Home Predicting crude unit failures and production impact using lagging maintenance indicators in oil refineries
Article
Licensed
Unlicensed Requires Authentication

Predicting crude unit failures and production impact using lagging maintenance indicators in oil refineries

  • Sadiq Ibrahim Almogargesh ORCID logo EMAIL logo
Published/Copyright: June 18, 2025
Become an author with De Gruyter Brill

Abstract

Oil refineries operate in environments of high pressure and temperature. Therefore, maintaining the availability of these assets is a challenge to the maintenance teams. The paper deals with the development of maintenance key performance indicators (KPIs), considering both leading (post-failure) and lagging metrics for maintenance performance. Traditionally, these KPIs are looked upon in isolation; possible relationships between them are not considered. The present study investigated the relationships between various lagging maintenance KPIs relating production rate to equipment availability. The study was conducted under the refinery crude unit, which is generally considered one of the most important parts of any oil refinery. A regression model was developed that empirically relates equipment availability with the production rate. This was further extended to an empirical equation correlating equipment availability and downtime duration with various downtime factors. The results indicate that the availability of equipment has a high correlation with the production rate. This relationship is driven by factors of downtime, which have been sorted according to duration and type. These equations greatly support the management decisions in the development of maintenance strategies. In addition, the research quantifies the costs related to each factor of downtime, which can be applied in formulating future maintenance strategies.


Corresponding author: Sadiq Ibrahim Almogargesh, Saudi Aramco, Dhahran, Saudi Arabia, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

Appendices

A Tables of classified data

2015
Reference date Downtime Factors code Equipment availability Overall equipment availability
1 2 F6 98 % 94 %
0 F9 100 %
5 F6 94 %
16 F6 84 %
2 195 F1 29 % 55 %
111 F5 42 %
4 F6 95 %
3 10 F4 89 % 55 %
420 F1 16 %
4 2 F6 98 % 93 %
11 F4 89 %
0 F4 100 %
1 F11 99 %
3 F6 97 %
31 F9 74 %
2 F6 98 %
5 2 F6 98 % 82 %
5 F6 94 %
53 F1 61 %
40 F2 68 %
8 F11 91 %
6 202 F4 29 % 33 %
219 F4 27 %
116 F4 42 %
7 27 F6 74 % 68 %
49 F6 61 %
8 4 F6 95 % 58 %
55 F9 58 %
12 F6 86 %
262 F1 22 %
176 F4 30 %
9 5 F6 94 % 51 %
198 F9 28 %
156 F1 33 %
204 F1 27 %
31 F6 71 %
10 9 F1 89 % 82 %
1 F6 99 %
1 F6 99 %
109 F1 41 %
11 288 F1 21 % 43 %
42 F1 65 %
12 40 F1 66 % 57 %
186 F1 30 %
139 F1 36 %
3 F6 96 %
2014
Reference date Downtime Factors code Equipment availability Overall equipment availability
1 24 F6 76 % 71 %
2 F6 97 %
108 F1 41 %
244 F1 24 %
5 F6 94 %
4 F9 95 %
2 20 F1 78 % 74 %
110 F4 40 %
1 F6 99 %
23 F1 76 %
19 F1 79 %
3 6 F6 93 % 70 %
185 F1 29 %
1 F6 99 %
12 F7 86 %
96 F1 44 %
30 F9 71 %
4 11 F1 87 % 61 %
198 F4 27 %
44 F5 63 %
160 F1 32 %
43 F1 63 %
4 F6 95 %
5 23 F9 76 % 76 %
6 8 F6 90 % 90 %
7 174 F8 30 % 69 %
0 F9 100 %
101 F9 43 %
7 F4 91 %
18 F6 81 %
8 106 F11 42 % 55 %
3 F6 96 %
154 F11 33 %
79 F11 49 %
9 53 F1 59 % 60 %
53 F1 59 %
26 F6 74 %
206 F1 27 %
7 F10 91 %
80 F1 48 %
10 8 F6 90 % 90 %
11 3 F1 95 % 83 %
25 F1 70 %
12 9 F6 86 % 71 %
298 F1 16 %
3 F6 95 %
8 F6 87 %

B Anova: single factor

Summary
Groups Count Sum Average Variance
Column 1 33 3,733 113.1212 11,535.36
Column 2 33 72 2.181818 46.09091
Column 3 33 835 25.30303 665.5928
Column 4 33 760 23.0303 3,623.155
Column 5 33 143 4.333333 366.6667
Column 6 33 300 9.090909 120.5227
Column 7 33 44 1.333333 3.666667
Column 8 33 206 6.242424 906.9394
Column 9 33 467 14.15152 1,507.883
Column 10 33 39 1.181818 1.090909
Column 11 33 731 22.15152 2,449.32
ANOVA
Source of variation SS df MS F P-value F crit
Between groups 340,595.3 10 34,059.53 17.65051 4.74E-26 1.857637
Within groups 679,241.2 352 1,929.663
Total 1,019,837 362

C Table of the downtime factors codes with the recoreded downtime duration and occurance. this table istbli required to obtain the correlation among the codes

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
195 40 10 10 111 2 12 174 1 7 1
420 1 7 11 1 5 1 1 31 1 8
53 1 8 0 1 16 1 1 55 1 106
262 1 7 202 1 4 1 1 198 1 154
156 1 9 219 1 2 1 1 4 1 79
204 1 7 116 1 3 1 1 30 1 110
9 1 8 176 1 2 1 1 23 1 198
109 1 11 1 1 2 1 1 0 1 7
288 1 7 1 1 5 1 1 101 1 44
42 1 7 1 1 27 1 1 1 1 1
40 1 7 1 1 49 1 1 1 1 1
186 1 7 1 1 4 1 1 1 1 1
139 1 14 1 1 12 1 1 1 1 1
108 1 7 1 1 5 1 1 1 1 1
244 1 7 1 1 31 1 1 1 1 1
20 1 7 1 1 1 1 1 1 1 1
23 1 35 1 1 1 1 1 1 1 1
19 1 7 1 1 3 1 1 1 1 1
185 1 67 1 1 24 1 1 1 1 1
96 1 89 1 1 2 1 1 1 1 1
11 1 90 1 1 5 1 1 1 1 1
160 1 76 1 1 1 1 1 1 1 1
43 1 54 1 1 6 1 1 1 1 1
53 1 32 1 1 1 1 1 1 1 1
53 1 25 1 1 4 1 1 1 1 1
206 1 7 1 1 8 1 1 1 1 1
80 1 45 1 1 18 1 1 1 1 1
3 1 7 1 1 3 1 1 1 1 1
25 1 54 1 1 26 1 1 1 1 1
298 1 32 1 1 8 1 1 1 1 1
1 1 35 1 1 9 1 1 1 1 1
1 1 43 1 1 3 1 1 1 1 1
1 1 7 1 1 8 1 1 1 1 1

References

1. Angela, M, Emeka, O, Kevin, I, Oluwasanmi, O, Francis, E, Olayemi, O. Challenges and prospects of converting Nigeria illegal refineries to modular refineries. Open Chem Eng J 2019;13. https://doi.org/10.2174/1874123101913010001.Search in Google Scholar

2. AL-Moubaraki, AH, Obot, IB. Corrosion challenges in petroleum refinery operations: sources, mechanisms, mitigation, and future outlook. J Saudi Chem Soc 2021;25:101370. https://doi.org/10.1016/j.jscs.2021.101370.Search in Google Scholar

3. Kemp, J. 2016. Global refining margins help lift crude oil prices [Online]. Reuters. Available from: https://www.reuters.com/article/us-global-refining-kemp-idUSKCN0XH28L/.Search in Google Scholar

4. Tamazin, D. Developing A comprehensive performance measurement model of sustainability particular for oil refining sector. Huddersfield: The University of Huddersfield; 2022.Search in Google Scholar

5. Gonçalves, CDF, Dias, JAM, Machado, VAC. Multi-criteria decision methodology for selecting maintenance key performance indicators. Int J Manag Sci Eng Manag 2015;10:215–23. https://doi.org/10.1080/17509653.2014.954280.Search in Google Scholar

6. Pinto, G, Silva, F, Baptista, A, Fernandes, NO, Casais, R, Carvalho, C. TPM implementation and maintenance strategic plan – a case study. Procedia Manuf 2020;51:1423–30. https://doi.org/10.1016/j.promfg.2020.10.198.Search in Google Scholar

7. Tsutsui, M, Takata, S. Life cycle maintenance planning method in consideration of operation and maintenance integration. Prod Plann Control 2012;23:183–93. https://doi.org/10.1080/09537287.2011.591649.Search in Google Scholar

8. Gulati, R. Workbook to accompany maintenance & reliability best practices, 2nd ed. New York: Industrial Press; 2013.Search in Google Scholar

9. Mkrtchyan, L, Straub, U, Giachino, M, Kocher, T, Sansavini, G. Insurability risk assessment of oil refineries using Bayesian Belief Networks. J Loss Prev Process Ind 2022;74:104673. https://doi.org/10.1016/j.jlp.2021.104673.Search in Google Scholar

10. Geurtsen, M, Didden, JB, Adan, J, Atan, Z, Adan, I. Production, maintenance and resource scheduling: a review. Eur J Oper Res 2023;305:501–29. https://doi.org/10.1016/j.ejor.2022.03.045.Search in Google Scholar

11. Igbokwe, NC, Godwin, H. Maintenance performance evaluation and downtime analysis of manufacturing equipment in a food manufacturing company. J Eng Res Rep 2021:100–7. https://doi.org/10.9734/jerr/2021/v20i1117413.Search in Google Scholar

12. Kumar, U, Galar, D, Parida, A, Stenström, C, Berges, L. Maintenance performance metrics: a state-of-the-art review. J Qual Mainten Eng 2013;19:233–77. https://doi.org/10.1108/jqme-05-2013-0029.Search in Google Scholar

13. Alfahdi, K, Gultekin, H, Summad, E. A novel prognostics and health management framework to extract system health requirments in the oil and gas industry. Int J Prognostics Health Manag 2024;15. https://doi.org/10.36001/ijphm.2024.v15i2.3933.Search in Google Scholar

14. Wari, E, Zhu, W, Lim, G. Maintenance in the downstream petroleum industry: a review on methodology and implementation. Comput Chem Eng 2023;172:108177. https://doi.org/10.1016/j.compchemeng.2023.108177.Search in Google Scholar

Received: 2024-12-09
Accepted: 2025-05-31
Published Online: 2025-06-18

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cppm-2024-0124/pdf
Scroll to top button