Abstract.
We prove that the generic point of a Hilbert modular four-fold represents an abelian variety which is not a Jacobian. The proof uses degeneration techniques and is independent of properties of the mapping class group used in preceding papers on locally symmetric subvarieties of the moduli space of abelian varieties contained in the Schottky locus.
Received: 2011-08-19
Revised: 2012-02-06
Published Online: 2012-03-30
Published in Print: 2014-01-01
© 2014 by Walter de Gruyter Berlin Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Masthead
- Constant mean curvature surfaces in hyperbolic 3-space via loop groups
- La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin
- Heegner cycles and derivatives of p-adic L-functions
- On Chow motives of surfaces
- The locus of real multiplication and the Schottky locus
- Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds
- Real trigonal curves and real elliptic surfaces of type I
Articles in the same Issue
- Masthead
- Constant mean curvature surfaces in hyperbolic 3-space via loop groups
- La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin
- Heegner cycles and derivatives of p-adic L-functions
- On Chow motives of surfaces
- The locus of real multiplication and the Schottky locus
- Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds
- Real trigonal curves and real elliptic surfaces of type I