
Review

Yikun Cai, Yuanming Xu, Yu Zhao and Xiaobing Ma*

Atmospheric corrosion prediction: a review
https://doi.org/10.1515/corrrev-2019-0100
Received November 20, 2019; accepted June 9, 2020;
published online July 27, 2020

Abstract: The atmospheric corrosion of metallic materials
causes great economic loss every year worldwide. Thus, it
is meaningful to predict the corrosion loss in different field
environments. Generally, the corrosion prediction method
includes three parts of work: the modelling of the corrosive
environment, the calibration of the corrosion effects, and
the establishment of the corrosion kinetics. This paper
gives an overview of the existing methods as well as
promising tools and technologies which can be used in
corrosion prediction. The basic corrosion kinetic model is
the power function model and it is accurate for short-term
corrosion process. As for the long-term corrosion process,
the general linear models are more appropriate as they
consider the protective effect of the corrosion products.
Most corrosion effect models correlate the environmental
variables, which are characterized by the annual average
value in most cases, with corrosion parameters by linear
equations which is known as the dose-response function.
Apart from these conventional methods, some mathemat-
ical and numerical methods are also appropriate for
corrosion prediction. The corrosive environment can be
described by statistical distributions, time-varying func-
tions and even geographic information system (GIS), while
the corrosion effect can be captured via response surface
models and statistical learning methods.

Keywords: atmospheric corrosion; corrosion effect; corro-
sion kinetics; corrosion prediction; corrosion test; envi-
ronmental factors.

1 Introduction

Atmospheric corrosion on metallic materials is very com-
mon and it causes a big amount of economic loss every year
(Roberge et al. 2002). There are many types of atmospheric
environments with different temperature, relative humid-
ity, pollutants concentration, and other environmental
conditions. When metal materials are exposed in various
atmospheric environments, the kinetics law of the corro-
sion process is also different.

Multiple environmental factors can affect the atmo-
spheric corrosion process with complex mechanisms
(Leygraf et al. 2016; Simillion et al. 2014). However, the
corrosion behavior and kinetic laws of many metal mate-
rials are not very clear and there are no rational models for
corrosion prediction. In view of this, it is meaningful to
study the influential factors, corrosion effects, and the ki-
netic laws of the corrosion process and predict corrosion
loss in various atmospheric environments.

In the atmospheric environment, the corrosion process
is influenced by multiple factors, including temperature,
relative humidity, solar radiation, precipitation, wind,
pollutants, and so on (Leygraf et al. 2016). These environ-
mental factors are non-constant and change continuously
over time. In different regions, the environmental condi-
tions are in great difference. Some factors are dependent on
each other such as temperature and relative humidity (Cai
et al. 2018a). These environmental factors are also affected
by a variety of factors in random behaviors.

The influence of different environmental factors on the
atmospheric corrosion process is very complicated. Firstly,
the influence of different environmental factors on the
corrosion rate of metals is generally nonlinear (Cai et al.
2018a). For example, in previous studies (Shinohara et al.
2005; Wang et al. 2015), the corrosion rate of metals in-
creases exponentially as the relative humidity increases.
Secondly, there may be interactive effects between
different environmental factors. For example, when
different pollutants are present in the atmosphere at the
same time, the corrosion behavior is influenced in complex
ways depending on multiple factors (Castano et al. 2007).

The long-term atmospheric corrosion behavior de-
velops alongwith corrosion time and varies under different
environmental conditions. The corrosion rate exhibits a
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multi-stage law during the entire exposure period in the
atmospheric environment. At the early stage, the corrosion
rate is relatively high. As the corrosion products accumu-
late on the metal surface, the corrosion rate gradually
slows down and tends to be constant (Barton 1976; Cui
et al. 2015; ISO 2012b; Lv et al. 2015). At the same time,
under different environmental conditions, the protective
effect of corrosion products and the long-term corrosion
kinetic law is quite different (Panchenko et al. 2014).

Therefore, it is of great theoretical and engineering
value to build accurate atmospheric environmental
models, corrosion effect models, and corrosion kinetic
models. It is helpful for the establishment of corrosion
prediction method for metal materials in various atmo-
spheric environments. These models are reviewed in this
paper as well as the field exposure and laboratory corro-
sion tests that produce the corrosion data for the calibra-
tion of these models.

2 Field exposure and laboratory
corrosion tests

2.1 Field exposure corrosion tests

The field exposure corrosion test is the most commonly
used method in atmospheric corrosion research because
the results can truly reflect the corrosivity of the actual
atmospheric environment (Hou and Liang 1999; Wallinder
and Leygraf 2001). The American Society for Testing and
Materials (ASTM) is dedicated to the study of corrosion in
the atmospheric environment (Feliu et al. 1999) and has
carried out series of corrosion tests on various materials.
For example, in the ISO CORRAG program (Knotkova et al.
2010), 53 test sites in 13 countries around the world are
selected and an 8-year field exposure corrosion test is
conducted on carbon steel, zinc, copper, and aluminum.
Corrosion loss is measured at the 1, 2, 4, and 8 years of the
test. The temperature, relative humidity, sulfur dioxide
concentration, chloride deposition rate, and other envi-
ronmental factors are monitored and recorded during the
entire exposure period. These data can be used to analyze
the corrosion development along with corrosion time un-
der different environmental conditions.

There are some other international corrosion test pro-
jects such as the UN/ECE, MICAT, OSD, RPF project which
also obtained a large number of corrosion data in the
natural atmospheric exposure conditions. The UN/ECE
project (Tidblad et al. 1998, 2001) selected 39 test sites in
12 European countries, the United States and Canada.

An 8-year field exposure corrosion test is conducted on
weathering steel, zinc, aluminum, copper, limestone,
sandstone, and other materials. The environmental data of
different test sites were recorded, including temperature,
relative humidity, sulfur dioxide concentration, ozone
concentration, rainfall, hydrogen ion and chloride ion
content in the rainwater.

The MICAT project (Morcillo 1995; Morcillo et al. 1998;
Pintos et al. 2000; Rosales et al. 1999) aims to construct a
map of metallic atmospheric corrosion in the Americas.
Therefore 72 test sites in 14 countries in the Ibero-America
are selected. Carbon steel, zinc, copper, and aluminum
were subjected to a 4-year corrosion test and their corro-
sion weight loss was measured at the 1, 2, 3 and 4 years
respectively. At the same time, environmental data are
observed including temperature, relative humidity, dust
fall, sulfate deposition rate, chloride deposition rate.

The OSD project (Abbott 2008) covers most of the US
military bases around the world. Large amount of envi-
ronmental data and corrosion data are obtained which
can be used to evaluate the environmental severity index
of different military bases. The materials studied in the
project include different types of steel, copper, and
aluminum alloy. The monitored environmental factors
include relative humidity, rainfall, and chloride ion
deposition rate. The exposure test time ranges fromweeks
to years, and the measured corrosion data include weight
loss and pitting depth.

The RPF project (Panchenko and Shuvakhina 1983;
Panchenko et al. 1985, 2017; Mikhailov et al. 2008) aims to
study the corrosion of metals under severely cold envi-
ronmental conditions. The 12 test sites involved in this
project locate in the Far-Eastern regions of the USSR. The
monitored environmental factors include temperature,
relative humidity, and sulfur dioxide concentration. The
corrosion loss rate of steel and zinc are measured. In
addition, Russia has carried out research on the corrosion
of metals in extremely cold environments in the Antarctic
and sub-Arctic regions (Henriksen and Mikhailov 2002;
Mikhailov et al. 2008).

These projects enriched the environmental and corro-
sion data and construct the corrosion map of different at-
mospheric environments around the world. However, the
following problems may exist between these projects.

Firstly, the environmental factors monitored by each
project are different. The difference makes it difficult to
process the data uniformly. Secondly, as the chemical
composition of the samematerial used in different projects
may be different, there may be great differences in the
corrosion behavior. Thirdly, as these international projects
are carried out by different researchers in different
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countries and regions, the test procedure, standards, as
well as data recording and reporting may be different
(Panchenko and Marshakov 2017). In addition, the envi-
ronmental corrosivity levels covered by each project are
different. The ISO CORRAG, UN/ECE, and MICAT project
covers a relatively narrow range of environmental corro-
sivity levels and the bias is skewed towards the lower end
of the corrosivity distribution (Cai et al. 2018b). The OSD
project represents a wider range of the severity conditions
especially in some extremely corrosive environments.
While the RPF project mainly focuses on the cold
environment.

2.2 Laboratory corrosion tests

As the field exposure corrosion is time and expense
consuming, laboratory corrosion test are carried out
(Mendoza and Corvo 1999, 2000) to extrapolate the results
to field exposure environmental conditions. The basic idea
of the laboratory corrosion test is to capture the corrosion
behavior in a shorter time by simulating or accelerating the
actual environmental conditions. Generally, the existing
laboratory corrosion test can be divided into two cate-
gories: one is based on the combination of environmental
spectrum, and the other is based on the design of envi-
ronmental factors.

2.2.1 Laboratory corrosion test based on combination of
environmental spectrum

The basic idea of this test method is to divide the complex
actual environment into several typical environmental
sub-spectrums, such as salt spray spectrum, damp heat
spectrum, cyclic wet-dry spectrum, gas erosion spectrum,
and so on. Then these environmental sub-spectrums are
appropriately combined to simulate the environment
conditions actually experienced by the material. In each
environmental sub-spectrum, the corrosion process is
accelerated by increasing the magnitude of the environ-
mental factor to shorten the test time. The salt spray test
and the damp heat test consider the effects of salt deposi-
tion, temperature, and humidity on the corrosion process.
The cyclic wet-dry test is used to simulate the process of
electrolyte film formation and disappearance on the metal
surface due to moisture condensation and evaporation.
The gas erosion test is mainly used to evaluate the influ-
ence of sulfur dioxide, nitrogen dioxide, and other gas
pollutants in the industrial atmosphere.

Mizuno et al. (2014) combines the humid stage, salt
application stage, and the dry stage into a cyclic corrosion

test procedure according to the SAE J2334 standard (2003)
when study the corrosion resistance of automotive coated
steel sheets. The proportion and environmental conditions
(temperature, humidity, and salt solution concentration) of
each sub-spectrum are different during the entire test
period of 60 cycles. Qian et al. (2015) studied the relative
corrosion resistance of ordinary carbon steel and four
weathering steels through the cyclic dry-wet test. In a 1 h
cycle, the pH of the immersion solution is kept at 4.4 at
45 °C for 12 min in the wet phase, and the surface temper-
ature of the samples is kept less than 75 °C for 48 min in the
dry phase. LeBozec et al. (2008) compared different test
procedures according to six salt spray test standards and
results shows that the corrosionperformanceof steel or zinc-
coated steel is highly dependent on the testing conditions.

2.2.2 Laboratory corrosion test based on design of
environmental factors

The basic idea of this method is to establish quantitative
acceleration models between various environmental fac-
tors and the corrosion parameters. To achieve this, the
actual environment is considered as the combination of
several environmental factors which affect the corrosion
process. The corrosion tests are conducted in several
accelerated corrosion environments. In each test, the
environmental condition is the combination of different
levels of the environmental factors. Then quantitative ac-
celeration models can be calibrated with the experimental
results.

For example, when Wang et al. (2015) studied the ef-
fects of temperature and relative humidity on the atmo-
spheric corrosion of zinc, the temperaturewas controlled at
285, 300, and 308 K with relative humidity at 53, 84, and
92%, respectively. And a log-linear model was established
to correlate the measured corrosion current with temper-
ature and relative humidity. Lin and Wang (2005)
measured the corrosion weight loss of carbon steel under
different chloride deposition rate (0/100/2500 mg·m−2·
day−1) and temperature (288/298/308 K), and modified the
Arrhenius model to establish an accelerated corrosion
model for chloride deposition rate and temperature. LeB-
ozec et al. (2004) obtained corrosion weight loss data of
magnesium at different temperature (25/35 °C), relative
humidity (75%/85%/95%), and chloride deposition (14/70/
140/250 μg m−2). The effect of the three environmental
factors on the corrosion process was analyzed but no
quantitative accelerated corrosion model was built.

At present, accelerated corrosion test cannot simply
replace the atmospheric corrosion exposure test (Boelen
et al. 1993; Damborenea and Conde 1995; Johansson and
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Gullman 1995). Continuous improvements in the design of
the test conditions and parameters are needed to have a
good correlation with the actual field exposure corrosion
test results (Cole 2017). The choice of the test methods
should also base on the nature of the material and the
actual atmospheric environment.

3 Corrosion influential factors and
the effects

The atmospheric corrosion process of metals is simulta-
neously affected bymultiple environmental factors (Kallias
et al. 2016; Morcillo et al. 2013; Sabir and Ibrahim 2017),
such as relative humidity (Esmaily et al. 2015; LeBozec et al.
2004; Samie et al. 2007; Wang et al. 2015), temperature
(Kong et al. 2016; LeBozec et al. 2004; Samie et al. 2007;
Wang et al. 2015), wetting time (Cole et al. 2011), rainfall
(Corvo et al. 2005; Veleva et al. 2009), wind (Roberge et al.
2002), and pollutants (Castano et al. 2007; Esmaily et al.
2015; Feliu et al. 2003; Kim et al. 2004; Kreislova and
Geiplova 2016; Qu et al. 2002; Tidblad et al. 2016).

3.1 Influence of relative humidity

The atmospheric corrosion rate is mainly determined by the
electrochemical reaction in the electrolyte film on the metal
surface. The electrolyte film formswhen theambient relative
humidity is higher than the critical humidity level. Under
this condition, the depolarization of oxygen can proceed
smoothly and electrochemical corrosion happens with high
corrosion rate. Below the critical relative humidity, the
corrosion reaction nearly halts with no electrolyte film.

Relative humidity is themost important environmental
factorwhich affects the atmospheric corrosionprocess. The
effect of relative humidity on corrosion is complex. Multi-
ple studies have indicated that the increase of relative
humidity leads to the increase of corrosion rate (LeBozec
et al. 2004; Samie et al. 2007; Shinohara et al. 2005) on
clean surface without deposited salts. For example, the
corrosion of magnesium alloys is accelerated significantly
when the relative humidity increases from 75 to 95%
(LeBozec et al. 2004). Studies have also shown that when
the humidity increases from 53 to 92% (Wang et al. 2015), or
from 40 to 90% (Shinohara et al. 2005), the corrosion
current also increases following an approximate expo-
nential relationship.

However, when the relative humidity is lower than a
certain value, almost no corrosion occurs. This value is
called the critical relative humidity (CRH). Studies have

indicated nearly no corrosion occurs on carbon steel when
the relative humidity is lower than 80–85% (Lapuerta et al.
2008; Nyrkova et al. 2013) when the surface is not
contaminated by salts. This is because the corrosion reac-
tion is an electrochemical reaction process, and the
fundamental condition is that an electrolyte film must be
formed on the metal surface to promote the cathodic and
the anodic reactions.

Outdoor environments generally represent the most
complex type of environment from an atmospheric corro-
sion point of view. In the actual outdoor environment, CRH
is influenced by various factors, such as the type of the
material, composition of the corrosion product, atmo-
spheric pollutant concentration, and salt particle deposi-
tion (Van den Steen et al. 2016). Studies have shown that
the CRH is about 70% for steel, zinc and nickel and about
76% for aluminum when the surface is clean. The CRH will
be greatly reduced when the metal surface is covered by
dust or corrosion products. Cole et al. (2004b) found that
wetting occurs when surface RH exceeds the deliquescent
RH (DRH) of the salts making up the contaminates and the
DRH for different salts varies in a wide range from 35.0%
for MgCl to 84.2% for Na2SO4.

Although the mechanism of the influence of relative
humidity on the corrosion process is very complicated in
the outdoor environment, there are some models that can
be used to describe the acceleration effect or relative hu-
midity under controlled laboratory conditions. In many
applications, the Peckmodel (Escobar andMeeker, 2006) is
used which is expressed as:

AF(RH) � ( RH
RH0

)
A

(1)

where AF(RH) is the acceleration factor, RH is the ambient
relative humidity, RH0 is the reference value of relative
humidity, and A is a constant.

Klinger (2010) replaces RH with RH/(1-RH), and the
above model is changed to

AF(RH) � [RH(1 − RH0)
RH0(1 − RH)]

A

(2)

In the actual field environment, the relative humidity
can be very close to one or even equal to one, and the above
model will no longer be applicable. Therefore, the accel-
eration effect of relative humidity can also be described by
the exponential model proposed by Vernon (1927) as

AF(RH) � exp{A ⋅ (RH − RH0)} (3)

In the actual engineering applications, the most suit-
able model can be selected from Eqs. (1)–(3) according to
the fitting of the experimental data.
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3.2 Influence of temperature

Temperature along with its change acts as another impor-
tant factor affecting atmospheric corrosion. It is generally
believed that when the relative humidity is lower than the
CRH and no electrolyte film is formed, the influence of
temperature on atmospheric corrosion is negligible. How-
ever, when the relative humidity is higher than CRH, the
increase in temperature leads to the increase of the reaction
activation energy and corrosion rate. Therefore, in the
rainy season of tropical areas, the corrosion is quite
serious. In addition, the fluctuation of temperature also
has a great influence on atmospheric corrosion. The larger
the temperature fluctuation, the easier for the condensa-
tion of the moisture to form the electrolyte film.

The influence of temperature on the corrosion process
reflects in two ways: the direct influence on the corrosion
rate, and the influence on the electrolyte film formation
and evaporation.

Theoretically, atmospheric corrosion is an electro-
chemical process with cathodic and anodic reactions. The
relationship between corrosion rate and ambient temper-
ature can be described by the Arrhenius model. The in-
crease of temperature results in the increase of the
corrosion rate. For example, Lin and Wang (2005) con-
ducted accelerated corrosion tests on three carbon steels
and proposed a corrosion prediction model based on the
Arrhenius model. The corrosion current of zinc also in-
creases with increasing temperature (Wang et al. 2015).
Esmaily et al. (2015) and LeBozec et al. (2004) conducted
field corrosion tests on magnesium alloys and also found
that temperature has a significant positive effect on
increasing the corrosion rate.

Generally, under laboratory environment without
considering the interactive effects between different fac-
tors, the effect of temperature on the corrosion process can
be described by the Arrhenius model (Escobar and Meeker
2006), which is

AF(T) � eB( 1
T0

−1
T) (4)

where AF(T ) is the acceleration factor, T is the ambient
temperature (Kelvin), T0 is the reference value of temper-
ature. B = Ea/K and Ea is the activation energy which can
be estimated from the experimental data, K is the Boltz-
mann constant.

However, in the actual outdoor environment, the
corrosion reaction can only happen when there is an
electrolyte film on the metal surface. Therefore, as the
condensation and evaporation of moisture is affected by
the continuous changes of various environmental factors

in the outdoor environment, the atmospheric corrosion
reaction becomes a very complicated process. Generally,
the metal surface undergoes wet-dry cycles every day (Cai
et al. 2018a). The temperature decreases at night and the
metal surface cools down, which is conducive for the
condensation of moisture to form the electrolyte film and
promote the corrosion reaction. During the daytime, as
temperature increases the electrolyte film is easier to
evaporate although the ambient absolute humidity also
increases. Although there may be a positive effect due to
the increased concentration of the electrolyte during the
evaporation process (El-Mahdy and Kim 2004; Thee et al.
2014), the corrosion reaction will finally slow down or even
stop after the electrolyte film disappears. But in some
highly humid areas (tropical climates for example), as the
humidity is very high and themetal surface ismoistmost of
the time (Corvo et al. 2008), the increase of temperature can
enhance themoisture concentration in the air and promote
the corrosion process (Castano et al. 2010). In the winter,
when the temperature drops below the freezing point, the
electrolyte film freezes. The oxygen cannot reach the metal
surface and the corrosion reaction hardly happens.

Moreover, in the outdoor environment, the influence of
temperature is more complicated in the presence of other
atmospheric environmental factors. For example, Lind-
strom et al. (2000) found that when the concentration of
carbon dioxide in the atmosphere is high, the change of
temperature has little effect on the corrosion rate of zinc.
For another example, when the nitric acid content in the
atmosphere is high, the corrosion rate of copper is also
independent on temperature (Samie et al. 2007). In addi-
tion, Cao et al. (2018) found that the effect of temperature
on the corrosion process of aluminum alloys is more
complicated in the marine atmospheric environment.
When the temperature increases, the solubility of oxygen
decreases and the corrosion product is more compact, the
corrosion reaction slowed down as a consequence. How-
ever, temperature increase also leads to the increase of
diffusion rate of oxygen and chloride ions, which acceler-
ates the corrosion reaction. Therefore, when the outdoor
environmental condition is more complicated, a specific
analysis of the possible interactive effects between these
environmental factors is required.

3.3 Influence of pollutants

There are many kinds of atmospheric pollutants in the at-
mosphere, including sulfur dioxide, nitrogen dioxide,
hydrogen sulfide and dust. Among these pollutants, sulfur
dioxide is one of the factors that has beenmost studied. The
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sulfur dioxide in the atmosphere is mainly contributed by
the combustion of fossil fuel.

Generally, when the sulfur dioxide concentration is
high, the increase of the SO2 concentration in the air leads
to the increase of the corrosion rate (Klinesmith et al. 2007;
Qu et al. 2002). Kim et al. (2004) found that the corrosion
rate of copper and steel exposed in the field atmospheric
environment is basically proportional to the concentration
of sulfur dioxide, and the mathematical relationship can
usually be captured by a power function (Klinesmith et al.
2007; Mikhailov et al. 2004; Tidblad et al. 2002). Walter
(1991) conducted a simulated atmospheric corrosion test in
the laboratory and found that the dissolved sulfur dioxide
in the water will be oxidized to sulfate ions which can
accelerate the corrosion reaction. Cao et al. (2013) also
found that sulfur dioxide can accelerate the corrosion
process of carbon steel, and summarized the acceleration
mechanism as the following points: (a) the cathodic reac-
tion is more active because the solubility of sulfur dioxide
is much higher than oxygen (about 1300 times); (b) the
presence of sulfate leads to the decrease of CRH and the
time-of-wetness of themetal surface is prolonged; (c) sulfur
dioxide can act as a catalyst to promote the dissolution of
the iron atoms. In addition, sulfur dioxide also has a great
influence on the long-term corrosion kinetic. The obtained
results from a exposure project for more than 45 years
(Kreislova and Knotkova 2017) confirm the significant
dependence of atmospheric corrosion on SO2 air pollution.
And both the short- and long-term atmospheric corrosion
rate of carbon steel depends on SO2 pollution level much
more than zinc and copper. When the SO2 concentration is
low or the concentrations of other pollutants are also high,
the effect of SO2 would be more complicated as other
factors may become the controlling factor and interactive
effects becomes significant (Castano et al. 2007).

Chloride is another important atmospheric pollutant
that affects the corrosion process. The deposition of chlo-
ride on metal surfaces can significantly improve the
corrosion rate of various metals, including carbon steel
(Lin andWang 2005; Yang et al. 2017), zinc (Qu et al. 2002),
aluminum alloy (Wang et al. 2018), magnesium alloy
(Esmaily et al. 2015; Lin and Wang 2005; LeBozec et al.
2004), and so on. The effect of chloride on atmospheric
corrosion rate is mainly reflected in the following aspects.
Firstly, it is easy for chloride ions to adsorb on the metal
surface because chloride ion has small hydration energy.
Chloride ions will help to cause breakdown and create
imperfections of the protective film, which promotes the
corrosion reaction (Ambat et al. 2000; Zhao et al. 2008). On
the other hand, the deposited chloride salt makes metal
surface strongly hygroscopic (Van den Steen et al. 2017)

and it is easier to form the electrolyte film and increase the
wetting time. At the same time, the conductivity of the
electrolyte film increases and the corrosion reaction is
accelerated. Mathematically, the acceleration effect of
chloride on corrosion rate are usually described by a power
function (Klinesmith et al. 2007; Mikhailov et al. 2004;
Tidblad et al. 2002) or a quadratic function (Lin and Wang
2005; Qu et al. 2002). In addition, chloride may also in-
fluence the corrosion kinetics as well as corrosion product.
Ma et al. (2009) reported that the low carbon steel
exposed to marine environment follows the equation
C = At1B1−B2 tB1 (t ≥ t1) which significantly deviate from the
well-known power equation. The turning point will move
onwards as the amount of chloride increases. Inmarine site
with high amount of chloride deposition, β-FeOOH is pro-
duced as for chloride accelerative effect, while the main
corrosion products are γ-FeOOH and α-FeOOH in exposure
station with low or no chloride.

Chloride mainly comes from the ocean and deicing
(ISO, 2012a).The deposition rate of chloride from the ocean
is affected by wind speed and wind direction (Cole et al.
2003b; Li and Hihara 2014; Roberge et al. 2002), distance
from the coast (Cole et al. 2003b; Cole et al. 2003a; Guerra
et al. 2019), rainfall (Cole et al. 2004a), temperature and
humidity (Castaneda et al. 2018; Cole et al. 2003b), terrain
(Cole et al. 2003c; Cole et al. 2004a) and other factors (Cole
et al. 2011). The influence of chloride has a significant
relationship with the distance from the sea (Abbott 2008;
Feliu et al. 1999). As the distance from the sea increases, the
deposition rate of chloride decreases rapidly (Cole et al.
2003b) and its impact on corrosion is rapidly weakened.
Stronger wind can promote both the production and
transportation of sea salt aerosols (Cole et al. 2003b).
Airborne salinity generally increases with increasing wind
velocity, and the effect becomes very significant when a
critical velocity is exceeded. A range of critical wind ve-
locity values (3–7.1m/s) has been reported in the literature,
but no consensus has been reached (Morcillo et al. 2000;
Piazzola and Despiau 1997; Spiel and De Leeuw 1996).
Meira et al. (2007) recommended 3 m/s as the critical wind
velocity for a significant increase in airborne salinity. The
effect of humidity on the salt concentration is also very
significant, particularly at the higher humidity. Significant
decrease in transportation is observed when the surface
relative humidity is increased from 50 to 70%mainly due to
the increase of aerosols mass and decrease of the vertical
dispersion (Cole et al. 2003b). The effect of sheltering by
headlands and cliffs is evident at coastal areas (Cole et al.
2003a) and the transport of aerosol is influenced by the
roughness of landforms and buildings (grass, forest,
buildings, and so on) (Cole et al. 2003b,c, 2004a).
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The dose-response function proposed by Mikhailov
et al. (2004) and Tidblad et al. (2002) from the results of the
ISO CORRAG project can be used without considering the
influence of other atmospheric pollutants and the inter-
action between different pollutants. The accelerated
corrosion model for sulfur dioxide and chloride are

AF(S) � ( S
S0
)

E

(5)

AF(Cl) � ( Cl
Cl0

)
G

(6)

where AF(S) and AF(Cl) are the acceleration factors for
sulfur dioxide and chloride, respectively. S0 and Cl0 are the
reference values. E and G are constants which can be
estimated from experimental data.

Acidified aerosol is another important pollutant which
has the potential to make a significant contribution to the
atmospheric corrosion process (Cole et al. 2009). Acidified
aerosol mainly exists in industrial andmarine atmosphere.
Aerosol transportation and deposition are size dependent,
with aerosol deposition increasing with aerosol size and
decreasing with transportation distance. While gas ab-
sorption may occur relatively close to the source, acidified
aerosols can be transported over some distance from the
original gaseous source. The aerosols are characterized by
low pH, fine size (typically 1–100 mm) and high dissolved
ionic salt content. The deposition of aerosols is primarily
controlled by wind turbulence and is a function of turbu-
lence intensity, wind speed, object shape, and aerosol size
(Cole and Paterson 2004).

The types, size and distribution of aerosols can influ-
ence the initiation and propagation of the corrosion process
in more complex ways (Li and Hihara 2014; Risteen et al.
2014). Take zinc as an example, the presence of acidified
aerosols may lead to enhanced corrosion by disrupting any
protective oxide films and subsequently establishing elec-
trochemical cells, relatively uniform oxide layers are
formed, which may be dissolved by typical aerosol with pH
values of 1–4 and slightly acidified rain (<5) (Azmat et al.
2011) and thus may not constitute as an effective barrier
against corrosion. In addition, the susceptibility of zinc to
chloride containing environments is found may in part be
associated with the effect of acidified marine aerosols. A
multiscalemodeling approach is proposed to build amap of
airborne salinity and zinc corrosion rates in Australia (Cole
et al. 2011), which is useful in material selection, mainte-
nance programs, and corrosion resistant materials devel-
opment. Additional research is required both to directly
determine the corrosion caused by marine aerosols and to
define the geographic spread of such aerosols.

3.4 Influence of other factors

As the sulfur dioxide concentration in some regions has
been decreasing in the recent decades, the influence sulfur
dioxide is more likely to be correlated with other factors
like nitrogen dioxide (Castano et al. 2007). Different con-
centrations of SO2 and NO2 may lead to the change of the
corrosion mechanism. The combined effect of SO2 and NO2

on the corrosion process may be insignificant (Kucera
2003; Tidblad 1991), inhibitive (Henrikksen and Rode 1986;
Takazawa 1985) or dependent on many factors, including
relative humidity (Arroyave and Morcillo 1996; Ericsson
and Johansson 1986), sulfur dioxide concentration (Feliu
et al. 2003; Castano et al. 2007), and the type of material
(Castano et al. 2007).

The effect of dust on corrosion acts in different ways
depending on the type of the dust. Some dust particles are
soluble and corrosive (salt containing particles). They
become corrosive media and accelerate the corrosion rate
when dissolved in the electrolyte film (Lin and Zhang
2004). Some dust particles are non-corrosive and non-
soluble (such as carbon particles), but it can adsorb cor-
rosive particles and promote corrosion reaction. Some dust
particles are neither corrosive nor adsorptive (such as soil
particles), but gaps are formed when they fall on the metal
surface and trigger localized corrosion (Wang et al. 2019).
The particle size may also be an important factor that in-
fluences the initiation and expansion of the corrosion
process. Small particles aremore likely to induce the initial
corrosion while the final corrosion area cannot expand too
much. In contrast, the corrosion area influenced by large
particles is able to intensively expand although the initial
corrosion rate is low (Wang et al. 2019).

The effect of rainfall on atmospheric corrosion can be
both positive and negative at the same time. On one hand,
rainfall prolongs the wetting time but may also help to
wash away the dissolvable corrosion product on the metal
surface (Azmat et al. 2011). On the other hand, the rain can
wash away the pollutants (Abbott 2008; Cole and Paterson
2007) if drops on the surface pass a critical size. Cole and
Paterson (2007) have found that the average rain required
to initiate drop movement is 1.3 mm and the average rain
required to clean a surface to 10 and 1% of the original
pollutants is 1.5 and 3 mm respectively. As a consequence,
hygroscopicity of the metal surface and the corrosiveness
of the electrolyte film are reduced.

Apart from the environmental factors, the chemical
composition (Cano et al. 2017; Diaz et al. 2018; Liao and
Hotta 2015), microstructure (Liao and Hotta 2015), rust
characterization (Kinugasa et al. 2016), and other factors of
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the tested material also have great impact on the corrosion
resistance. Different materials exhibit different atmo-
spheric corrosion behaviors and different sensitivity to the
environment.

4 Modelling of the atmospheric
environment

The atmospheric environment is composed of a variety of
factors. As the environment changes continuously along
with time and space with interactive and random effects,
each factor cannot be characterized by only one or several
parameters. Instead, quantitative models are needed to
describe the fluctuation, dependency, randomness, and
spatial difference of the actual environment. The field
environment modelling methods mainly considers the
following two topics: modeling the fluctuation along with
time, and modeling the spatial difference at different
locations.

4.1 Modeling the environmental fluctuation
along with time

The field atmospheric environment changes along with
time with both periodic and random components. For
example, the temperature undergoes daily cycles from day
to night and annual cycles from summer to winter. Various
unknown factors may also influence the temperature in
random patterns. Meanwhile, different factors may be
dependent on each other. For example, the relative hu-
midity is a function of the absolute humidity (water vapor
content in the air) and temperature. Generally, it is
inversely proportional to the temperature when the abso-
lute humidity stays constant (Cai et al. 2018a).

In this section, the literature reviewwill give a summary
on the modeling method of the field environment. As the
influence of the environment is a common problem inmany
research areas, the review is not restrained within the field
of corrosion research. Generally, the current methods for
modeling the field environmental fluctuation can be divided
into three categories: the mean value method, the distribu-
tion method, and the time-varying function method.

4.1.1 The mean value method

The basic idea of this method is using the statistical mean
value to represent the actual condition of each environ-
mental factor. In the commonly used corrosion prediction
models, such as the linear (Knotkova et al. 1995; Morcillo

1995) and log-linear (Knotkova et al. 1995, 2002; Pan-
chenko and Marshakov 2017; Roberge et al. 2002) dose-
response functions, environmental variables such as tem-
perature, relative humidity, sulfur dioxide concentration,
and chloride deposition rate are all describedby the annual
average values. In other studies considering the impact of
the environment, the use of the mean value to describe the
field environment is also very common. For example, some
set the time-varying environment to be aworst-case steady-
state ambient (Lam et al. 2007). Wang (2003) approximates
the field operating environment as the combination of
multiple discrete stages, and the environmental factors
remain constant in each stage.

Themean valuemethod is simple and convenient to be
used. It has good prediction accuracy in the cases where
the fluctuation of the environmental factors is small or the
corrosion effects of the environment are approximately
linear. However, if the corrosion effect is highly nonlinear
and the environment is highly fluctuated, the mean value
method will result in large prediction error.

4.1.2 The distribution method

This method considers the variation of the environmental
factors and establishes a probability density function (PDF)
for each environmental factor. The total effects of different
environmental factors can be calculated through the inte-
gration of the corrosion effect within the entire distribution
range of each environmental factor.

This method has been widely used in the studies
considering the influence of the environment. For
example, Meeker et al. (2009) and Hong and Meeker
(2010a) built distribution models of product usage rates
and estimated reliability by taking the usage frequency into
the failure rate function. Monroe and Rong (2010) used the
Normal distribution and the Beta distribution to fit the
temperature and relative humidity respectively to predict
the product reliability in a dynamic natural environment.
Liu et al. (2013) used the Gamma distribution to fit the
distribution of temperature during storage and estimated
the product reliability under non-constant temperature
conditions. Wang (2003) proposed a reliability assessment
method for products used in the natural environment and
describe the environmental factorswithmean and variance
of random distributions. Cai et al. (2018a, 2020a,b) built a
dependent distribution model to describe the conditional
PDF of relative humidity under different values of tem-
perature to study the influence of different environmental
factor on atmospheric corrosion in dynamic environment.

The distribution method considers the variation of the
environmental factors. Using distributions to describe the
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environmental factors is closer to the actual situation,
which improves the accuracy of the corrosion prediction
model, especially when the corrosion effects of the envi-
ronmental factors are nonlinear. However, most of the
studies did not consider the correlation between different
environmental factors. When multiple correlated environ-
mental factors have influence on the corrosion process at
the same time, the independent distribution model will
result in great prediction error.

4.1.3 The time-varying function method

The time-varying function method describes the change of
environmental factors along with time and extracts infor-
mation directly from the observed environmental data. In
this method, the periodicity and randomness of each factor
can be captured and the dependency between different
factors can also be considered by correlating each factor
with time. For instance, Chan (2001, 2008) built a time-
varying model for the sunlight and temperature by fitting
the weather observation data with the ARMA time series
method to estimate the reliability of coating in the dynamic
field environment. Gebraeel and Pan (2008) established a
time-varying environmental model to predict the change of
products performance under actual use environmental
conditions. Hong andMeeker (2010b, 2013) also studied the
dynamic environmental data and the effects of environ-
mental factors on product performance changes.

By adding corresponding items and controlling the
model parameters, the time-varying method can capture
different degrees of periodicity and randomness of the
environment with high accuracy. Time t is the common
variable in the models and can act as the bridge to capture
the dependency between different environmental factors.

4.2 Modeling the spatial difference at
different locations

The above methods only describe the changes of environ-
mental factors at fixed locations alongwith time. However,
in the actual conditions, the environmental conditionsmay
change at different locations. For example, oceangoing
vessels may experience both low and high levels of tem-
perature and salinity in different seawaters. Therefore, it is
necessary to study the spatial modeling method of the
natural atmospheric environment. The spatial modeling of
the environmental factors is based on the monitoring data
at different sites. As these sites are geographically discrete,
two categories of methods are built. One is the cluster
analysis method and the other is the interpolationmethod.

The cluster analysis method divides the environmental
factors of different regions into several categories or several
levels and then evaluates the environmental severity. For
example, Austin et al. (2012) proposed an improved hierar-
chical cluster method to validate the distinct air pollutant
mixtures. Wang et al. (2013) proposed two spatial-temporal
clusteringalgorithmsandapplied themtoanalyze theozone
pollution which achieved good results.With the continuous
improvement of the cluster analysis method, the classifica-
tion of environmental severity is more and more scientific
and accurate. However, there are some problems when it is
used for the corrosion prediction especially when the
corrosion effects are highly nonlinear. Great prediction error
may occur due to the discretization of the continuously
distributed environmental parameters.

The interpolation method is a promising tool as it can
obtain continuous results of various environmental factors
within the entire distribution ranges. For example, Kili-
barda et al. (2014) made predictions of the mean,
maximum, and minimum temperatures using spatial-
temporal regression-Kriging, and the average prediction
accuracy is within ±2 °C. Aryaputera et al. (2015) used the
spatial-temporal Kriging method to predict the short-term
solar irradiance of the island of Hawaii, which improved
the prediction accuracy compared to the conventional
parametric models. Susanto et al. (2016) proposed a
distribution-based distance weighting spatial interpola-
tion method, which improves the interpolation accuracy
compared to the ordinary Kriging, inverse distance
weighting, and the triangular irregular network spatial
interpolation techniques. With the continuous develop-
ment and improvement of the interpolation method, the
interpolation accuracy and efficiency are continuously
improved and this method can be applied to the spatial
modeling of various environmental factors.

There is another important method which does not
entirely depend on the observation data and is constructed
with physics-basedmodels. Themodelmainly describes the
relationship between the target factor and its’ controlling
factors. For example, Cole et al. (2004a) proposed a
geographic information system (GIS) for predicting airborne
salinity. The GIS is based on several mathematical models
which links the aerosol production with wind frequency,
direction, and speed, as well as aerosol transportation with
distance, relative humidity, terrain, rainfall, and so on.With
the help of the GIS model, the target factor can be predicted
as long as the controlling factors are known. Cole et al.
(2004a) built a salinity map and a corrosion rates map of
zinc (Cole et al. 2011) of Australia. This is a promising
method for environmental corrosivity classification and
material corrosion resistance assessment.
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5 Corrosion kinetic and corrosion
prediction models

The corrosion data have several typical characteristics
such as small sample size, large scatter, and influenced by
multiple environmental factors. To construct the corrosion
prediction model, two parts of work need to be done: build
the corrosion development model over time (the corrosion
kineticmodel), and establish corrosion performancemodel
in different environments (the corrosion effect model).

5.1 Atmospheric corrosion kinetic models

Due to the relatively slow corrosion rate in the field envi-
ronment, long time exposure tests are required to obtain
reliable long-term corrosion data. Sometimes the tests are
longer than 20 years. Therefore, analyzing the existing
corrosion data from the exposure test and establishing a
corrosion kinetic model to predict the long-term corrosion
development has become an important research topic.
Existing corrosion kinetic models include the power func-
tion models (Fuente et al. 2007; Morcillo et al. 2013; Sun
et al. 2009), the general linear models (Fuente et al. 2011;
Ma et al. 2010; Morcillo et al. 1993), and the power-linear
models (Panchenko andMarshakov 2016; Panchenko et al.
2014, 2017; Sabir and Ibrahim 2017).

5.1.1 The power function model

The atmospheric corrosion loss C over time t is usually
described by the following power function

C � C1tn (7)

where C1 and n are constant. C1 represents the amount of
corrosion in the first year. n is the exponent which char-
acterizes the protective effect of corrosion products. The
lower n is, the more protective the corrosion product layer
on the metal surface.

Since the model contains only two parameters, it is
widely used and the corrosion data of specific materials
under specific environmental conditions can be accu-
rately fitted. For example, using this model to fit the
8-year corrosion data at different testing sites in the ISO
CORRAG project, the correlation coefficients are all above
0.95, which is similar to the results in the literature
(Panchenko and Marshakov 2016; Benarie and Lipfert
1986). The power functionmodel can also bewell fitted for
field exposure corrosion data up to 20 years (Fuente et al.
2011; Sun et al. 2009).

In the ISO 9224 standard (ISO 2012b), the values of
exponent n are calculated from the exposure data of the
ISO CORRAG program. For carbon steel, zinc, copper, and
aluminum, the generalized n values are 0.523, 0.813, 0.667,
and 0.728 respectively. Considering the uncertainty in the
data, the conservative upper 95% confident limit of
corrosion attack can be estimated using n values of 0.575,
0.873, 0.726, and 0.807.

5.1.2 The general linear model

During long-term corrosion process, as the corrosion
products form continuously, the metal surface is protected
from the corrosive medium (Fuente et al. 2011; Zhang et al.
2003). The corrosion rate gradually decreases and hence
the exponent n becomes smaller. In view of this, the con-
ventional power functionmodel is no longer appropriate to
be used for long-term corrosion prediction because a large
errormay be generated. Therefore, some researchers used a
two-stage log-linear model (Fuente et al. 2011; Ma et al.
2010; Morcillo et al. 1993; Surnam et al. 2015) to extrapolate
the short-term corrosion test data to predict the long-term
corrosion development (Morcillo et al. 1993). In the two-
stage log-linear model, the atmospheric corrosion kinetic
process is approximated to an initial stage and a steady
stage. The model is expressed as

log C � { n1  log t , t ≤ t1
n1  log t1 + n2  log(t/t1) , t > t1

(8)

where n1 and n2 are the exponent of the initial stage and the
stationary stage respectively. t1 is the time when the initial
stage ends. The values of n1 and n2 are significantly influ-
enced by the type of atmosphere and the compactness of
the rust layers (Fuente et al. 2011; Surnam et al. 2015). And
the value of t1 varies for different metals in different
atmospheres.

In the ISO 9224 standard (ISO 2012b), the bi-linear
model is employed to make the long-term corrosion pre-
diction for carbon steel, zinc, copper, and aluminum. The
model is expressed as

C � { rav ⋅ t , t ≤ 10
rav ⋅ 10 + rlin ⋅ (t − 10) , t > 10

(9)

where rav is the corrosion rate in the first 10 years. At the
steady stage after 10 years, corrosion loss increases with
the average rate rlin. The upper limits of rav and rlin for
carbon steel, zinc, and copper are given corresponding to
each corrosivity category fromC1 to CX according to the ISO
9223 standard (ISO 2012a).
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5.1.3 The power-linear model

According to a large number of field exposure corrosion
test data (Fuente et al. 2007, 2011; Panchenko 2013; Shaw
and Anderson 2010; Sun et al. 2009), the actual atmo-
spheric corrosion process can be divided into three stages.
The first stage is the initial stage, which is the stage when
the corrosion reaction begins to occur. The second stage is
the transition stage and the relationship between the
corrosion loss and exposure time can be described by a
power function. The third stage is the steady stage, and the
amount of corrosion increases linearly with time (Teng et
al. 2015). Therefore, the corrosion process can be described
by the following power-linear model

C � {C1tn , t ≤ ts
Cts + α(t − ts) , t ≤ ts

(10)

where ts is the time to reach the steady stage, Cts is the
cumulative amount of corrosion when the steady stage is
reached, and α is the stationary corrosion rate. Compared
to the power function model, this model can be used for
both short-term and long-term corrosion prediction with
higher accuracy.

It can be seen from Eq. (10) that the accuracy of the
short-term prediction depends mainly on parameters C1
and n, while the long-term prediction depends mainly on
the stabilization time ts and the stationary corrosion rate α.
Parameters C1 and n can be obtained by regression analysis
with satisfied goodness of fitting at specific locations.
However, it is difficult to accurately estimate parameters ts
and α. The reason is that the effects of the environmental
factors on the long-term corrosion process are rather
complicated under different environmental conditions.

The stabilization time ts differs a lot for different
metals in various types of atmosphere (Díaz et al. 2012;
Fuente et al. 2011; Melchers 2008). For example, ts for low
alloy steel (Díaz et al. 2012) ranges between 4 and 8 years
corresponding to corrosivity categories C2–C5 according to
ISO 9223 standard. In the ISO 9224 standard, the stabili-
zation time ts is set to be 20 years. In most cases, the steady
stage can be reached within 8 years. The value of the sta-
bilization time ts can be calculated with ts = 1/(0.9(1/n−1)−1)
according to Morcillo’s criterion (Morcillo et al. 2013).
When n increases from 0.1 to 0.9, the stabilization time ts
decreases from 8.1 to 0.5 years (Cai et al. 2018b). This result
coincides with the ranges reported in the literature (Díaz
et al. 2012).

For the stationary corrosion rate α, Panchenko and
Marshakov (2016) set ts as 6 years and estimated αwith the
following equation

α � C8 − C6

2
(11)

α � dC
dt

∣∣∣∣∣∣∣t�ts � C1 ⋅ n ⋅ tn−1s (12)

where C6 and C8 are the amount of corrosion after 6 and 8
years of exposure which can be calculated with Eq. (7). Eq.
(11) regard the average corrosion rate from the 6th year to the
8th year as the stationary corrosion rate. In Eq. (12), the
instantaneous corrosion rate at the 6th year is considered
as the stationary corrosion rate. The difference between the
α values obtained with Eq. (11) and Eq. (12) is insignificant
(Panchenko and Marshakov 2016).

5.2 Corrosion prediction in various
atmospheric environment

The atmospheric corrosion process is influenced by many
environmental factors, such as temperature, humidity,
pollutants, and so on. However, the above corrosion ki-
netic models are only valid at specific locations. When the
environmental condition changes, the model is no longer
applicable. Therefore, it is important to establish quanti-
tative relationship which captures the influence of these
environmental factors on the corrosion process to make
corrosion prediction in different environments. The exist-
ing models include the dose-response function, the multi-
factor combination model, the response surface model,
and the artificial neural network model.

5.2.1 Dose-response function

The dose-response function is the most widely used model
for the atmospheric corrosion prediction. It predicts the
corrosion amount according to the corrosivity of the at-
mosphere (including time, temperature, relative humidity,
wetting time, pollutant concentration, and so on) (Tidblad
2012). The current dose-response equation is empirical
formulas based on the regression analysis of the field
exposure corrosion test results and the environmental pa-
rameters at the testing sites. Generally, the corrosion ki-
netics can be described by the power function shown in Eq.
(7), and the parameters C1 and n are affected by environ-
mental factors (Dean and Reiser 2002).

Numerous studies have shown that environmental
factors such as temperature, relative humidity, wetting
time, SO2 concentration, and Cl− concentration have great
impacts on the corrosion rate (Arroyave et al. 1995; Feliu
et al. 1993a,b; Mendoza and Corvo 2000). These environ-
mental factors are introduced into the dose-response
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function and the interaction between these environmental
factors are also considered.

The basic form of the most commonly used dose-
response function follows the simple linear (Knotkova
et al. 1995; Morcillo 1995) or log-linear relation (Knotkova
et al. 1995, 2002; Panchenko and Marshakov 2017;
Roberge et al. 2002)

C � a + b ⋅ SO2 + c ⋅ Cl + d ⋅ TOW (13)

ln C � a + b ⋅ SO2 + c ⋅ ln Cl + d ⋅ ln TOW (14)

where a, b, c, andd are constant, SO2 is the concentration of
sulfur dioxide (μg.m−3), Cl is the chloride deposition rate
(mg.m−2 day−1), and TOW is the wetting time (h).

Different researchers have extended the basic models
to various forms which have different definitions of the
type, meaning, and description of the environmental var-
iables. These dose-response functions are listed in Table 1.
Here a recapitulative discussion of the difference between
these models are made as the following.

(i) Different models include different environmental
factors. Some models only include temperature, relative
humidity, and sulfur dioxide concentrations while some
also include factors such as rainfall and hydrogen ion
content in rainwater; (ii) Different models choose different
variables to describe the same environmental factor. For
example, for the time-of-wetness, some models only

Table : Dose-response functions according to previous publications.

References The model Note

(Morcillo ; Knotkova et al.
)

C ¼ aþ b ⋅ SO þ c ⋅ Clþ d ⋅ TOW The basic linear model

(Knotkova et al. , ;
Panchenko and Marshakov
; Roberge et al. )

ln C ¼ aþ b ⋅ ln SO þ c ⋅ ln Clþ d ⋅ ln TOW The basic log-linear model

(Mendoza and Corvo ) C ¼ aþ ðbτ− þ cτ− þ dtrainÞCl
þðeτ− þ f τ− þ gtrainÞSO

þ hR=train

τ–: time of wetness at –°C, h;
τ–: time of wetness at –°C, h;
train: time of rainfall, h;
Cl: Cl− deposition rate, mg·m−·day−;
SO: sulfur compounds deposition rate, mg·
m−·day−;

R: amount of rainfall, mm.
(Feliu et al. a) C ¼ a þ atw þ aRHþ aD

þ aT þ aClþ aSO

tw: wetness time, annual fraction;
RH: annual average relative humidity, %;
D: raining days of a year, day;
T: annual average temperature, °C;
Cl: Cl− deposition rate, mg.m−.day−;
SO: SO deposition rate, mg.m−.day−.

(Tidblad et al. ) C ¼ f dry ðT ; RH;SO;OÞ ⋅ tk
þ f wet ðR;HþÞ ⋅ tm

fdry: the dry deposition term;
fwet: the wet deposition term;
O: O concentration, µg.m

−;
H+: H+ concentration, mg.L−;
t: corrosion time, year.
R: amount of rainfall, mm.

(Kucera et al. ) C ¼ :þ ð:R ⋅ Hþ þ :NÞt
þð:þ :SO:


e:RHef ðT ÞÞt

This model is built for zinc. Models for carbon
steel, copper, bronze, and limestone can be
referred in Ref. (Kucera et al. ).

f ðT Þ ¼

8><
>:

:ðT − Þ ; T < ÅC
−:ðT − Þ ; T > ÅC

SO: SO concentration, µg.m
–;

R: amount of rainfall, mm.year–;
H+: H+ concentration, mg.L–;
N: HNO concentration, µg.m

–.
(Mikhailov et al. ; Tidblad

et al. ; Tidblad )
C ¼ f dry ðSOÞ þ f dry ðClÞ þ f wet ðHþÞ f dry(SO): the effect of dry depositions of sul-

fur dioxide;
f dry ðSOÞ ¼ ASOB


ecðRHÞþgðT Þ f dry(Cl): the effect of dry depositions of

chlorides;
f dryðClÞ ¼ DClEemðRHÞþkðT Þ f wet(H

+): the effect of wet depositions of
hydrogen ions (acid rains). Cannot be
considered in the existing dose–response
function due to the shortage of data.
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contain one variable TOW, while some contain two vari-
ables τ5–25 and τ25–35. As for rainfall, somemodels consider
the amount of rainfall, while others consider the time of
rainfall; (iii) Different models have different ideas for the
construction of the models. Some models do not distin-
guish the source of corrosion and simply include all the
environmental variables into the model at the same time,
while others divide the source of corrosion into several
parts according to the cause of corrosion; (iv) Different
models cover different periods of corrosion data and
different ranges of environmental corrosivity. Some
models are based on short-term corrosion test within a
narrow environmental corrosivity range, while other
models cover a wider range of environmental severity
levels on a global scale with a longer period of test time.

These dose response functions are all designed to
describe the relationship between environmental factors
and parameter C1. The influence of environmental factors
on parameter n is more complicated and difficult to
describe with quantitative models. Currently, only limited
number of literatures have explored the relationship be-
tween parameter n and the environmental factors (Cai et al.
2019; Dean and Reiser 2002; Panchenko et al. 2014; Pan-
chenko and Marshakov 2016).

Dean and Reiser (2002) used a regression analysis
method for the ISO CORRAG data to establish the rela-
tionship between exponent n and environmental variables
including time-of-wetness (TOW), sulfur dioxide concen-
tration (SO2), and chloride deposition rate (Cl). The results
indicate that for differentmetals, parameter n is affected by
different environmental factors. For example, for carbon
steel, parameter n is significantly affected by the TOW,
while for zinc and aluminum, parameter n is hardly
affected by any of the three environmental variables. For
copper, parameter n is affected by both TOW and Cl.

Panchenko (2014, 2016) gives the relationship between
n and the C1 based on the analysis of the long-term corro-
sion data from the ISO CORRAG program, which is

n � A(BC1 − G)2 + D (15)

where A, B, G, and D are constants. The values differ under
different types of atmosphere and be referred in the liter-
ature (Panchenko and Marshakov 2016). When Eq. (15) is
used, the first step is to determine the type of atmosphere
according to the ISO-9223 standard based on the levels of
sulfur dioxide concentration and chloride deposition rate.
Then the value of n can be calculated with C1 as input.
Although the form of the model is general, the prediction
accuracy is not high due to the limited sample size and
scatter of the data. Cai et al. (2019) built a hierarchical

linear model to predict the corrosion growth along with
time in different environments of carbon steel, zinc, and
copper of the ISO CORRAG program. The result shows that,
statistically, only the exponent n of copper shows signifi-
cant positive effects on sulfur dioxide. It is obvious that no
consistent conclusions are drawn for now and much more
work is needed.

5.2.2 Multi-factor combination model

The dose-response function directly correlates all the
influential environmental factors with the corrosion pa-
rameters to describe the comprehensive effect of the envi-
ronment. Many researchers also start from the effect of
each environmental factors and establish the model by
combining all the individual models together (Haynie and
Upham 1974; Hakkarainen and Ylasaari 1980; Knotkova
et al. 1984). These models have different structures. Some
of them are not very rational and need to be improved to
avoid erroneous effects that they yield (Klinesmith et al.
2007). At the same time, most of these models only include
the effect of one or two environmental factors and corro-
sion time is not considered.

Based on these models, Klinesmith et al. (2007) con-
structed a model with a more rational structure including
time-of-wetness (h), sulfur dioxide concentration (µg m−3),
chloride deposition rate (mg m−2 day−1), and corrosion time
(years), which is

K � AtB(TOW
C

)
D

(1 + SO2

E
)

F

(1 + Cl
G

)
H

eJ(T+T0) (16)

where A, B, C, D, E, F, G, H, J, and T0 are all constant
coefficients and are calculated from the ISO CORRAG data.
The results show that for carbon steel, copper, and zinc, the
prediction ability is better, while for aluminum, the pre-
diction error is large. The reason is that the corrosion of
aluminum is mainly pitting corrosion. The corrosion pro-
cess is slow and uneven, resulting in large scatter of the
corrosion data.

With the same procedure, the multi-factor combina-
tion model can also be established with the commonly
used acceleration models (Escobar and Meeker 2006) for
different individual environmental factors. The Arrhenius
model, the Eyring model (David and Montanari 1992), the
Coffin-Manson model (Cui 2005), and the inverse power
law model (Nelson 1975) are the most commonly used for
different factors. Based on thesemodels, some newmodels
are proposed to describe the corrosion effects of various
environmental factors.

For example, Nguyen et al. (2013) used the Arrhenius
model to describe the effect of temperature on corrosion
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rate and a power function to describe the effect of relative
humidity and salt deposition. The power function is
employed by Cole et al. (2011) to predict the weight loss of
zinc under different salt deposition rate. Corvo et al. (2005)
also used a power function to describe the effect of chloride
deposition rate and rainfall on weight loss in the marine
atmosphere. Qu et al. (2002) used the exponential function
and the quadratic polynomial to correlate temperature and
salt deposition with weight gain of zinc. Revie (2008)
described the influence of salinity on the immersion corro-
sion rate in seawater by using the truncated normal distri-
bution probability density function (PDF). This model can
also be used to describe the effect of temperature in the field
environmentwhich increasesfirst and then decreases due to
the interaction between different environmental factors.

These models can be used to establish the following
types of comprehensive corrosion effect models: the com-
bined model, the generalized Eyring model, and the
generalized log-linear model.

The basic assumption of the combined model is that
the acceleration effects of different environmental factors
are independent. It is simplified compared to the actual
situation without considering the interactive effect be-
tween different factors. For example, Soares et al. (2005)
proposed a correction factor model for marine corrosion.
The model considered the seawater temperature T, dis-
solved oxygen DO, salinity S, pH, and water velocity V
based on a large number of actual corrosion data. All the
correction factors are combined together and the actual
correction coefficient K is

K � f(T) f(DO) f(S) f(pH) f(V) (17)

For atmospheric corrosion, considering the environ-
mental factors of relative humidity RH, temperature T,
sulfur dioxide concentration SO2, chloride deposition rate
Cl, the combined corrosion model can also be established
by the above method. This has been done by Soares et al.
(2009) to study the influence of RH, T, and Cl on corrosion
in marine atmospheric environment. And the corrosion
depth of ship structures in different trading routes is
predicted.

The generalized Eyring model also doesn’t consider
the interactive effects between various environmental
factors. The model follows

ξ � α ⋅ exp (−β
T
) ⋅ exp (γ ⋅ RH) ⋅ exp (η ⋅ SO2) ⋅ exp (λ ⋅ Cl)

(18)

The difference between the generalized log-linear
model and the generalized Eyring model is the form of

the temperature acceleration model. The generalized
log-linear model is a simple logarithmic model which
follows

ξ � α ⋅ exp (β ⋅ T + γ ⋅ RH + η ⋅ SO2 + λ ⋅ Cl) (19)

When it is necessary to consider the interactive effect
between different environmental factors, an interaction
term can be introduced into the generalized log-linear
model as a new variable. For example, Ouache and Kabir
(2016) constructed a generalized log-linear model
including temperature, relative humidity, wind speed, and
their interaction terms as variables to evaluate the struc-
tural failure probability.

5.2.3 Response surface model

Actually, the influence of environmental factors on the
corrosion process is very complicated considering the
interaction between different environmental factors and
the nonlinearity of the corrosion effects. In view of this, the
commonly used power function and general linear models
are no longer representative for the actual corrosion effect.
The response surface function method can be used to solve
such problem which is good at dealing with the nonlinear
and interactive effects.

The response surface methodology is commonly used
to establish the mathematical model between the
response and the influential factors of an unknown sys-
tem or process. It is an effective method in structural
reliability analysis under the condition of implicit limit
state functions (Gomes and Awruch 2004). The essence of
the response surface method is to approximate the rela-
tion between the response and the influential factor to
first-order or second-order model as the real function
relationship of the complex system (Khuri and Mukho-
padhyay 2010). It is especially useful when the system
structure is complex with multiple influential factors
and mechanisms and is difficult to obtain the explicit
expression.

The basic response surface model (RSM) is to use the
first-order or quadratic polynomial to approximate the real
implicit limit state function. Some researchers also devel-
oped higher order RSM (Gavin and Yau 2008). But in most
engineering applications, the quadratic model is the most
widely used because of the following advantages: (i) the
quadratic model can approximate multiple function forms
with high accuracy; (ii) the parameters can be estimated by
simple least squares method; (iii) there are a large number
of successful applications of quadratic models to solve
practical problems.
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Let the influential variables to be X = [x1,x2,⋯, xk], and
the response variable to be y, then the general form of the
quadratic response surface model is

y � β0 + ∑
k

i�1
βixi+∑

k

i�1
∑
k

j�1,i≠j
βijxixj + ∑

k

i�1
βiix

2
i + ε (20)

where ε is the random item which represents the unex-
plained variance caused by various factors.

Take the atmospheric environmental influence factor
X = [TOW,T,RH,⋯, SO2,Cl] as the influential variables and
the corrosion amount y = C as the response variable, the
RSM can be established. By applying the RSM, the inter-
active effect and nonlinearity of the atmospheric corrosion
process can be better captured than conventional dose-
response function models (Cai et al. 2018b). But there are
only limited applications of RSM to corrosion problems and
further explorations are needed.

5.2.4 Statistical learning model

As the great uncertainty in corrosion data and the limita-
tions in dealing with nonlinear interactive effects of con-
ventional regression method, the statistical learning
methods are more widely employed in corrosion re-
searches. As an effective tool to solve complex nonlinear
problems, the artificial neural networks (ANN) have been
used by many researchers in the study of atmospheric
corrosion and obtained good prediction results (Diaz and
Lopez 2007; Kenny et al. 2009; Vera et al. 2017; Wang et al.
2006). For example, Pintos et al. (2000) built anANNmodel
for the MICAT atmospheric exposure corrosion test data.
The input variables are temperature, humidity, wetting
time, dust reduction, sulfur dioxide concentration, and
chloride deposition rate. The output variable is corrosion
weight loss. The prediction results shows that the model
has high goodness of fit and the residual is small in a
reasonable distribution range (Diaz and Lopez 2007; Pintos
et al. 2000). The ANN model can be applied to different
environments as long as the model is properly adjusted
(Diaz and Lopez 2007). Cai et al. (1999) constructed a 5-8-1
neural network. The input environmental variables are
temperature, relative humidity, corrosion time, sulfur di-
oxide concentration, and chloride concentration. The
output variable was the corrosion depth. The results
showed that the neural network is possible to consider
more than 70% of the changes in atmospheric corrosion.
Sensitivity analysis shows that relative humidity and sulfur
dioxide concentration are linearly related to atmospheric
corrosion of carbon steel. For zinc, the corrosion rate de-
creases with increasing relative humidity and increases
when sulfur dioxide concentration increases.

The advantage of the ANN method is the ability of
dealing with interactive and nonlinear effects. This makes
it to be widely used in the study of marine corrosion (Cai
et al. 2020a,b), soil corrosion (Ding et al. 2019), corrosion
fatigue (Cheng et al. 1999; Haque and Sudhakar 2001),
pitting (Cavanaugh et al. 2010) and other processes which
have multiple environmental influential factors with
complex mechanisms. However, it is also worth to be
noticed that the high accuracy of the neural network is
based on the adequate training samples and correct
adjustment of the network. In most cases, corrosion data is
far from enough due to the high consumption of test time
and expense. That is the reason why it is mostly used for
some of the international corrosion test programs. In
addition, as no explicit expression is obtained, the trained
neural network is not recommended to be extrapolated to
the environments out of the ranges covered by the training
samples.

The support vector regression (SVR) method is another
powerful tool in dealing with nonlinear interactive effects
which is based on structural risk minimization principle.
The basic idea of the SVRmethod is to find a set of optimal
parameters which best fit the samples after being mapped
into a higher dimension space from the input space via a
mapping function. Wen et al. (2009) predicted the corro-
sion rate of 3C steel under different seawater environment
with SVR models and found the prediction error is smaller
than back-propagation neural networks (BPNN) models
for the identical training and test dataset, and the gener-
alization ability of SVR model is also superior to that
of BPNN model. Applications of SVR in predicting the
pitting corrosion behavior of stainless steel (Jimenez-Come
et al. 2015, 2019) also obtained high prediction accuracy
and it is useful to determine the critical factors that influ-
ence the corrosion process via sensitivity analysis (Jime-
nez-Come et al. 2019). Fang et al. (2008) hybrid genetic
algorithms and SVR to forecast atmospheric corrosion of
zinc and steel which provides better prediction capability
than ANN models.

6 Discussion

6.1 Summary of the current literature

There have been numerous researches in exploring the
mechanism of the atmospheric corrosion process. There
have been comprehensive reviews (Roberge et al. 2002;
Simillion et al. 2014) of the experimental techniques,
corrosivity factors, computational aspects, as well as
corrosion models from different viewpoints. From a
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mathematical viewpoint, the prediction of atmospheric
corrosion should at least include the following three parts of
work: (i) Build the atmospheric environment model which
directly characterizes the main influential environmental
factors in good accuracy; (ii) Establish the corrosion effect
model which links the environmental factors with corrosion
parameters; (iii) Obtain the atmospheric corrosion kinetic
model which describes the development of corrosion over
time. Based on the above three aspects, the environment
model and the corrosion kinetic model are linked by the
corrosion effect model, and finally the corrosion prediction
model under different environmental conditions can be
built. However, in the current researches, there are still the
following aspects need to be further studied:

(1) The atmospheric environment model

For the quantitative description of the atmospheric
environmental factors, the mean value method, the
distribution method, and the time-varying function
method have their own advantages and limitations. The
mean value method is simple and convenient for
calculation. It can be applied to the cases where the
environmental factors are relatively stable and the
corrosion effects can be approximated to a linear
relationship. However, in the actual environment, the
factors are dynamic and dispersive. It is obvious that only
one parameter (themean value) cannot fully include all the
information of the environment and cannot reflect the
nonlinearity of the corrosion effects. The distribution
method describes the environmental factors with
the probability density function (PDF) of statistical
distributions, which contains more information of the
environment. It can reflect the dispersion of environmental
factors and the nonlinear corrosion effects. This makes it
suitable for situations where the distribution parameters
rarely change over a long period of time. However, the
distribution method is no longer appropriate when the
environmental factors change continuously and the
distribution parameters change accordingly. The time-
varying function method directly correlates environmental
factors with time. It can include almost all the information
of the environmental factors and is the most representative
of the actual situation. But it needs to be improved to deal
with the dependency between different environmental
factors.
With respect to the spatial difference of the environmental
factors, the cluster analysis method is not accurate due to
the discretization of continuously distributed variables.
The interpolation method is effective to give accurate cal-
culations of the environmental factors based on the
observation of neighboring samples. When the observed

samples size is small, the interpolation results may be
questionable. In view of this, a physics-based model is
useful to predict the target variables with the knowledge of
the controlling factors (for example, aerosol production
and transportation as a function of wind velocity, distance
from sea, relative humidity, terrain factor, and so on (Cole
et al. 2003b,c, 2004a). Furthermore, a geographic infor-
mation system (GIS) is powerful to map the distribution of
the environmental factors, which can be a tool for the
visualization of environment corrosivity as well asmaterial
corrosion resistance.
(2) The atmospheric corrosion effect model

To build the comprehensive corrosion effect model
incorporating multiple environmental factors, one should
first identify themain influential factors and describe them
with proper parameters. Then select a rational form of the
corrosion effect model and finally estimate the model
parameters based on experimental data. However, in most
cases, it is not practical to calibrate the model accurately
due to the following reasons.

First, the influential factors for different metals may be
different and complex interactions between these factors
may possibly exist. For example, the interaction between
nitrogen dioxide and sulfur dioxide depends on various
factors (Castano et al. 2007), including relative humidity,
metal types, and sulfur dioxide concentration. Therefore, it
is necessary to determine the types of major environmental
impact factors for different materials under different
environmental conditions.

Second, there is still some limitations in the selection
of environmental variables in most existing corrosion
models. For example, time-of-wetting (TOW) is the
commonly chosen variable to capture the combined effect
of temperature and relative humidity on the corrosion
process. However, TOW is a function of temperature and
relative humidity and believed should be replaced by T and
RH (Cai et al. 2018a; ISO 2012a), while there is also re-
searches indicating that absolute relative (AH) maybe a
better indicator to capture the combined effect of T and RH
(Boswell-Koller and Rodriguez-Santiago 2019). In addition,
the environment is usually parameterized with the annual
average value. However, the actual environmental factors
are continuously changing and are influenced by various
random factors. In the cases where the corrosion effects are
nonlinear, the employment of the average valuewill lead to
the loss of important information of the environment and
will cause the inaccuracy of the corrosion prediction
results.

Moreover, the existing corrosion effect models are
mostly linear or generalized linear relations, which cannot
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describe the complex comprehensive nonlinear effects of
the actual environment. The prediction performance of the
corrosion models is also limited due to the scatter of the
environmental data and the corrosion data.
(3) The atmospheric corrosion kinetic model

In the corrosion kinetic model C = C1t
n, the exponent n

can be used to characterize the protection ability of the
corrosion product and acts as the key parameter of the long-
term corrosion kinetics. The value of n is affected by various
environmental factors in different atmospheric types (rural,
urban, industrial, andmarine) (Fuente et al. 2011). However,
there is only limited works which have studied the
relationship between n and the environmental factors and
need to be further improvement (Cai et al. 2019; Dean and
Reiser 2002; Panchenko and Marshakov 2016; Panchenko
et al. 2014). The results show that the effects of the
environmental factors are not or just partly statistically
significant, which doesn’t agree with the actual situation
that the environment will inevitably lead to the difference of
the composition and protection ability of the corrosion
products. Two reasons are contributors to the unsatisfactory
of the current model, that is, limited data samples, and
improper analysis method.

In respect of the data, the environmental data and the
corrosion data usually distributed in a relatively narrow
range. Taking the ISO CORRAG data as an example, the
corrosivity categories are mostly the C3 and C4 levels,
while the low corrosivity levels C1 and C2 and the high
corrosivity levels C5 and CX are rarely covered. Other
corrosion test programs data may possibly cover the high
and low corrosivity levels, but these data are from
different test procedures and are difficult to be analyzed
due to the poor uniformity. In view of this, the corrosion
models cannot be accurately calibrated and the predic-
tive ability may be questionable.

In respect of the method, the conventional regression
analysis method has its’ own limitation in dealing with the
corrosion data. For instance, component n is commonly
obtained by regression analysis from the field exposure
corrosion test data. However, in most cases the test time is
generally within 8 years, and the uncertainty of corrosion
data is huge. As a result, the accuracy of the estimated n is
unpredictable. Meanwhile, the value of n is within a very
narrow range of [0,1], a small deviation of n can result in a
large relative error. In addition, the irrational selection of
environmental variables and the simplification of envi-
ronmental data can only support to build an empirical
rather than a mechanism model between corrosion pa-
rameters and environmental variables.

6.2 Future research direction

(1) The environmental models should include more
information. As the field environment changes
continuously with periodic and random components,
new environmental models should take full consid-
eration of the variability, dependency, and random-
ness of the field environment. Furtherly, the spatial
differences of the field environment should be
considered, especially when the materials are suf-
fered to different environmental conditions at
different locations. The geographic information sys-
tem (GIS) is a promising tool to represent the envi-
ronment spatial difference.

(2) The corrosion effect models should consider the
combined effect of multiple environmental factors on
the corrosion process with interactions. There are
probably two ways for the construction of the quan-
titative corrosion effect models. First, the models can
be built with statistical learning method (ANN and
SVR) technique and the response surface (RS) meth-
odology, taking advantage of their ability in dealing
with nonlinearity and interactive effects. On the other
hand, the models can be built from laboratory
accelerated corrosion tests data with the help of
design-of-experiment (DOE) methodology and cross
validated with outdoor observations.

(3) The corrosion kinetic models should be correlated
with environmental factors to extrapolate the ki-
netic models to environment different from where
the models are calibrated. As the conventional
field corrosion tests are time and expense
consuming, new experimental techniques are
needed to produce enough data for the adjustment
of the correlation functions. In view of this, online
environment and corrosion data measured by
corrosion monitoring sensors are promising alter-
native to gain an insight into the real-time rela-
tionship between the corrosion process and the
environmental conditions.

(4) The corrosion prediction methods can be applied to
various practical engineering problems, such as anti-
corrosion design, corrosion prevention and manage-
ment. In extreme and indoor environments, the main
influential factors may change and the models should
be modified. The influence of climate change is also
worthy of more research interest as it is able to influ-
ence the corrosion mechanism as well as the corrosion
rate in various ways.
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7 Conclusions

This paper gives a review of atmospheric corrosion predic-
tionmethods fromamathematical viewpoint. First, field and
laboratory corrosion tests which provide the data for fitting
the corrosion models are discussed. Then, corrosion influ-
ential factors and their effects are elaborated. Environmental
models give a description of the corrosive environment and
the corrosion kinetic models describe the corrosion devel-
opment over time, while the corrosion effect models link the
corrosion parameters with the environment variables.

Field exposure corrosion tests have produced large
amount of environmental and corrosion data. They are
useful for the construction of the corrosionmap of different
atmospheric environments around the world. Laboratory
corrosion tests simulate or accelerate the actual corrosion
process and the results can help to distinguish the influ-
ential factors and build the corrosion effect models. How-
ever, the limitations also call for continuous improvement
of the test procedures and new test techniques. Among all
the environmental factors, relative humidity, temperature,
and pollutants are the main impact factors in most cases.
The effects of each factor on the corrosion process are
nonlinear in different degrees and interactive effects exist
between different factors.

In most previous researches, the environment is
assumed to be steady-state and use the annual average
value to represent the actual environmental conditions. As
the environment changes over time and varies at different
locations, temporal and spatial models should be intro-
duced to give an accurate and thorough description of the
environment. The power function model, the general linear
model, and the power-linear model are suitable to describe
the corrosion kinetics. Further exploration is needed to
extrapolate the models to environments different from
where the models are calibrated. The dose-response func-
tions are commonly used to correlate the environment var-
iables with the corrosion parameters. More complex models
should take the nonlinear and interactive corrosion effect
and the dynamic environment into consideration. This
means new models and methods should be developed. The
response surfacemethodand the statistical learningmethod
are possibly promising tools to deal with this situation.
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