Two-stage adsorber optimization of NaOH-prewashed oil palm empty fruit bunch activated carbon for methylene blue removal
Abstract
The objective of the present work was to evaluate the performance of two-stage adsorber of activated carbon from oil palm empty fruit bunch for methylene blue removal. The model was developed to predict optimum adsorbent mass and time at a specified volumes and concentrations of dye solution. Results show that the adsorbent mass can be reduced by 6.67%. Operating time taken to attain the equilibrium in a two-stage adsorber has dramatically decreased from 22 h to 0.52 h. In the performance evaluation, the adsorbent mass in stage-1 is higher than in stage-2, which lessen the workload to achieve equilibrium. A two-stage adsorber aids to optimize the mass and contact time for different percentage of dye removal that economically feasible for industrial applications.
Funding source: UTM ICONIC
Award Identifier / Grant number: 09G54
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The project presented in this article is supported by UTM ICONIC Fund No. 09G54.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Yao, Y, Xu, F, Chen, M, Xu, Z, Zhu, Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 2010;101:3040–6. https://doi.org/10.1016/j.biortech.2009.12.042.Search in Google Scholar PubMed
2. Al-Ghouti, MA, Khraisheh, MA, Allen, SJ, Ahmad, MN. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manag 2003;69:229–38. https://doi.org/10.1016/j.jenvman.2003.09.005.Search in Google Scholar PubMed
3. Torres-Perez, J, Huang, Y, Bazargan, A, Khoshand, A, McKay, G. Two-stage optimization of Allura direct red dye removal by treated peanut hull waste. SN Appl Sci 2020;2:475. https://doi.org/10.1007/s42452-020-2196-3.Search in Google Scholar
4. Spagnoli, AA, Giannakoudakis, DA, Bashkova, S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters. J Mol Liq 2017;229:465–71. https://doi.org/10.1016/j.molliq.2016.12.106.Search in Google Scholar
5. Wirasnita, R, Hadibarata, T, Mohd Yusoff, AR, Mat Lazim, Z. Preparation and characterization of activated carbon from oil palm empty fruit bunch wastes using zinc chloride. J. Teknol 2015;74:77–81. https://doi.org/10.11113/jt.v74.4876.Search in Google Scholar
6. Zhang, X, Cheng, L, Wu, X, Tang, Y, Wu, Y. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue. J Environ Sci 2015;33:97–105. https://doi.org/10.1016/j.jes.2015.01.014.Search in Google Scholar PubMed
7. Yan, KZ, Ahmad Zaini, MA, Arsad, A, Nasri, NS. Rubber seed shell based activated carbon by physical activation for phenol removal. Chem Eng Trans 2019;72:151–6.Search in Google Scholar
8. Safa, Y, Bhatti, HN. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination 2011;272:313–22. https://doi.org/10.1016/j.desal.2011.01.040.Search in Google Scholar
9. García, JR, Sedran, U, Zaini, MAA, Zakaria, ZA. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell. Environ Sci Pollut Control Ser 2017;25:5076–85. https://doi.org/10.1007/s11356-017-8975-8.Search in Google Scholar PubMed
10. Zubir, MHM, Zaini, MAA. Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and Congo red dyes removal. Sci Rep 2020;10:14050. https://doi.org/10.1038/s41598-020-71034-6.Search in Google Scholar PubMed PubMed Central
11. Hameed, B, Mahmoud, D, Ahmad, A. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J Hazard Mater 2008;158:65–72. https://doi.org/10.1016/j.jhazmat.2008.01.034.Search in Google Scholar PubMed
12. Alam, MZ, Muyibi, SA, Mansor, MF, Wahid, R. Activated carbons derived from oil palm empty-fruit bunches: application to environmental problems. J Environ Sci 2007;19:103–8. https://doi.org/10.1016/s1001-0742(07)60017-5.Search in Google Scholar PubMed
13. Ooi, CH, Ang, CL, Yeoh, FY. The properties of activated carbon fiber derived from direct activation from oil palm empty fruit bunch fiber. Adv Mater Res 2013;686:109–17. https://doi.org/10.4028/www.scientific.net/amr.686.109.Search in Google Scholar
14. Sakamoto, T, Zaini, MAA, Amano, Y, Machida, M. Preparation and characterization of activated carbons produced from oil palm empty fruit bunches. TANSO 2019;286:9–13. https://doi.org/10.7209/tanso.2019.9.Search in Google Scholar
15. Li, Q, Yue, Q, Su, Y, Gao, B. Equilibrium and a two-stage batch adsorber design for reactive or disperse dye removal to minimize adsorbent amount. Biores Technol 2011;02:5290–6. https://doi.org/10.1016/j.biortech.2010.11.032.Search in Google Scholar PubMed
16. Palanisami, H, Azmi, MRM, Zaini, MAA. Coffee residue-based activated carbons for phenol removal. Water Pract Technol 2021;16:793–80.10.2166/wpt.2021.034Search in Google Scholar
17. Anuar, MAK, Mahat, NS, Rusli, NM, Alam, MNHZ, Zaini, MAA. Insight into the optimization of mass and contact time in two-stage adsorber design for malachite green removal by coconut shell activated carbon. Int J Bio Renew Energy 2021;10:1–8.Search in Google Scholar
18. Bamatraf, SMS, Zaini, MAA. Optimization in a two-stage sorption of malachite green by date palm residue carbon. In: 2021 International congress of advanced technology and engineering (ICOTEN); 2021:1–5 pp.10.1109/ICOTEN52080.2021.9493441Search in Google Scholar
19. Ho, Y, McKay, G. A two-stage batch sorption optimized design for dye removal to minimize contact time. Process Saf Environ Protect 1998;76:313–8. https://doi.org/10.1205/095758298529678.Search in Google Scholar
20. Oladipo, AA, Gazi, M. Two-stage batch sorber design and optimization of biosorption conditions by Taguchi methodology for the removal of acid red 25 onto magnetic biomass. Kor J Chem Eng 2015;32:1864–78. https://doi.org/10.1007/s11814-015-0001-6.Search in Google Scholar
21. Markandeya Singh, A, Shukla, S, Mohan, D, Singh, N, Bhargava, D, Shukla, R, et al.. Adsorptive capacity of sawdust for the adsorption of MB dye and designing of two-stage batch adsorber. Cogent Environ Sci 2015;1:1075856. https://doi.org/10.1080/23311843.2015.1075856.Search in Google Scholar
22. Özacar, M, Şengil, A. A two-stage batch adsorber design for methylene blue removal to minimize contact time. J Environ Manag 2005;80:372–9.10.1016/j.jenvman.2005.10.004Search in Google Scholar PubMed
23. Özacar, M, Şengi, A. Two-stage batch sorber design using second-order kinetic model for the sorption of metal complex dyes onto pine sawdust. Biochem Eng J 2004;21:39–45.10.1016/j.bej.2004.05.003Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Two-stage adsorber optimization of NaOH-prewashed oil palm empty fruit bunch activated carbon for methylene blue removal
- Response surface methodology (RSM) and artificial neural network (ANN) approach to optimize the photocatalytic conversion of rice straw hydrolysis residue (RSHR) into vanillin and 4-hydroxybenzaldehyde
- Computational investigation of erosion wear in the eco-friendly disposal of the fly ash through 90° horizontal bend of different radius ratios
- Optimal sequencing of conventional distillation column train for multicomponent separation system by evolutionary algorithm
- Enhanced design of PID controller and noise filter for second order stable and unstable processes with time delay
- Removal of glycerol from biodiesel using multi-stage microfiltration membrane system: industrial scale process simulation
- Multi-objective optimization of a fluid catalytic cracking unit using response surface methodology
- Effect of pipe rotation on heat transfer to laminar non-Newtonian nanofluid flowing through a pipe: a CFD analysis
- Statistical modeling and optimization of the bleachability of regenerated spent bleaching earth using response surface methodology and artificial neural networks with genetic algorithm
- Short Communication
- A comparative study: conventional and modified serpentine micromixers
Articles in the same Issue
- Frontmatter
- Research Articles
- Two-stage adsorber optimization of NaOH-prewashed oil palm empty fruit bunch activated carbon for methylene blue removal
- Response surface methodology (RSM) and artificial neural network (ANN) approach to optimize the photocatalytic conversion of rice straw hydrolysis residue (RSHR) into vanillin and 4-hydroxybenzaldehyde
- Computational investigation of erosion wear in the eco-friendly disposal of the fly ash through 90° horizontal bend of different radius ratios
- Optimal sequencing of conventional distillation column train for multicomponent separation system by evolutionary algorithm
- Enhanced design of PID controller and noise filter for second order stable and unstable processes with time delay
- Removal of glycerol from biodiesel using multi-stage microfiltration membrane system: industrial scale process simulation
- Multi-objective optimization of a fluid catalytic cracking unit using response surface methodology
- Effect of pipe rotation on heat transfer to laminar non-Newtonian nanofluid flowing through a pipe: a CFD analysis
- Statistical modeling and optimization of the bleachability of regenerated spent bleaching earth using response surface methodology and artificial neural networks with genetic algorithm
- Short Communication
- A comparative study: conventional and modified serpentine micromixers