the regularity problem, we use harmonic coordinates, which
goes back to DeTurck—Kazdan [13]. In [13], it was shown that, in general, optimal regularity of
the metric is obtained in harmonic coordinates. Moreover, Jost and Karcher deduced an explicit
bound for the C !**-harmonic radius which depends only on lower volume, upper diameter and
sectional curvature bounds [15, 16].

However, one of the other most important features of harmonic coordinates is that the
metric is apparently controlled by the Ricci curvature. Roughly speaking, the Laplacian of the
metric is just the Ricci curvature, which is a determined system of PDE, see (3.1); whereas
assuming bounds on the full curvature corresponds to an overdetermined system. This was
exploited by Anderson [2], i.e. the bound on the Ricci curvature and the lower bound on the
injectivity radius together imply a lower bound for the harmonic radius.

Note that in Cheeger’s finiteness theorem, one can bound the injectivity radius provided
that one has lower volume bounds and bounded full curvature. Without the assumption on
injectivity radius, relaxing it to a lower bound on volume, there are examples which show
that degeneration may occur under a Ricci curvature bound, see Example 1.6. Pursuing these
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phenomena of thought, geometers had made a well-known conjecture [11]: if |Ric| <n —1,
then the convergence is C 1'® off a singular set of Hausdorff codimension at least four.

One of the key steps in Andersen’s proof is to establish the continuous property of the
harmonic radius, regarded as a function, under the C ka (k> 1) or WkP (k > 1) conver-
gence, which in turn ultimately depends on some type of partial differential equations estimate.
Besides the elliptic regularity theory, the main ingredient in Andersen’s results is a blow up
argument that relates the validity of rigidity theorems to the global behavior of complete, non-
compact manifolds with critical metrics. The hypotheses on the manifolds, such as curvature
and injectivity radius bounds, were basically only used in the characterization of the Euclid-
ean space, i.e. the rigidity theorem. It is likely that some other weakened hypothesis is still
sufficient to control the harmonic radius.

We proceed with another generalization of the result on metrics with bounded Ricci
curvature to bounded scalar curvature, but at the expense of some hypotheses on the struc-
ture of metric, for example, by requiring an anti-self-dual or Kéhler metric. The motivation
here also comes from the Calabi flow. In estimating the long-time existence and convergence
of the Calabi flow, one crucial estimate which is still lacking is the C"*-Cheeger—Gromov
compactness of Kihler metrics with bounded scalar curvature, see [7] and [12].

Theorem 1.1. Let M* be a compact oriented 4-dimensional manifold, and let {g;} be
a sequence metrics on M* with

(1) either bounded self-dual Weyl tensor; i.e. |W T (gi)| < A, or (M, g;) are Kiihler metrics,
(2) bounded scalar curvature, i.e. |S(gi)| < A,

(3) unit volume, i.e. |Vol(M, g;)| = 1,

(4) bounded Sobolev constant Cg(gi) < Cg, ie.

1
2
(1.1) {/M |v|4dvgi} <Cg /M |dv|2 dvg,, forallve C" (M).

Then there exist a subsequence {j} C {i} such that (M, g;) converges to a compact multi-fold
(Moo, g00) in the Gromov—Hausdorff topology. Moreover, on the regular set Moo\{x1, ..., Xm},
the metric goo is CV% and the convergence is in the C1®-Cheeger—Gromov topology, while
each of the singular points x; has a neighborhood homeomorphic to a finite disjoint union of
cones C(S3/T) with identifications of vertex, where T is finite subgroup of O(4).

Remark 1.2. The above theorem holds, without fixing topology, under the additional
assumption that

| RGP < .

l

By the Gauss—Bonnet formula and the Hirzebruch signature formula [6], we then have
1

(1.2) / |IRm|? = —2472c(M) — 872 y(M) +/ —S? 4wt
M4 M 12

If the scalar curvature S and self-dual Weyl tensor |W *| have uniformly bounded LZ-norms,
then we have a prior L2-bound on the curvature tensor Rm.
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Remark 1.3. In fact, under the controlled topology, i.e. b1 (M) < by, the Sobolev con-
stant bound can be released to a lower volume growth assumption, i.e. Vol(B(x,r)) > Vor™.
Gang Tian and Jeff Viaclovsky’s proof for critical metrics [28] also holds in our case, since the
volume is continuous in the C 1**-topology.

Analogous convergence results also hold for metrics with bounded Bach tensor and a C2-
bound of the scalar curvature, which is actually easier to prove since we have the precise elliptic
system (3.11).

Theorem 1.4. Let {M;, g;} be a sequence of Riemannian manifolds with
(1) either bounded Bach tensor, i.e. |B(gi)| < A or {M;, g;} are Kiihler,
(2) C2-bounded scalar curvature, i.e. |V*S(gi)| < A,
(3) unit volume, i.e. |Vol(M;, g;)| = 1,
(4) bounded Sobolev constant Cg in (1.1),

(5) bounded LZ-norm of curvature:

/ IRm|2 < A;.

l

Then there exist a subsequence {j} C {i} such that (M, g;) converges to a compact multi-fold
(Moo, 800) in the C3%-topology outside finitely many singularities.

Example 1.5 ([23]). There exists a family of conformal flat metrics with constant scalar
curvature g; on S' x §3 (¢t > 1) such that the diameter of S! x {x} goes to 0 as t — oo for
a point x € S3. For other points y # x, the diameter of the slice S' x {y} is bounded from
below. The limit space is the quotient space of S* which identifies the north pole and the
south pole.

Example 1.6 ([18,20]). Let Mo, be an orbifold given by the Z/2Z-quotient of the
complex 2- torus 72 = C?/7Z*, where —1 € Z /27 acts on T by

(z1,22) mod Z* > (—z1, —2») mod Z*.

The flat metric on 7" descends to an orbifold metric goo On Mo, and it is an orbifold Ricci
flat anti-self-dual metric. Moreover, M, has a complex manifold structure (with singularities)
since the Z /27Z-action is holomorphic. Let us take the minimal resolution 7w : M — M. The
singularities are sixteen simple singularities of type A;. The minimal resolution M is called
the Kummer surface and is an example of a K3 surface. Let § = {x1,...,X16} C M be the
singular set, and let £, ..., E1¢ be the exceptional divisors in M. These are complex subman-
ifolds of M biholomorphic to C P! with the self-intersection number —2. By the solution of
the Calabi conjecture, we have a unique Calabi—Yau metric on M in each Kihler class, which
is automatically anti-self-dual. Take a Kéhler class, and there exists a sequence of Ricci—flat
Kéhler metrics g;, as follows:

(1) the volume of M with respect to g; is equal to 1,

(2) the volume of the exceptional divisor E} is equal to ll fork =1,...,16.
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It can be shown that the sequence g; converges to 7% g, over M \ | J ,1€6=1 E}, but condition (2)
forces the metric to become degenerate along Ej as i — o0, i.e. Ej collapses to a point, and
the Riemannian curvature concentrate along (_J ,166:1 E}.. Moreover, the curvature concentrates
so completely that the limit metric is a flat orbifold-metric.

Acknowledgement. The author would like to thank his advisor professor Gang Tian
for suggesting this problem and constant encouragement. The author would also like to thank
his friend Yalong Shi for numerous suggestions which helped to improve the presentation.

2. Self-dual Weyl tensor

Riemannian geometry in dimension 4 has some special features which are not present
in any other dimension. In dimensions n > 5 the group SO(n) is simple, and the space of
Weyl tensors is irreducible, whereas in dimension 4 we have SO(4) = SO(3) xz, SO(3), and
a decomposition of the space of Weyl tensors into two SO(4)-irreducible components. The fact
that SO(4) is not simple is reflected at the Lie algebra level in the decomposition of the bundle
of 2-forms into self-dual and anti-self-dual parts under the Hodge star operator.

Let (M*#, g) be an oriented 4-dimensional Riemannian manifold. The Hodge star opera-
tor * associated to g takes A := A2TM to itself and satisfies *% = 1,

¢ A x¢p = (¢, p)dvolg,

where ¢, ¢ € A and (-, -) denotes the inner product on A induced by g. Then A admits a de-
composition of the form

A=AT®A,
where A7 is the & 1-eigenspace of *. The curvature operator Rm, viewed as an endomorphism
on A, has the following matrix expression [6]:

S °
R — Wt 4+ 2 1dy+ Ric
(Ric)! W™+ S 1dp-
where Ric € Hom(A ™, A7) is the trace free part of the Ricci curvature, S is the scalar cur-
vature, and W¥ e Sg (A7) is the (anti-)self-dual part of the Weyl tensor, where Sg denote
traceless symmetric endomorphisms. If we denote the projection operator by

1
Pizza(li*):AeAi,

then
+ S
w =P:|:ORmOP:|:—EIdAi.

Definition 2.1. Let (M*, g) be a compact 4-dimensional Riemannian manifold. The
metric g is called anti-self-dual if W+ = 0 (<= «W = —W).

We note that reversing the orientation transfers the self-dual part to the anti-self-dual part.
For anti-self-dual metrics, if we reverse the orientation, then W~ (g) = 0 and g is said to be
self-dual (W~ (C P2, J,wgs) = 0, i.e. (C P2, ggs) is anti-self-dual).
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There are many interesting examples of anti-self-dual metrics. First, the (anti-)self-duality
of the metric is a conformally invariant property. In particular, the conformal flat metrics will
be anti-self-dual. Second, a large number of anti-self-dual metrics are Kéhler metrics with zero
scalar curvature, since the self-dual part of the Weyl tensor is given by ([6, Proposition 16.62])

+ . s S S
W :dlag T A A
6 12 12
In particular, a K3 surface with a Calabi—Yau metric is anti-self-dual. This also follows from

the Gauss—Bonnet formula and the Hirzebruch signature formula, since with the canonical
orientation t = —16 and y = 24.

Definition 2.2 (Bach tensor). Let (M", g) be a compact Riemannian manifold. The
Bach tensor is defined by

I kot L ki
Bij = mv V Wikj1 + 2RIC Wikji-

n J—

The Bach tensor is a symmetric, trace free and divergence free 2-tensor. Using the Bianchi
identities, we may rewrite the Bach flat (Kéhler) metric with constant scalar curvature as an
elliptic system [26]:

2.1)

ARm = L(V?Ric) + Rm % Rm,
ARic = Rm * Ric.

In dimension 4, the Bach tensor arises as the Euler-Lagrange equations of the L?-norm

of the Weyl curvature tensor. Using the Bianchi identity, the Bach tensor can also be written as

By = 2V*VIW L+ RicM Wik

thus an anti-self-dual metric will be Bach flat. As we have mentioned earlier, the Kidhler metric
on a complex surface with zero scalar curvature will be anti-self-dual, so it is also Bach flat.

Let M be a closed oriented smooth manifold. A smooth Riemannian metric g on M is a
smooth section of the bundle S2T*M of positive definite symmetric 2-tensors. The space M
of all Riemannian metrics on M is a convex open cone in I'(S2T*M). A Riemannian metric
is given locally by functions, so we can define the (Sobolev) norm on M with respect to some
fixed metric, and the prescribed curvature condition can be viewed as a partial differential
equation on M.

With this viewpoint, we want to use an a priori estimate of elliptic equations to study the
convergence theory for the metric with bounded self-dual Weyl tensor. Note that the self-dual
Weyl tensor Wt (g) is equivariant under the action of the diffeomorphism transformation and
conformal changes, but if we fix the gauge, the prescribed self-dual Weyl tensor does form an
elliptic system. In fact, it is now a standard technique when studying geometric problems, such
as compactness in geometric calculus of variations (Yang—Mills instanton, Einstein metric),
DeTurck trick for existence theory of geometric (Ricci) flow, etc. For anti-self-dual structures,
itis well known that the local structure of moduli spaces is controlled by an elliptic deformation
complex [17,25]. For the reader’s convenience, we would like make it more clear from a PDE
point of view (2.2). As a consequence, we get the crucial estimate for this paper, i.e. an a priori
L?-estimate (2.6) for the metric with bounded self-dual Weyl tensor and scalar curvature.
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Theorem 2.3. Let M be a closed oriented smooth 4-manifold. We consider the follow-
ing map (equation):
(2.2) L:M— SEAT®C®(M)®TM,
g (WH(g).S(g). 14,2(id)),

where T, ,(id) := trg V&®Z&(id) is the tension field of the identity map id : (M, g) — (M, g),
and g is some fixed background metric. Then the principal symbol o (L) of the linearized op-
erator of L at (x, g) is injective, which is given as follows: for any € € TxM and h € S2TM,

@3 oW oM = (hys — IR +HEE.hE — Sih-£).

where h s+ is defined by (2.5). In particular, equation (2.2) for the metric is an elliptic system
of partial differential equations of mixed order. Consequently, the L?-theory holds:

lglwr < Cligllee + W (@)lze + 1S@llzr + lIg.zllwr.r)-
Proof. Recall that the self-dual part of Weyl tensor W is defined by
W+ =P, oRmo Py — 1S—21dA+.
Then
§W," (h) = Py o 8Rmg (h) 0 Py + 8Py g(h) oRmo Py + Py oRmo 8Py, (h)

1 S

1
= Py odRmg(h) o P4 — ESSg (h)Idp+ + lower order terms.

Now we need the following geometric quantities from [6] or [29] under deformation of a metric.
The first variation of curvature is

§Rmg(h)(X.Y, Z,U) = %[h(R(X, Y)Z,U) - h(R(X,Y)U, Z)]

1
+ 5[viziz()(, U) + Vg yh(Y.2)
—Vi.zh(Y.U) = V3 yh(X. Z)].

Recall one can calculate the principal symbol for a kth order differential operator L in the
following way [29]: Given (x, £), and a smooth function f with df = &,

o(L)(x,6)h = lim s e T L’ h)(x).
S—>00
Then the principal symbol for the second order linear operator SRmg is given by

(2.4) o (8Rmg)(x. £)(h)(X. Y. Z.U)
= JUV.ENZ. X U) + (XU, Eh(Y. 2)
~ (XENZ. Y, U) ~ (¥.6) (U.£)(X, 2)
= JHX AYE),Z AUE),

where
XANY(E):=(X,§)Y —(Y.§)X.
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Note that the scalar curvature term §Sg (1) Id, + does not contribute to the principal symbol of
the operator of § W, since § WgJr is traceless. Therefore, combining with the computation (2.4),
by taking the traceless symmetric part, the principal symbol of the operator of SWg+ is given
by

o(BWgH) (x, £)(h) = 0(P+ 0 SRmg o P1)(x, §)(h)

1
— 5 A+ (0(Py 0 dRmg 0 P)(x. §)(h))gp+
= hA+’

where /1 + is defined as follows: for e, ¢’ € AT (x), and {e;} an orthonormal basis of AT (x),
we have

3
05 harle) = ShE). @) ¢ 3 @) e,

i=1
The linearization of the scalar curvature map is
§Sg(h) = Atrh + 8%h — g(Ric, h).
Then its symbol is

0(8Sg)(x,§)(h) = —g(§.§) rh + h(§.§).

The linearization of the tension field map from [29] is given by
1
81,5 (id)(h) = (Vd(id), h) — <5h + 5d(trh), d(id)>,

therefore |
0(0tg,z0)8)(x,§) () = h(§,-) — 3 trh§.

Combining the above three symbolic computations gives (2.3).

Now we will verify that the symbol o (L) is injective, i.e. forall § # 0,0 (L)(x,&)(h) =0
implies that 2 = 0. It is easy to check that o (L)(x,&)(h) = O implies hp+ =0, h(§,§) =0,
and trh = 0.

First choose an orthonormal basis X, X5, X3, X4 for T,y M. Then

V2

er = T(Xl AN Xa+ X3z A Xy),
V2

er = T(Xl A X3+ Xa N X>),
V2

ez = (X1 A Xg+ Xo A X3)

2
gives an orthonormal bases of A}. Forany £ = & IX; with |€] = 1, we have
e1(§) g2 -t 2 X
a@) | _V2|e -t - 2| |x
e3(§) 2 gt 2 -2 X
2t g2 2 8| X

UX.

o[
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If hp+ = 0and k(& &) = 0, from (2.5), it is equivalent to

{(h(ei@,e,-(s» 0 };UWT
0 She)| 2

1 I 0
=3 Zijh<el-<s>,e,-(§)> [0 0} :

Since U € O(4), we have

_2 e . |l 0
h—3th(e,<s>,e,(s))U {0 O]U.

Furthermore, if tr 4 = 0, then

0=trh =2 hie§),e(),

and consequently, 7 = 0.

Since the symbol (L) is injective, by comparing the dimension (dim = 10), we con-
clude that equation (2.2) is an elliptic system of partial differential equations with mixed order.
For an elliptic system (of mixed order), we have an a priori estimate, for example, the Schauder
or LP-theory [19]. Alternatively, if we replace the tension field 7g z(id) in equation (2.2)
by £+, ;a)g, then it will be an overdetermined elliptic system of second order PDEs. In fact,
the a priori estimate (L?-theory) which holds for differential operators between vector bundles
is equivalent to the injectivity of the symbol, while the ‘solubility criteria’ holds if the symbol
is surjective (see [21, Theorem 19.25] or [14, Theorem A.8]).

In local harmonic coordinates, since the metric is C "*-close to the Euclidean metric, we
can if necessary make the harmonic norm C small enough so that the quasi-linear operator L
is uniformly elliptic with C 1**-continuous leading terms. By L”-theory, we have the estimate

(2.6) Igllw2r8,) < CUglILr(Bs) + IWF(2). S@)ILr (B
+ l7e.e (D llw1.r(8,,))
= C(lgllLr By + IW T (@llLr(Bsy) + 1S@)Lr(B))-

The last step holds, since 77, , (id) = 0 if we identify the geodesic ball with the Euclidean ball
under harmonic coordinates. O

3. Convergence theory

To generalize the convergence theory with the assumption on sectional curvature to
a weaker curvature hypothesis, it is convenient to use the concept of harmonic radius, which
was introduced and developed in [2,4,22].

Definition 3.1 (Harmonic radius). Let (M, g) be a Riemannian manifold. Fixing any
m € N, and given any x € M, there is a radius » = r(x) for which we can find a harmonic
coordinate system
® = (x1,...,xp): B(x,r)C (M,g) > R"



Xu, Convergence of metrics under self-dual Weyl tensor and scalar curvature bounds 65

such that
(1) the coordinate function x; : B(x,r) C (M, g) — R is harmonic, fori = 1,...,n,
(2) the metric tensor g;; 1= g(Vx;, Vx;) is C™*-bounded on B(x,r), i.e.
e_CSij <gij < eC(Sij (as bilinear forms),

and
> rBlsup |98 ;| + > rmeabeiila < C,

1<|Bl=m |Bl=m

for some fixed constant C > 0, where the norms are taken with respect to the coordinates
({xi}7) on B(x,r). We say that a point x € (M, g) admits harmonic coordinates with bounded
C™%_norm on the scale r, which we denote by

lx e M. g)lcme,r=C.

Moreover, we let r,(x) be the C™%-harmonic radius at x, which is defined as the radius of the
largest geodesic ball about x which admits C""-“-harmonic coordinates, i.e.

rp(x) = sup{r > 0: |x € (M.g)llcme, = C}.
The C™*-harmonic radius of (M, g) is defined by

rp(M) = xigl rp(x).

In harmonic coordinates on Riemannian manifolds, the Ricci tensor has a particularly
nice formula [22]:

3.1 Agij = —2Ric;; +0;;(g,0g),

here Q is a polynomial in the matrix g, quadratic in dg.

Definition 3.2. For a compact metric space X, define the covering number of the geo-
desic ball on the scale € as follows:

N
Cov(e) = min{N eN: 3}, c X, | B(xi.e) = X, B(x,-, g) mutually disjoint}.

i=1
Now, let us state the fundamental convergence theorem:

Theorem 3.3 (Fundamental convergence theorem [2,22]). For given n > 2, C > 0,
N >0, € (0,1]and ro > 0, consider the class M(n,C, N, ro) of n-dimensional Riemannian
manifolds

T
{(M,g) M, g)lleme g < C andCOV(l—g) < N}.

Then M(n,C, N, ro) is compact in the C"™P-Cheeger—Gromov topology for all B < o.. More-
over, the theorem is also valid for bounded domains in Riemannian manifolds, as well as for
pointed complete Riemannian manifolds, provided one works on compact subsets.
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Theorem 3.4 (Volume growth and e-rigidity [9, 26, 28]). Let (M, g) be a complete
Riemannian manifold or Riemannian multi-fold with finite point singularities, and g be a crit-
ical metric (for example, Bach flat with zero scalar curvature). Assume that (M", g) satisfies
the Sobolev inequality,

n—2

{/M |’U|n2—nZdl)} ’ <Cg /M |dv|?dv, forallv e C(())’l(M);

n
and the curvature has bounded L2 -norm,

n 2
{/ |Rm|2dv} <e.
M

Then (M", g) has finitely many ends, which is ALE of order 2. Moreover, the volume has at
most Euclidean volume growth,
Vol(B(p,r)) < Vr"

for some positive constant V = V(n, Cgs, €). Moreover, if (M, g) is smooth and € = € is small
enough, which depends on n and the Sobolev constant Cg, then (M, g) is isometric to the
Euclidean space (R", gg).

Lemma 3.5. Let B(r) := B(xo,r) be a geodesic ball in a compact oriented Riemann-
ian 4-manifold (M*, g), where g has bounded self-dual Weyl tensor (or is Kihler) and bounded
scalar curvature, |W ™| + |S| < A. Then there exist two positive constants €9 = €(Cs) and
ko = ko(Cs., A) such that if

1
2
(3.2) {/ |Rm|2dv} < €o,
B(x0,2r)

then forall x € B(xq,r), the CY*-harmonic radius ry(x), with respect to some fixed o € (0, 1)
and C > 0, satisfies
rp(x)

33 > ko > 0.
(3-3) dist(x, 0B(xg. 1)) — 0~

Proof.  On a fixed smooth Riemannian manifold (M, g), it is clear that the harmonic
radius ry,(x) is positive, i.e. (3.3) holds, but k¢ depends on (M, g) and x. Thus, we must show
that x¢ depends only on the hypothesis prescribed in the lemma.

We argue by contradiction, which is similar to the blow up analysis for the Ricci curvature
case as in [2]. If (3.3) is false, then there is a sequence of Riemannian 4-manifolds {(M;, g;)}
with the bounds in the lemma, and points x; € B; (rr) C (M;, g;) such that

rp(xi) .
3.4 ———— — 0, asi — oo.

S dist(x;, dB;)

We may assume, without loss of generality, that the points x; realize the minimum of the left
side of (3.3), and

C
[|xi € (Mi,gi)“Clsa,rh(xi) € |:E’C:|'
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By scaling theses metrics suitably, namely, g; = r;,(x;)"2g;, then

(1) rp(x;) = 1 and 7 (x) is bounded below on balls of finite distance to x;, which follows
from the scale invariant property of harmonic norm [22],

Ix € (M. 2%g) | cma ar = lIx € (M, @)llcma,r,

(2) distg, (x;, 0B;) — oo, since the ratio in (3.3) is scale invariant,
Q) Wt (@) +1S(g)| < ri(xi)A — 0, and the curvature has e-small L2-norm

1

2
CS{ ] |Rm(gi>|2dal-} < <o,
Bl )

with respect to the metric g;.

We now consider the sequence of pointed Riemannian manifolds

r _ _
{(Bi (xi, —),Xi,gi) C (Mi,Xi,gi)}-
rp(xi)

By the Fundamental Convergence Theorem 3.3, the sequence is subconvergent, in the pointed
clLp -topology (for all 8 < a), uniformly on compact subsets, to a complete C !**-Riemannian
manifold (N, x, h).

Claim 1. The convergence is actually better, namely in the C®-topology, where a is
given by the hypothesis of the lemma.

We can even prove more than we need, i.e. the convergence is in the C 1** N W2-?-top-
ology, for any @ < 1 and 1 < p < co. By the Sobolev Embedding Theorem, W2:? c C ¢
if p > n, so it suffices to prove the convergence is in the W2>?-topology. To see this, by Theo-
rem 2.3, we know that the prescribed self-dual Weyl tensor and scalar curvature equation (2.2)
is an elliptic system of partial differential equations of second order under harmonic coordi-
nates:

W*(g) = L(g~"03g) + Q1(dg, 9g) € L™,
(3.5) 1 0
S — i kl
@) 288 Gxkgxl
where L denotes linear combination, and Q is a quadratic term in the first order derivatives
of g. For an a priori estimate, since ||g;; — §;j||c1.« < C, if necessary we can make C small,
so that the above system actually can be viewed as a uniform linear elliptic system of g;;
with C 1 coefficients. By the a priori estimate (2.6), the L?-theory for elliptic systems gives

a uniform bound on || g||y2.» forany 1 < p < oo,

lglw.r < ClligllLr + 1100g, 3g) e + IW T (@lle + 1S(g)llLe) < C.

gij + 02(0g,0g) € L™,

As a consequence, the convergence is in the C 1* "W 2:P-topology, foranya < 1,1 < p < oo.

More precisely, the geodesic balls (B; (W), X;, gi) are covered by harmonic coordi-
nates that converge in the C2**-topology to the harmonic coordinates on limit space N, and
the metric coefficients g; converge in the C 1"*-topology to /.
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Since the C**-norm and the harmonic radius are continuous with respect to C 1%~ or
WZ’P—convergence [2,22], we get

_ _ C
(3.6) (X)) =1, [xe N, Mlcrer,c = 5 >0

Claim 2. The manifold (N, h) is a smooth Riemannian manifold and isometric to the
Euclidean space (R*, g).

Since the convergence is in the C "% N W2-P-topology, we can conclude that the limit
metric / is a weak C ¢ N W2:P-solution of the elliptic system

Wt (g) = L(g'00g) + Q1(dg.dg) =0,

_ Vi ok N _
$(¢) = 5878 778 + Q2(98.98) =0,

namely, the anti-self-dual or Kéhler metric with zero scalar curvature is a second order quasi-
linear elliptic system of the metric modulo diffeomorphisms by Theorem 2.3. With the a priori
estimate (2.6) and a standard bootstrap argument, and also the Sobolev Embedding Theorem,
we conclude that the metric 4 is actually a smooth (in fact, analytic) Riemannian metric with

3.7

CS{/N |Rm(h)|2dvh}2 < <.

If € = ¢ is sufficiently small (which will depend only on the Sobolev constant), by the
e-Rigidity Theorem 3.4, we conclude that Rm(%) = 0, i.e. N is flat. On the other hand, the
bounded Sobolev constant implies Euclidean volume growth. Consequently, (N, /) is isometric
to the Euclidean space (R”, gg).

It is obvious that the Euclidean space admits global harmonic coordinates, i.e.

r(x) =00, |xe®". gg)lcre, =0, forallr>0.

However, this violates (3.6). O

Now we can prove the Main Theorem 1.1, which is an immediate consequence of the
Main Lemma 3.5 on the harmonic radius estimate and the Fundamental Convergence Theo-
rem 3.3.

Theorem 3.6. Let {(M;, g;)} be a sequence of Riemannian 4-manifolds, which satisfy
the hypotheses of Theorem 1.1 and which also have uniformly bounded L?-curvature. Then
there exists a subsequence {j} C {i} such that (M;, g;) converges to a compact metric space
(Moo, goo) in the C Y %-topology outside the finite singular set 8 = {x1,...,Xm}.

Proof. Asin the case of bounded Ricci curvature or Bach flat metric with constant scalar
curvature, take € = ¢g in Theorem 3.4, and consider the sets

Ri(r) = {x €M;: [Rm(g:)|* < 63}’

B(x,2r)
8:(r) = {x e M; : / Rm(g)|? > eé}-
B(x,2r)

Then M; = R;(r) U 8;(r), and also R;(r1) C R;(r2), 8i(r1) D 8;(r2), for any ri > rs.
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For all x € R;(r), by the Main Lemma 3.5, we have the estimate on the C !**-harmonic
radius
rp(x) = Kor,

where kg = C(Cg, A). On the other hand, the uniform Sobolev constant implies noncollaps-
ing, namely, Vol(B(x,r)) > C(Cs)r*. Then the covering number (see Definition 3.2) on any
compact subset of R; (r) on the scale infye g, (r) 71 (x) > Kkor can be bounded by

1
Cov(—/cor

) _ Vol(M;) _ C(Cs,A)'
10

~ Vol(B(x, l—lolcor)) - ré

Applying now the Fundamental Convergence Theorem 3.3, the sequence (R;(r), g;) is
C *_subconvergent to a C 1**-(open) Riemannian manifold (R (7), goo) On the compact set.

To construct the limit space, we will be brief since it is quite standard, see for example
[1,5,24], and also [3,27].

We now choose a sequence {r;} — Owithr;;1 < %V]’, and repeat the above construction
by choosing a subsequence, which we still denote by {j }. Since R;(r;) C R;(rj+1), we have
a sequence of limit spaces with natural inclusions

Roo(r/) C Roo(rjr1) C -+ C Roo := dir. lim Reo (7).

By the C!**-convergence, (Roo, goo) is a C1**-(open) Riemannian manifold, and there are
C?%*-smooth embeddings F; : (Roo. goo) — (M;, gi) such that F*gi — goointhe C 1% _top-
ology on any compact set of R .

Letting {B(x]i, Dken, 1 < % Po, be a collection of a maximal family of disjoint balls
in M;, where pg is the Euclidean volume growth scale in Theorem 4.1, we have

M; C U B(x,i, r).
k

There is a uniform bound, independent of i, on the number of points {xfc € &;(r)}, which
follows from

m
(3.8) m < 662/
— B

Rm(gn)[? < Ceg? / Rm(g:)[?.
i=1 M;

(xi.,2r)

where
C = su M < C(Cs,A)
" wehr; VOI(BGr By TS
The last inequality holds because we have an upper bound on the volume growth (4.1).

Let {r;} be as above. Without loss of generality, we will assume m is fixed, i.e. the num-
ber of mutually disjoint balls which are centered in §; (r;) and have radius %i is independent
of i and j. As a consequence, every point of §;(r;) is contained in a ball of diameter no
greater than mr;. Hence, most of the volume (M;, g;) is contained in R (r;). Using the embed-
ding Fij : (Roo(r), 8oo) = (Ri(rj), gi), we see that for any fixed j, and i sufficiently large,
arbitrarily large compact subsets of R \ Roo(7;) are almost isometrically embedded into m
disjoint balls of radius r;. Letting j — oo, it follows that the boundary components shrink

to points with respect to goo. In other words, one can add finite points 8o = {X1,...,Xm}
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to Reo such that M, := Roo U 8 is complete with respect to the length structure g0, i.€. the
Riemannian metric has a C ®-extension across the singularity. Moreover, since we showed that
the curvature concentration part shrinks off, (M;, g;) is subconvergent to M, in the Gromov—
Hausdorff topology, and the volume of the geodesic ball (which may contain singularities) is
continuous with respect to the C 1**-convergence (off finitely many singularities).

We now examine the topological structure near the singularity by essentially studying
the tangent cones at the singularity. Fix p € 8o C Moo, let r(x) = dist(x, p) and denote the
annulus around p by

A(r1,m) ={x € Moo 111 <r1(x) <ra}, 11 <ry<dist(p, 8o \ {P}).
By the C 1** N W?2:P-convergence, recalling the C2**-smooth embedding
Fi : (Roo, 8o0) = (M;, &i),

the curvature will converge in the L? sense, and then

/ |[Rm(g;)|* < oo, foralli.
Fi (Roo

In particular, for €p in Theorem 3.4, there exists a radius ro > 0 such that
(3.9) / IRm(g;)|*> < €5, foralli.
F; (A(0,r0))

Now we do blow up analysis on M; it is equivalent to do blow up analysis on the
sequence. Namely, given any sequence r; — 0, j — oo, the metric annulus

(o) )

(by taking diagonal sequence) sub-converges to a C 1% N W2P-annulus (Ao (0, 00), goo).
where goo is a weak solution of the anti-self-dual with zero scalar curvature equation. With
the regularity theory of elliptic equation, it follows that (4 (0, 0), goo) is smooth. On the
other hand, by (3.9), we know

(3.10) [ IRm(goo)|* < €2.
A(0,00)

Applying Theorem 3.4 again, we conclude that each component of (A (0, 00), goo) is isOmet-
ric to the Euclidean cone on a space form S3/T" for some finite subgroup of O(4).

If one has lower Ricci curvature, then the limit orbifold is irreducible, which is proved
in [1] by means of the Cheeger—Gromoll Splitting Theorem. In our case, there may be more
than one cone associated to one singularity. If we perform a standard bubble analysis, one
can estimate the precise bound on the end of associated ALE space, which in turn implies a
bound on the number of cones at each singular point, depending only on ||Ric_||; 2, Cs, see [8]
and [28]. This also gives an alternative way to show the limit orbifold is irreducible if one has
lower bound on the Ricci curvature. For a Kidhler metric, only irreducible singular points can
occur in limit, i.e. the singularities are orbifold points, see more details in [27].

It follows that the neighborhoods of each singular point is homomorphic to finite cones
on spherical spaces forms. o
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Remark 3.7. For the proof of Theorem 1.4, the argument is similar. In fact, it is much
easier to estimate the harmonic radius as in the Main Lemma 3.5.

Using the Bianchi identity, the Laplacian of the Ricci curvature is related to the Bach
tensor (Kihler) and scalar curvature [26], so we have a coupled system:

1
ARic = 2B + — Hess S + Rm % Ric,
3.11) 3

Ag = Q(dg,dg) —2Ric.
Under the C 3*%-harmonic coordinates, we have the improved estimate

||g||c3.(x’ <C, forall0<da <1,
lgllws.r <C, foralll < p < oo.

Moreover, the blow up limit will be flat since the e-Rigidity Theorem 3.4 holds for Bach flat
(Kihler) metrics with zero scalar curvature. The left argument is similar and will be omit-
ted here.

4. Volume growth near singularity

We have already seen that the volume growth plays a crucial role in understanding the
structure near the singular set, see (3.8). By a lack of the volume comparison, we must find an
alternative approach to bound the volume growth on a fixed scale, i.e. for some p > 0, there
exists a constant V7 > 0 such that Vol(B(p,r)) < Vir", for all r < p. For Bach flat metrics
with constant scalar curvature, Gang Tian and Jeff Viaclovsky concluded that the volume does
bound on all scale, and the bound depends only on the Sobolev constant and LZ-norm of
curvature [26-28]. In fact, if we check their paper carefully, we will find that the argument
also holds in our case, where we work in C1%-category in place of the C >-category. The
difficulty is caused by the concentration of curvature. If we do blow up analysis carefully, as in
the Einstein case [20], there will bubble out some non-flat ALE space (tree) which will satisfy
stronger geometric conditions, and consequently, we can bound the volume growth.

Theorem 4.1. Let (M*, g) be a compact oriented 4-manifold with bounded self-dual
Weyl tensor and scalar curvature, i.e. |[W T (g)| + |S(g)| < A, bounded Sobolev constant Csg,
and also finite L?-curvature, i.e. ||Rm| ;> < Ay1. For some po > 0, there exists a constant
V1 > wy, depending only on A, Ay, Cg, such that

4.1) Vol(B(x,r)) < Vir?

forallx € M and 0 <r < po.

Proof. The theorem can be established by using the same bubble procedure as Gang
Tian and Jeff Viaclovsky did in [28]. For the reader’s convenience, we will copy down their
argument with some slight modifications to give a detailed argument in our case.

In the first place, if the curvature do not concentrate too much, i.e. for p > 0,

/ Rm(g)P < 2.
B(x,2p)
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the volume growth will be controlled. In fact, by Lemma 3.5, the harmonic radius of B(x, p) is
bounded below, namely, there is a uniform constant x¢ such that, for all y € B(x, p),

rp(y) > kop, |y € (M, g)”Cl-D‘,Kop <C,
and consequently,
4.2) Vol(B(x,r)) < e?Cour*, forallr < .

For any metric (M, g), define the maximal volume ratio on the scale p as

Vol(B(x,r))

MV(g,p) = max p

XeEM,0<r<p

Note that for any compact smooth Riemannian 4-manifold (M, g),

lim MV(g, p) = wy4,
p—0

where w4 is the volume of the unit ball in R?.

In this paper, we consider the maximal volume ratio on finite scales rather than on all
scales. On the one hand, the local non-inflated volume is enough to shrink the singular set to
a point. On the other hand, one will see, lacking e-regularity, we cannot prove the Euclidean
volume growth on the large scale by volume comparison [28].

We argue by contradiction. If the theorem is not true, then for any sequence p; — 0
with pj41 < %pj, if we fix j, there exists a sequence of metrics (M; ;, g; ;) which satisfy
the hypotheses of the theorem, but MV(g;,;, pj) — o0o. By passing to a diagonal subsequence,
for any sequence p; — 0 with p; 11 < %pi, there exists a sequence of metrics (M;, g;) which
satisfy the hypotheses of the theorem, but

4.3) MV (gi,pi) > o0, asi — oo.

For this sequence, we can extract a subsequence (which for simplicity we continue to
denote by the index i), and r; < p; such that

Vol(B(x;, r; Vol(B(x,r
w yore - YUBGwr) - Vol(BGr.r),
r; xeM;,r<r; r
where ¢2€ comes from (4.2). We furthermore assume x; is chosen so that r; is minimal, that

is, the smallest radius such that
Vol(Bg; (x,r)) < 2¢%Cr*, forallx € Mj and r < r;.

Note that the inequality
(45) [ RmGP =g
B(x;,2r)

must hold, each ball with larger volume growth (singularity) takes at least €o of L?-curvature.
Otherwise, by the estimate (4.2), we would have

Vol(By, (xi,ri)) < 21,

which violates the choice of r; in (4.4).
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Now, we consider the rescaled metric g; = rl._zgi, so that Bg, (x;,r;) = Bz, (x;, 1).
From the choice of x; and r;, the rescaled metrics g; have bounded volume ratio, in all of
unit size.

From the Main Theorem 1.1, there exists a subsequence which converges on compact
subsets to a complete length space (Moo, §00. Xoo) in the C 1**-topology off finitely many sin-
gularities, where (Moo, €00, Xoo) 18 @ multi-fold, and g is a smooth anti-self-dual metric with
zero scalar curvature. Further, from Theorem 3.4 for the multi-fold-case, see [28, Proposi-
tion 4.3 and Claim 4.4, p. 14], there exists a constant A; such that

(4.6) Vol(Byg,, (XYoo, 7)) < A1r*, forallr > 0.

We have seen that if r; — 0, then the blow up limit will be a smooth multi-fold with critical
metric, which is crucial to conclude that (4.6) holds. This is the main reason that we consider
the maximal volume ratio on the finite scale.

We next return to the (sub)sequence (M;, g;) and extract another subsequence (which for
simplicity we continue to denote by the index i) so that

Vol(B(xlf,rl.’)): max Vol(B(x,r)).

g s

4.7 260041 =

r X€EM;,r<r]

Again, we assume that x| is chosen so that r/ is minimal, that is, the smallest radius for which
Vol(Byg, (x,r)) <26004,r*, forallx € M; andr <r].

Clearly, r; <1/ < p; = 0.
Arguing as above, we repeat the rescaled limit construction, but now with scaled metric
g =r! ~2g;, and base point x;. We find a limiting multi-fold (M, g5, X4,), and a constant

Ay > 2600A7 so that
Vol(Bg:_(x50,7)) < Aor*, forallr > 0.

For the same reason as in (4.5), we must have

/ Rm(g)|? > 2.
Bg, (x],277)

Since the L2-curvature is finite, and each larger volume growth ball (singularity) takes at
least €g of L2-curvature, it is reasonable to hope that the bubbling process will end in a finite
number of steps. But we need to be a little careful, as in the Einstein case [20], there could be
some overlap if any singular point lies in a ball centered at other singular point.

So we next consider the ratio 7/ /7;.

e Case (i): there exists a subsequence (which we continue to index with 7) satisfying
r{ < Cr; for some constant C.
e Case (i1): we have
/
lim - = oo.
i—o00 I
In Case (i) we proceed as follows: We claim that for i sufficiently large, the balls B(x;, 2r;)
(from the first subsequence but also occurring in the second) and B (xl{ , 2rlf ) (from the second)
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must be disjoint because of the choice in (4.7). To see this, if B(x;,2r;) N B(x],2r]) # @, then
B(x],2r]) C B(x;,6r]). Then (4.6) and (4.7) imply that
260041 (r))* = Vol(B(x/,r]))

< Vol(B(x},2r))

< Vol(B(x;, 6r}))

< 241(6(r))*)

= 2592(r})*,
which is a contradiction (note the last inequality is true for i sufficiently large since the volume
is continuous in the C!*-topology (even with finite singularity), and (4.6) is valid only in
Case (1)).

In Case (ii), if the balls B(x;,2r;) (from the first subsequence) and B(x;,2r]) (from the

second) are disjoint for all i sufficiently large, then we proceed to the next step. Otherwise, we
consider the scaled metric g/ = (r/)"?g; with basepoint x/; then

Vol(B(x], 1)) = 26004
As above, we have a limiting smooth multi-fold (M, gL, x,) satisfying
Vol(B(x},, 1)) = 26004;.

Since the metric is anti-self-dual with constant curvature, by the choice of A1, we concluded

that
/ Rm(glo)? > €2,
Bgéo (xc0,2)

There is now a singular point of convergence corresponding to the balls B(x;, r;) in the first
subsequence. But since we are in Case (ii) with lim;_ o ri’ /ri = 00, in the gl/. -metric, these
balls must shrink to a point in M/_. The only possibility is that the original sequence satisfies

/ IRm(g:)[? > 2¢;,
Bg[ (xl/'azr,{)
for all i sufficiently large.

We repeat the above procedure, considering the possible Cases (i) and (ii) at each step.
At the kth step, we can always account for at least k €9 of L?-curvature. The process must
terminate in finitely many steps from the bound ||[Rm(g;)| ;2 < A1. This contradicts (4.3),
which finishes the proof. ]

We note that it may happen that (Mo, goo) 1S @ smooth Riemannian manifold, but the
convergence is not in the C 1**-topology. In fact, the curvature concentration part, correspond-
ing to some nontrivial 2- cycles in M, may shrink off in the limit. The topology ‘decreases’
and the singularity takes away a certain quantity of energy of curvature.

Proposition 4.2. Let (M, g;) satisfy the hypotheses of Theorem 1.1. Then

.lim/ |Rm(gl-)|22/ IRm(g00)|?,
i—oo Jp RCMoo

with inequality if and only if M is a C % -manifold diffeomorphic to M, and the convergence
is in the C 1%-Cheeger—Gromov topology.
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Proof. ltis a straightforward consequence of the bubble analysis. Since the convergence
isin C1¥ N W?2:P the measure [Rm(g;)|*>dv,, converges to

|Rm(g00)|2dvgoo+ Z a;x;

X;i €800

in the L?-sense, where Jy, is the Dirac measure supported at x;, and ay is given by

ar= Y [ _[Rm(z)P.
( k:hk)

(NZ.hY)

Here (N, hy) is the bubble tree associated to the singular point x, see the clear description
of the bubble tree in [20]. The equality implies there is no curvature concentration occurring
and thus no singularities in the limit. m]
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