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Abstract:
Smoothed particle hydrodynamics (SPH) was applied to simulate the free falling of cylindrical bodies in three
types of fluids including Newtonian, generalized-Newtonian and viscoelastic fluids. Renormalized derivation
schemes were used because of their consistency in combination with the latest version of no slip boundary
condition to improve the handling of moving fluid-structure interactions (FSIs). Verification of the method was
performed through comparing the results of some benchmark examples for both single and two phase flows
with the literature. The effects of some parameters such as the viscosity of the Newtonian fluid, the n index of
the power-law fluid and the relaxation time of the Oldroyd-B fluid along with the diameter of the cylinder on
the falling history were investigated. Achieving reasonable results, SPH method was proven to be suitable for
simulating moving fluid-structure boundaries independent of the fluid type.
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1 Introduction

Understanding the rheology of non-Newtonian fluids is important not only for their wide applications but also
for powerful theoretical background needed to be covered. In addition to the non-linear nature of such fluids,
intricate geometries which usually appear in their processing steps or characterization experiments, increase
complexity. Although it seems easy in the first sight, falling body through the fluid is one popular case of these
complex geometries. Complexity comes from the difficulties attributed to the existing fluid-structure interac-
tions (FSIs). For example, classic computational fluid dynamics (CFD) methods have difficulties in simulation
of translational motion of the fluid-structure interfaces, because capturing the interface is not easily possible
using these methods [1].

In a case of non-reactive falling body, the only important issue is hydrodynamics. Accurate calculation of
hydrodynamic forces swapped between the solid body and fluid is required in order to predict the falling
behaviour. These forces have been conceptually determined for many years. Governing equations, especially
momentum conservation law, describe the relationship between these forces and the flow parameters. In the
steady conditions and as a simple way, the flow of the fluid on the stationary solid object can be considered
instead of the flow of the falling object through the static fluid. Using the same simplification, well-known Stokes

equation for terminal velocity of falling spheres has been obtained as: V Stokes =
2gR2(u�s−u�f )

9u�
(corresponding to

drag force: F StokesD = 6𝜋𝜇RV Stokes) [2]. Where g is the gravity acceleration, ρs and R are the density and radius
of the sphere respectively, ρf and µ are the density and viscosity of the fluid Respectively. This equation which
is frequently used in falling ball viscometers for determining the viscosity of the Newtonian fluids, may be
considered as the outcome of the first attempts on the modeling of falling problems.

Researchers have tried to reconsider simplifying assumptions which are necessary for the validity of the
Stokes equation. These assumptions are Newtonian fluid, steady-state condition, low Reynolds numbers, spher-
ical solid shape and most important of them: not considering the translational moving of the solid (see [3, 5]).
Ata Kamyabi is the corresponding author.
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After eliminating simplifying assumptions, the system of the governing equations will be generally described
with a set of time dependant partial differential equations (PDEs). Non-linear nature of such PDE system, usu-
ally requires the application of numerical approaches for its solution.

In this regard, Feng et al. [6] used finite element method (FEM) to simulate falling of a 2-D cylinder in
Newtonian fluid at moderate Reynolds numbers. As with non-spherical bodies, falling of elliptical particles in
Newtonian fluid has been investigated by Xia et al. [7] and simulations of falling a wedge and also cubic solids
have been carried out by Liu et al. [8] for Newtonian fluid, via incompressible SPH (ISPH) method. Reconsider-
ing Newtonian fluid assumption, falling behaviour of a solid sphere in the Oldroyd-B fluid has been studied by
using FEM [9, 10]. A good review on experimental and numerical investigations of transient and steady motion
of falling spheres in viscoelastic fluids have been published by McKinley et al. [11]. This work is actually the
complementary to the previous review [12].

Assuming stationary body instead of falling one becomes meaningless when transient solution is of interest.
Therefore, applying an accurate and fast computational approach becomes essential due to measure instanta-
neous mutual effects between fluid and solid. Considering these mutual effects, this approach should be able
to capture moving of the interface correctly over the time [13]. Although falling problem has been investigated
extensively, it has often been treated with conventional mesh based Eulerian methods. It is helpful to note that,
there are two fundamental frames for describing governing equations: Eulerian and Lagrangian frames [14].
Through the Eulerian framework, coordinates are fixed in the space while coordinates move with the system in
the Lagrangian viewpoint. In the Lagrangian formulations, the complexity of the numerical methods is reduced
due to vanishing convective terms. Furthermore, in two phase problem of moving fluid-structure interfaces, the
interface does not cut the computational mesh which facilitates treatment of such FSIs [13]. Despite such bene-
fits, most Lagrangian methods have difficulties while tracking fluid segments, such as non-physical penetration
of the fluid through the solid walls and oscillating results in the pressure field [15].

Meshless methods are particularly useful types of Lagrangian computational methods which have been
applied to simulate falling problems [8, 13, 16–21]. Meshless methods do not face failures such as mesh cutting
off and interface dispersion. These benefits are supposed to be appropriate for simulating transient falling
problem as a moving boundary FSI case. This is the main idea of the present work. Particle-based meshless
methods engage a set of discrete particles to represent the state of the system and to record its deformation
[14]. Smoothed particle hydrodynamics (SPH), as one of the oldest and most popular particle-based meshless
methods was first applied to simulate astrophysical flows [22, 23]. Utilizing this method successfully in many
engineering problems [24, 25] lead to constant improvements in the accuracy and stability of SPH.

The current work deals with solving the 2-D unsteady falling cylinder flow problem in Newtonian,
generalized-Newtonian and viscoelastic fluids by using a modified version of weakly compressible SPH (some-
times called WCSPH). These modifications include using the most consistent discretization schemes for spatial
derivatives in the flow equations and using the recent implemented version of solid boundary condition intro-
duced by Fatehi et al. [15]. The code was written in C++ and the results were transferred to paraView software
for post-processing. Validation of the method is carried out through comparison of the results with reliable
reports in the literature. After obtaining rational results from a parametric study, it is proven now, using SPH
in its most progressive version, falling problem as a kind of physical FSI problem can be simulated correctly
and more easily than usual mesh based methods. It is also concluded that, the applicability of the method is
not limited by the fluid type.

2 Governing equations

Since the falling problem is a two phase problem, governing equations for both fluid and solid phases were
considered. The cavity example which was examined for the purpose of validation is a one phase problem.
Therefore, conservation equations of the fluid were enough to be considered. It would be beneficial to mention
that the system of equations was solved numerically at each time step since transient solution was intended.

2.1 Fluid description

SPH method requires the mass and momentum conservation equations to be written in a Lagrangian form.
Thus the following equations were solved:

– Conservation of mass:

d𝜌
dt

= −𝜌∇.V (1)
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In which ρ is the density of the fluid and V is the velocity vector.
– Conservation of linear momentum:

𝜌
DV
Dt

= ∇.T + 𝜌g + f (2)

Where g is gravity acceleration, f is the net of all other body forces (which was zero in the present study) and
T is the total stress tensor which can be written as:

T = −PI + 𝜏 (3)

In this equation, P is the mechanical pressure, I is the identity matrix and τ is the shear stress tensor. As men-
tioned before, eq. (2) is written in Lagrangian form in which the D

Dt
operator is the material or total time deriva-

tive and it is defined as the eq. (4):

D
Dt

=
𝜕
𝜕t

+ V .∇ (4)

2.1.1 Incompressibility

The ratio of the flow velocity to the local sound speed is known as Mach number. Flows with Mach number less
than 0.1 are supposed incompressible which means density of the fluid does not change considerably along the
flow or with the time [19].

Commonly two general ways exist for applying incompressibility of the flow. The more common way is to
suppose the fluid flow completely incompressible and rewrite eqs (1) and (2) with considering this assump-
tion. Thereupon density is removed from the equations and system of the equations becomes close. Another
way which was also used in this work is to suppose an incompressible flow like a compressible one but with
very small compressibility. Weakly compressible SPH or briefly WCSPH is a version of SPH which uses this
approach. Applying this way, it is needed to define another equation due to system of equations becomes close.
This equation is the equation of state (EOS) which expresses pressure relationship with density. One of the
most used EOS equations for the fluids is:

P − P0 = C2 (𝜌 − 𝜌0) (5)

Where P0 is the pressure of the fluid when its density is ρ0 and C is the artificial sound speed in the fluid. Sound
speed is artificial because it should be chosen by the user in a way that the incompressibility condition (Mach
number less than 0.1) is satisfied.

2.1.2 Constitutive equations

The Newtonian model which is the simplest form of the mathematical models for the viscous fluids describes
the shear stress tensor as eq. (6).

𝜏 = 𝜇D (6)

Where D is the rate of the deformation tensor and is defined as:

D = ∇V + ∇V T (7)

Generalized-Newtonian fluids are another type where their shear rate is a nonlinear function of the rate of
deformation tensor. However shear rate is still independent of history of deformation. There are several models
for describing these fluids. Power-law equation which was chosen to represent Generalized-Newtonian fluid
in this work, describes τ as follow:
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𝜏 = 𝜂0|D|n−1D (8)

Where η0 is the consistency index and |D|is the size of the rate of the deformation tensor which is defined as
follow:

|D| = √(
1
2
D ∶ D) (9)

Viscoelastic fluids exhibit both elastic and viscous behaviours. As a result, shear rate of these fluids is dependent
on the history of deformation. In the present work, Oldroyd-B constitutive equation is used in order to represent
a viscoelastic fluid. Its formulation is [26]:

𝜏 + 𝜆1
∇
𝜏 = 𝜂 (D + 𝜆2

∇
D) (10)

Where 𝜆1 is the relaxation time, 𝜆2 is the retardation time, η is the zero shear rate viscosity and 𝜏∇ is the upper
convected derivative of τ. The upper convected derivative of any symmetric tensor like A is defined as follow
in a Lagrangian coordination system:

∇
A =

𝜕A
𝜕t

− A.∇V − ∇V T .A (11)

When λ2 = 0, eq. (10) reduces to upper convected Maxwell (UCM) model, and if 𝜆1 = 𝜆2 = 0, it represents the
Newtonian fluid with the viscosity η. If the stress tensor τ decomposed into a viscoelastic component τp and a
purely viscous component τs then [27]:

𝜏 = 𝜏p + 𝜏s (12)

where

𝜏p + 𝜆1
∇
𝜏p = 𝜂pD (13)

and

𝜏s = 𝜂sD (14)

Here, ηp is the viscosity of the viscoelastic contribution, and ηs is the viscosity of
Newtonian contribution such that the following equations show the relationship between the parameters.

𝜂 = 𝜂p + 𝜂s (15)

and

𝜆2 =
𝜂s
𝜂

𝜆1 (16)

Then, by substituting eqs (13) and (14) into eq. (12) and using eqs (15) and (16) results in eq. (10), the momentum
conservation equation can be written as eq. (17).

𝜌
DV
Dt

= −∇P + ∇.𝜏p + 𝜂s∇
2V (17)
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2.2 Solid description

The common second law of the Newton governs on the solid body motion. Hence the following equation de-
termines the solid body behaviour:

F s = ms
dV s

dt
(18)

Where Fs, ms and Vs are the total force exerted on the solid cylinder, total mass and velocity of the solid cylinder
respectively. As it is clear, knowing all the exerted forces on the solid body is necessary in order to calculate its
instantaneous velocity.

2.3 Fluid-solid coupling

As it was mentioned before, the accurate results would be achieved if only an efficient algorithm ensures the
correct implementation of continuous interactions between solid and fluid. Because the rigid solid was consid-
ered, it can’t be deformed. Therefore the solid could be defined only with the fluid boundary particles which
were stuck to the solid surface (see Figure 1). The fluid-solid coupling was carried out through these wall parti-
cles as well. When the total amount of the forces exerted on the solid and subsequently the velocity of the solid
is computed, the wall boundary particles give the same velocity as the velocity of the solid and move across
the fluid. Now the fluid equations are solved under the influence of these particles movement. Again the total
forces exerted on the solid are computed under the new conditions and this algorithm is going on. Therefore,
a two-way coupling was applied by this algorithm.

Figure 1: Arrangement of SPH particles on the fluid-solid interface.

Determining these forces numerically and implementing SPH for solving the governing equations are dis-
cussed in the Section 3.

2.4 Dimensionless numbers

Distinguishing viscous and elastic effects, it is needed to employ dimensionless numbers involving these char-
acteristics. In this regard, Reynolds (Re) and Deborah (De) numbers are defined as below:

Re =
𝜌 |V | d

𝜂
(19)
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De =
𝜆1 |V |
R

(20)

Where |V|is the size of the velocity vector of the cylinder, d is the diameter of the cylinder, R = d/2 is its radius
and other parameters have been introduced before. In this problem, Deborah number is actually the ratio of
the fluid relaxation time to the residence time of any element of the fluid near the cylinder [11].

3 Numerical implementation

Using SPH, particles are computational points and carry fluid quantities such as mass, velocity and pressure.
SPH method is built on the concept of interpolation where interpolated value <u> at position r is computed as:

< uh (r) > = ∑
j

𝜔ju (r j)W (r j − r , h) (21)

Where u is each arbitrary field function and ωj is the volume of the neighbouring particle j. Particle j is the
neighbour if it is within the circular area around a point at r with radius h. W is a positive smoothing or ker-
nel function representing Dirac delta function [23]. In all simulations of this work, Quintic Wendland kernel
function was used which is described as below [28]:

W (r , h) = W 0 ×
⎧{
⎨{⎩

(1 − r
h
)
4
( 4r

h
+ 1) 0 < r

h
⩽ 1

0 r

h
> 1

(22)

Where r = |rj -r|and W0 is 7/πh2 for two dimensional problems.

3.1 SPH discretization

Nowadays it is vivid that most derivative schemes used in SPH are not consistent. This means the truncation
error of them would not reach zero when space between particles goes to zero. A consistent first-order scheme
which is introduced by Randles and Libersky [24] was used for computing first spatial derivatives ∇P and ∇V.
According to this scheme, the numerical approximation of the first derivative of any arbitrary parameter like u
can be obtained as eq. (23):

⟨∇u⟩i = ∑
j

𝜔j (uj − ui)Bi.∇Wij (23)

Where Wij = W (∣r ij ∣ , h) is the value of smoothing or kernel function of particle i at the position of particle j.
Moreover, Bi which is defined in eq. (24) is a renormalization tensor.

Bi = −⎡⎢
⎣
∑
j

𝜔jr ij∇Wij
⎤⎥
⎦

−1

(24)

r ij = r i − r j is the distance vector between particles i and j.
It is shown that this scheme is consistent and converges linearly as δ goes to 0 for a constant ratio δ/h, where

δ denotes the SPH particles spacing [13].
For computing ∇2V , the second derivative approximation is required. The following equation which is con-

firmed by Basa et al. [29] for its accuracy, was used for second derivatives:

⟨∇.∇u⟩i = ∑
j
2𝜔j

ui − uj
rij

eij .∇Wij (25)

where

eij =
r ij
∣r ij ∣

(26)
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is the unique position vector between two particles.
As mentioned before, computing the total force exerted on the solid body is necessary. Fs in eq. (18) is the

summation of pressure, viscous and gravity forces where in the discrete form is calculated from eq. (27).

Fs = ∑
j

(−Pjnj + nj .𝜏j) dsj + (ms − 𝜌Vs) g (27)

This summation is on the all particles sticking to the surface of the solid body which are visible in the Figure
1. Vs is the volume of the solid, nj is the outward unit normal vector to the solid surface at position of particle j
and dSj represents the area which is the portion of particle j on the solid surface. This area is actually the total
surface of the solid divided by the total number of particles which are forming the surface.

Separately writing gravity and buoyancy in the above equation is the recommendation of Hashemi et al.
[13] since it is appropriate for more computational efficiency.

3.2 Interface boundary treatment

Appropriate implementation of boundary conditions plays an important role in the accuracy of the method.
Although no-slip condition was used for all fluid-structure boundaries, there are several different techniques
to apply this condition in the SPH method. Using opposing force [30], adding several layer dummy (ghost) [31],
or mirror [32] particles and solving momentum equation on the one layer of particles [15] are some kinds of
these techniques. The last one suggests calculating the pressure of wall boundary particles from momentum
equation. This leads the acceleration of each boundary particle in the normal direction to the wall becomes zero
and penetration through walls will not occur. The same technique was used in present work. Using this way,
there is no need for several boundary layers of particles and the solid-fluid interface was represented only by
one layer of SPH particles as is shown in Figure 1.

According to this technique, the fluid equation of motion should be solved in order to find the pressure
and density of a boundary particle. Adjacent to solid surfaces, the momentum conservation equation can be
rewritten as:

∇P
𝜌

.n = −
dV
dt

.n +
∇.𝜏
𝜌

.n + g.n (28)

Where n is the outward unit normal vector to the solid surface. For the boundary particle i, ni is equal to the
normal summation of the kernel gradients as eq. (29) shows [24].

ni =
∑j 𝜔j∇Wij

∣∑j 𝜔j∇Wij ∣
(29)

Discretizing the pressure gradient term in eq. (28) for particle i, and rearranging the equation, pressure of
particle i at (m + 1)st time step is obtained explicitly from this equation:

Pm+1
i =

(∑j
Pm+1
j

u�ij
B.∇Wij).ni + ( dVi

dt
.ni) − (∇.u�

u�
)
m+1

i
.ni − g.ni

(∑j
1

u�ij
B.∇Wij) .ni

(30)

The term dVi

dt
is the acceleration of the boundary particle i. According to the no slip boundary condition, the

acceleration is equal to the corresponding solid body acceleration. Therefore the values of dVi

dt
obtains from eq.

(18) at each time step for each boundary particle i.

3.3 Time integration

Governing equations are written in transient format. It means they must be solved with time propagation.
Considering momentum conservation equation, velocity of each fluid particle is calculated directly from the
following equation for the Newtonian fluid:
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Vm+1
i = Vm

i + Δt[−(
∇P
𝜌

)
m

+ (𝜈∇.∇V )m + g]
i

(31)

The equation (32) is showing the velocity relation of each particle for the power-law fluid:

Vm+1
i = Vm

i + Δt[−(
∇P
𝜌

)
m

+ (
𝜂0
𝜌

∣∇V + ∇V T ∣n−1.∇V)
m

+ g]
i

(32)

For the Oldroyd-B fluid, stress tensor is calculated according to this equation:

𝜏m+1
p + 𝜆1

⎛⎜
⎝

𝜏m+1
p − 𝜏m

p

Δt
− 𝜏m

p .(∇V )m − (∇V )Tm.𝜏m
p

⎞⎟
⎠

= 𝜂p ((∇V )m − (∇V )Tm) (33)

After ∇.𝜏is calculated, it is substituted in momentum eq. (2) to update fluid velocity. Velocity of solid surface
particles comes from this equation:

Vm+1
i = Vm

i + Δt .
dVs

dt
(34)

Where dVs

dt
denotes the acceleration of solid body and obtains from solving eq. (18).

As it is clear, time integration of velocity is performed through explicit formulation. Although there are more
accurate schemes for time propagation, explicit first order simple scheme is sufficient. More complex schemes
will not necessarily lead to accuracy in results because spatial derivative schemes are first order and they are
the controller of the precision. Therefore no serious gain would achieved while more computational cost was
imposed if that schemes were employed. At the end of each time step, density of each particle gets implicitly
updated by eq. (35) in order to be used in the next time step.

𝜌m+1
i = 𝜌mi + Δt[−𝜌(∇V )m+1]

i
(35)

After that, particles move according to their new velocities through the time and get new arrangements accord-
ing to eq. (36). Since Reynolds number in the present simulations was low, the deformations were relatively low
and particles were not accumulated or dispersed very harshly. Therefore rearrangement techniques were not
needed.

rm+1
i = rmi + ΔtVm+1

i (36)

It is necessary to mention that, the time step was chosen based on the criteria suggested by Shao and Lo [24].

4 Validation study

Validation of the present method was carried out through comparison of its results with two specific cases in
the literature. These cases were selected in order to cover both single and two phase problems.

4.1 Single phase fllow in a cavity

The first problem is driven flow in a cavity in which fluid confined in a square enclosure gets affected by the
moving of upper surface according to Figure 2. Different fluid patterns are expected based on Reynolds number.
The problem assumptions that are used in the present work are as below:

Fluid is Newtonian

Reynolds number is 100
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No slip boundary condition is applied to the walls; it means that:

u = U , v = 0 at top wall

⎧{
⎨{⎩
u = U , v = 0 at top wall
u = v = 0 at other walls

(37)

Figure 2: Schematic of the cavity problem.

Comparison of the results of the present method with the Ghia et al. [33] is shown in the Figure 3. These
results include normalized horizontal velocity (u) and vertical velocity (v) along the related normalized cen-
trelines. Normalization was done for the velocity and position with the top velocity (U) and the length of the
square respectively. As it is clear, good agreement between the results is observed. This helped to ensure that,
the method is applicable in general and the code is correct, at least for one phase fluid flows.

Figure 3: Comparison of the results for cavity problem with Ghia et al. [33]: Normalized vertical velocity along the hori-
zontal centerline of cavity (up) and Normalized horizontal velocity along the vertical centerline of cavity (down).

4.2 Falling cylinder in Newtonian flluid

The problem of the falling cylinder in a Newtonian fluid has been chosen in order to ensure that the bound-
ary and derivative formulas are applied correctly and the two-phase code works accurately. Figure 4 shows
the comparison of the velocity of the cylinder with the results reported by Hashemi et al. (SPH method) [13]
and Glowinski et al. (Direct Numerical Simulation coupled with Finite Element Method (DNS-FEM)) [34]. All
conditions of the problem are the same. According to the Figure 5 these conditions are:

Domain dimensions are H = 0.06 m and L = 0.02 m

Diameter of the Cylinder is d = 0.0025 m

Density of the solid cylinder is ρs = 1,250 kg/m3

Density of the fluid is ρf = 1,000 kg/m3
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Viscosity of the fluid is µ = 0.01 Pa.s

Figure 4: Comparison of the velocity of the falling cylinder in Newtonian fluid with Glowinski et al. (DNS-FEM) [34] and
Hashemi et al. (SPH method) [13] results.

Figure 5: Schematic of the falling cylinder problem.

Good agreement observed, make it easy to ensure of our method for correct simulation of two phase flows
specially moving FSIs.
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5 Results and discussion

5.1 Inter-particle spacing

Average nearest-neighbour spacing of SPH particles is an important parameter because either very short or
long spacing lead to wrong answers. This issue is also confirmed by many researches (for instance see [29]). In
the present work, simulations have been carried out with different initial distances, and finally the appropriate
distance δbst has been selected. This spacing is chosen based on considering convergence criteria and after ob-
taining the best agreement of the results with the results in the literature which were explained in the previous
section. δbst obtained equal to 0.357h, where h is the smoothing length.

In the following, some of the most important parameters which affect the falling behaviour are investigated
and the results are reported. These parameters include fluid viscosity (in the Newtonian case), fluid shear-
thinning and shear-thickening nature (in the power-law case), fluid relaxation time and cylinder’s diameter
(both in the Oldroyd-B case). All the geometrical parameters are the same as the parameters mentioned at the
Section 4.2 unless directly addressed.

5.2 E昀�fect of the viscosity

Viscosity of the fluid directly affects the transient and steady velocities of the cylinder due to changing of the
viscous forces exerted on the cylinder. Changing viscosity, simulations of Newtonian case were carried out and
the results of the velocity of the cylinder versus time is shown in Figure 6. The effect of the viscosity is hidden
in the reported Reynolds numbers so that higher Reynolds number is the outcome of less viscosity and vice
versa. The Reynolds numbers are calculated based on terminal velocities.

Figure 6: Velocity of the falling cylinder at different Reynolds numbers (influence of viscosity).

According to this figure, both transient and steady velocities of the cylinder decrease with increasing the
viscosity of the fluid. This is because of enhancement in viscous resistant forces. Contours of velocity and pres-
sure in a specific time are also shown in Figure 7 for better perception of the hydrodynamic patterns. According
to this figure, pressure is magnified in front of the cylinder and it is reduced at the back as it was sensible and
expected. Velocity contours are showing the flow path obviously.
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Figure 7: Contours of pressure and velocity components in Newtonian fluid (a) Contours of pressure (b) Contours of x-
velocity (c) Contours of y-velocity.

5.3 E昀�fect of shear-thinning and shear-thickening

The n index in power-law equation (eq. (8)) indicates shear-thinning (for n < 1) and shear-thickening (for n > 1)
nature of the fluid. If n = 0 it represents Newtonian fluid. The effect of this parameter on the settling velocity
of the cylinder was also investigated and is compared in Figure 8 where all other operating conditions are the
same. According to the results, velocity of the falling cylinder in shear-thinning fluid at each time is signifi-
cantly more than its amount in Newtonian fluid and falling velocity in Newtonian fluid is more than shear-
thickening one. These observations are rational because apparent viscosity decreases by increasing deforma-
tion in shear-thinning fluids while this behaviour is seen reversely in shear-thickening fluids. Hence lower and
higher viscous resistant forces against falling are generally expected for shear-thinning and shear-thickening
fluids respectively.
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Figure 8: Effect of shear-thinning and shear-thickening nature of the fluid on the velocity of the falling cylinder (influence
of n index).

5.4 E昀�fect of the relaxation time

Relaxation time, as the characteristic parameter of viscoelastic fluids, generally indicates the scale time which
the fluid needs to relax under any certain change. According to the eq. (10), it is expected that, this parameter
affects the stresses in the fluid which finally leads to change in the flow patterns and velocity magnitude of the
cylinder.

In the Figure 9, velocity of the falling cylinder is plotted as a function of time at various Deborah numbers.
For each case, Deborah number is calculated based on the terminal velocity. The effects of relaxation time are
latent in Deborah as eq. (20) suggests. Exploring the chart for each case, there are undershoots in the velocity
amounts before the cylinder reaches its steady terminal velocity. In the Figure 10, normalized velocity versus
dimensionless time is compared with the other available results in the literature ([9, 10, 35]). As it is obvious,
this undershoot in transient velocity profile (overshoot in dimensionless velocity) is valid, but its amount varies.
A meaningful quantitative comparison cannot be made because of matching of all various effective parameters
is impossible, as Feng et al. [10] also mentioned. It is helpful to note that, normalized velocity and dimensionless
time, was obtained from eqs (38) and (39) respectively.

||V || =
Vx

Vx,final
(38)

||t || =
t

𝜆1
(39)
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Figure 9: Velocity of the falling cylinder at different Deborah numbers (influence of relaxation time).

Figure 10: Comparison of the normalized falling velocity in three studies. Present work: Re = 0.42, De = 0.374, Fr = 41.89,
ρs/ρf = 1.25. Feng et al. [10].: Re = 0.0451, De = 0.2255, Fr = 10.36, ρs/ρf = 26.74. Bodart and Crochet [9]: Re = 1.2936,
De = 1.986, Fr = 4.967, ρs/ρf = 7.162. Becker et al. [35]: Re = 5.4 × 10−2, De = 0.402, Fr is not given (Fr is Froude number
and defined asgd/V 2

x,final).

In addition to the numerical results, many experimental evidences also confirmed the overshoot existence
(for a comprehensive review see [12]).

Complex relationship is observed between velocity and Deborah number. Although Reynolds number is
another effective parameter, it was tried to fade its effect by considering the simulations at approximately the
same Reynolds numbers. Increase in velocity by increasing the Deborah number is seen for all cases only at
the early times after releasing the cylinder but there are some differences for later times: Generally increase in
velocity by increasing the Deborah number is also observed for Deborah numbers less than 1.44 but this trend
is reversed at higher Deborah numbers. Contours of velocity and pressure for a viscoelastic case are shown in
the Figure 11.
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Figure 11: Contours of pressure and velocity components for viscoelastic fluid (a) Contours of pressure (b) Contours of
x-velocity (c) Contours of y-velocity.

5.5 E昀�fect of the diameter

Simulations of viscoelastic cases were applied for two different sizes of cylinder diameters: 0.0025 m and
0.00125 m. Influence of this parameter on the velocity of the cylinder has been reported in Figure 12 where
the velocity of the cylinder is shown versus time.

Figure 12: Velocity of the falling cylinder at two different diameters of cylinder.
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According to this figure, the larger cylinder experienced more falling velocity which means more net force is
exerted on the larger one. Although the larger cylinder faces with more resistant surface forces, its more weight
causes further driving force and therefore the motion has been impressed more by the weight.

6 Conclusion

In the present work, a progressive version of weakly compressible SPH method was used to demonstrate its
ability for accurate simulating of moving FSI problems. First, the accuracy of this method was examined suc-
cessfully for the cavity case as a benchmark problem, to prove its ability for simulating one phase fluid flows.
The method showed its reliability also for two phase flows (especially moving FSI problems) through good
agreement of its results for falling cylinder in the Newtonian fluid with available results in the literature. The
method was then applied to simulate falling cylinder in the Newtonian, power-law and Oldroyd-B fluids at
various conditions. Improved outcomes were obtained such that no non-physical oscillating values in pressure
field were seen and penetration inside the solid cylinder did not occur. This improvement is significant in the
field of particle-based meshless methods.

In addition to proving the potential of this method for simulating such FSI problems, other most important
practical conclusions are classified as the following items:

Fluid characteristics such as viscosity and relaxation time affect fluid hydrodynamics conclusively, which lead
to different falling histories. Transient and terminal velocities of the cylinder decrease with increasing the
viscosity, and falling velocity increases only at early times after release of cylinder with increasing the re-
laxation time. This trend is not properly followed for later times. It was seen that velocity of the cylinder
decreases with increasing the relaxation time for Deborah numbers more than 1.44.

Falling of a cylinder is also influenced by shear-thinning/shear-thickening nature of the fluid. Transient and
terminal velocities of the cylinder in the fluids with shear-thinning behaviour are more than that of flu-
ids with shear-thickening behaviour. For Newtonian fluid with the same viscosity, velocity is less than the
shear-thinning and more than the shear-thickening fluids.

Geometric parameters such as diameter of the cylinder are important factors as well. It was seen that although
larger cylinder faces with more resistant viscous forces, its more weight overcomes and causes increasing
in transient and terminal velocities.

Having achieved correct and reasonable results, it seems that the SPH method with minor modifications can
be used as an alternative way to conventional methods for simulating falling body problem as a particular
case of FSIs. Showing SPH benefits in simulation of moving FSI incorporated with its ability for simulating
non-Newtonian fluid flows, authors tried to demonstrate that the applications of this method are not limited
by the fluid type or geometry and the usage of the method can be vast and more general.
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