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Abstract: Let α > 0. By Cα we mean the terraced matrix de�ned by cnk = 1
nα if 1 ≤ k ≤ n and 0 if k > n. In this

paper, we show that a necessary and su�cient condition for the induced operator on lp, to be p-summing,
is α > 1; 1 ≤ p < ∞. When the more general terraced matrix B, de�ned by bnk = βn if 1 ≤ k ≤ n and 0 if
k > n, is considered, the necessary and su�cient condition turns out to be

∑
n n

q
p* | βn |q< ∞ in the region

1/p + 1/q ≤ 1.
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1 Introduction
In [8, theorem 1], it was shown that

||Cα||l2−→l2 ≤ 1 + max
{ √

n
(n + 1)α− 1

2
: n = 1, 2, ...

}
.

Corollary 8 in [1] gives a characterization for Cα to map lp into lq, this happens if and only if:

α ≥0 (p = 1, q = ∞)

α ≥ 1p* (p > 1, q = ∞)

α ≥1q + 1
p* (1 ≤ p ≤ q < ∞)

α > 1q + 1
p* (p > q)

In [8, theorem 2], Rhaly, also computed the Hilbert-Schmidt norm of Cα , which is
∑

n n
−2α+1. In other words,

Cα is 2-summing on l2 if α > 1, (see [3, page 84] for instance). We have found it natural to investigate the
problem in general; i.e. when is Cα : lp −→ lq r-summing. Unfortunately, we no longer have the luxury of the
rich theory of Hilbert spaces, which enables us to compute the 2-summing norm of Cα exactly.
In section 2 we set up notation and terminology. Section 3 concentrates on the l1-case and gives an applica-
tion. In section 4 we obtain the main result of Cα on lp . Section 5 is devoted to the more general situation
about a terraced matrix B.

2 Notations and De�nitions
By lp we mean the space of complex-valued sequences x satisfying

||x||p := (
∑

| xn |p)1/p < ∞; 1 ≤ p < ∞, ||x||∞ := sup| xn |: 1 ≤ n; p = ∞
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If 1 ≤ p ≤ ∞, we de�ne the conjugate index p* of p by 1/p + 1/p* = 1.
|| A ||p,q denote the norm of the operator A from lp into lq. If X is a Banach space, its dual will be denoted by
X*.
Let T be an operator from a normed space X into a normed space Y. Then we say that T is r−summing (1 ≤
r < ∞) if, for all natural numbers N and for all vectors x1, x2, ..., xN in X, there exists an absolute constant
k > 0 such that ( N∑

n=1
||Txn||r

) 1
r

≤ k sup
{
(
N∑
n=1

| ϕ(xn |r)
1
r : ϕ ∈ X*, ||ϕ|| ≤ 1

}
.

The in�mum of all such k is the r−summing norm πr(T) of T . When r = ∞, the r−summing norm reduces to
the ordinary operator norm.
An equivalent inequality to the above one, which we shall be using, is;

(
N∑
n=1
||Txn||r)

1
r ≤ πr(T) sup

{
||
∑

λnxn|| : λ ∈ lr
*
, ||λ|| ≤ 1

}
see, for instance [3, page 35].

A Banach space X has the Dunford-Pettis property if and only if for any Banach space space Y , each
weakly compact linear operator T : X −→ Y is completely continuous; i.e., takes weakly convergent se-
quences in X into norm convergent sequences in Y.

Throughout this paper Bwill be used to denote, either the terracedmatrix de�ned by bnk = βn if 1 ≤ k ≤ n
and 0 if k > n, or the operator induced by the matrix B itself. The matrix Cα is B with β−αn ; α > 0.

3 The l1- Case
We start with a general result that will be used repeatedly.

Proposition 1. Let 1 ≤ p, q < ∞ and A = (ank) be any matrix; then
∑∞

n=1(
∑∞

k=1 | ank |
p* )

q
p* < ∞ implies that

the induced operator A : lp −→ lq is q−summing.
Furthermore, πpq(A) ≤

∑∞
n=1(

∑∞
k=1 |ank|

p* )
1
p*

Proof. ||AX||qq =
∑∞

n=1
∑∞

k=1 |ankxk|
q for any X ∈ lp .

De�ne fn on lp; n ≥ 1, as follows:

fn(X) = fn((xk)) :=
∞∑
k=1

ankxk .

Then the fn are linear functionals with ||fn|| = (
∑∞

k=1 |ank|
p* )

1
p* , 1 ≤ n.

This means that there are functionals on lp with the property

||AX||qq ≤
∞∑
k=1
|fn(X)|q ∀ X ∈ lp .

By invoking Proposition 3.2 of [5] we get

πq(A) ≤ (
∞∑
n=1
||fn||q)

1
q = [

∞∑
n=1

(
∞∑
k=1
|ank|p

*
)
q
p* ]

1
q

Specializing Proposition 1 to the operators we are interested in, we get the following corollary.

Corollary 1. (a) If B : lp −→ lq satisfying
∑∞

n=1 n
q
p* |βn|q < ∞, then B is q−summing

(b) If Cα : lp −→ lp with α > 1, then Cα is p−summing.



Absolutely Summing Terraced Matrices | 3

Proof. The result follows from Proposition 1 by replacing ank by βn in the case of B, and by n−α in the case of
Cα.

The remainder of this section will be devoted to the l1−case. We think that this case is particularly important,
because it gives us another reason for the way we proposed our conjecture about B at the end of the paper.
Another reason for singling out this case lies in the fact that arguments to be seen later about necessity don’t
work for the l1−case.

The following result gives a necessary condition for B to be 1-summing in the l1-case.

Proposition 2. If B : l1 −→ l1 is 1-summing, then
∑

n |βn| < ∞

Proof. Since B is 1-summing, for any x1, x2, · · · , xN ∈ l1, we have∑N
k=1 ||Bxk|| ≤ π1(B) sup

{
||
∑N

k=1 λkxk|| : λ ∈ l
∞, ||λ|| ≤ 1

}
Choose N vectors as:

xk =
(
0, · · · , 0, 1

kα , 0, · · · , 0,
1

(N + k)α , 0, · · · , 0,
1

(2N + k)α , · · ·
)
; α > 1

With these vectors, and after some calculation, the above inequality reduces to∑
n≥1
|βn|

(
1 + 1

2α + · · · +
1
nα

)
≤ π1(B)sup

{∥∥∥∥( λnnα
)
n≥1

∥∥∥∥ :|| λ ||l∞≤ 1}
Use the integral test and observe that the right hand side is �nite.

Now we are in a position to state our �rst main result.

Theorem 1. (a) B : l1 → l1 is 1-summing if and only if
∑∞

n=1 | βn |< ∞
(b) Cα : l1 −→ l1 is 1-summing if and only if α > 1.

Proof. Part (a) follows from Corollary 1(a) with p = q = 1 and from Proposition 2.
Part (b) follows from Corollary 1(a) with p = q = 1, and from Proposition 2.

Application. Let t be a sequence in (0,1) that converges to 0, and de�ne the Abelmatrix At by ank = tn(1−tn)k.
In his paper [4, theorem 1], Friday proved the Theorem "At is an l − l matrix if and only if t is in l1. Using
Proposition 1, we obtain a stronger result.

Proposition 3. At is 1-summing on l1 if and only if t ∈ l1.

Proof. By Proposition 1,

π1(At) ≤
∞∑
n=1

sup
{
| (tn(1 − tn)k |: k ≥ 1

}
≤
∑

| tn |= ||t||l1 .

This proves that the condition is su�cient. The condition is necessary since 1-summing implies boundedness.

4 The Cα on lp Case
To complete the characterization of Cα on lp, we need to investigate a necessary condition for Cα to be
p−summing on lp; 1 < p < ∞. The following lemma will be needed for our argument.

Lemma 1. Let 1 ≤ p < ∞. Then C1 : lp → lp does not have the Dunford-Pettis property.
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Proof. De�ne a sequence of vectors En ∈ lp as follows: En = (e1 + · · · + en)/n1/p where ei is the standard unit
vector with 1 in the ith place and 0 elsewhere. To see that En converges weakly, we must show that f (En)→ 0
for every f = (fj)∞j=1 of lp

*
. But this is equivalent to proving that n−1/p

∑∞
j=1 fj → 0 for every f ∈ lp

*
. so let

ϵ > 0, and f ∈ lp
*
. Then there exists a positive integer N such that

∑∞
j=N | fj |

p*< ϵ
2 and ( 1N )

1/p < ϵ
2 . Letting

n = N2and using Hölder’s inequality, we have

| 1
n1/p

n∑
j=1

fj |≤|
1
n1/p

N−1∑
j=1

fj | +
1
n1/p

n∑
j=N

fj | ≤
1
n1/p

N−1∑
j=1
| fj |p*

1/p*N−1∑
j=1

1p
1/p

+ 1
n1/p

 n∑
j=N
| fj |p*

1/p* n∑
j=N

1p
1/p

< N−1/p +
(
n − N
n

)1/p ϵ
2

< ϵ.

On the other hand,

||C1En||pp =
∥∥∥∥( 1

n1/p
, · · · , 1

n1/p
, n
n + 1 .

1
n1/p

, n
n + 2

1
n1/p

, · · ·
)∥∥∥∥p

p
≥ 1;

i.e. || C1En ||p does not converge to 0. Thus C1 does not have the Dunford-Pettis property on lp.

Corollary 2. C1 : lp → lp is not r-summing for any 1 ≤ r < ∞.

Proof. This result follows from Lemma 1 and from the fact that says: if T : X → Y is p-summing, then T must
have the Dunford-Pettis property (see [7, page 343]).

Now we state and prove a necessary condition for Cα : lp → lp to be p-summing.

Proposition 4. Let 1 ≤ p < ∞. If Cα : lp → lp is p-summing, then α > 1.

Proof. Suppose, on the contrary, that α ≤ 1. We split the proof into two cases: α < 1 and α = 1. For the
case α < 1, Cα does not even map lp to lp, see [1, Corollary 8]. For the case α = 1, from Corollary 7 C1 is not
p-summing. Thus α must be larger than 1.

Now we can state the following main result.

Theorem 2. Let 1 ≤ p < ∞. Then Cα : lp → lp is p-summing if and only if α > 1.

Proof. The proof follows from Corollary 1(a) and proposition 4.

Kwapien’s result on the equivalence of πr (see [6, page 109] gives the following Corollary that sounds a little
restrictive.

Corollary 3. Let 1 ≤ p ≤ 2. Then Cα : lp → lp is r-summing if and only if α > 1; 1 ≤ r < ∞

5 The General Terraced Matrix B
We shall investigate a necessary condition, as only a su�cient conditionwas considered in Section 3.We start
with the region 1/p + 1/q ≤ 1.

Theorem 3. Let 1 < p ≤ ∞, 1 ≤ q < ∞ and 1/p + 1/q ≤ 1. Then B is q-summing implies that
∑∞

n=1 n
q
p* | βn |q<

∞.
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Proof. Since B is q-summing,( N∑
n=1

|| Bxn ||qq

)1/q

≤ πq(B) sup


∥∥∥∥∥
N∑
n=1

λnxn

∥∥∥∥∥
p

: λ ∈ lq*, || λ ||≤ 1


De�ne the xn as follows:

x1 = (1, 0, 0, 0, · · · )

x2 =
(

1
2α ,

1
2α , 0, 0, · · ·

)
x3 =

(
1
3α ,

1
3α ,

1
3α , 0, · · ·

)

and so on, where α = 1/p + 1/q.
Then the right hand side of the above inequality becomes

sup
{
|| (λ1, 0, · · · + (

λ2
2α ,

λ2
2α , 0, · · · ) + · · · + (

λN
Nα , · · · ,

λN
Nα , 0, · · · ) ||: λ ∈ l

q*, || λ ||≤ 1
}

= sup
{
|| (

N∑
m=1

λm
mα ,

N∑
m=2

λm
mα , · · · ,

N∑
m=N

λm
mα , 0, · · · ) ||p: λ ∈ l

q*, || λ ||≤ 1
}

= sup
{
(
N∑
n=1

|
N∑
m=n

λm
mα |

p)1/p : λ ∈ lq*, || λ ||≤ 1
}

This could be thought of as ‖A‖, where A is the operator from lq* into lp induced by the matrix
1 1

2α
1
3α · · ·

0 1
2α

1
3α · · ·

0 0 1
3α · · ·

0 0 0
...

...
...

. . .


But ||A||q*,p = ||AT ||p*,q which is bounded when 1 ≤ p* ≤ q < ∞ (see [1, Corollary 8]).

To estimate the left hand side of the above inequality:
N∑
n=1
‖BXn‖qq =

N∑
n=1

∥∥∥∥( β1nα , 2β2nα , · · · , (n − 1)βn−1nα , nβnnα , nβn+1nα , · · ·
)∥∥∥∥q

q

Collecting the terms that contain βn we get | βn |q (1+2q−αq + · · · + nq−αq + · · · ), which is greater than or equal
to K | βn |q nq−αq+1 where K is some constant.
It remains to check whether the following is true, and, if yes, whether | βn |q nq−αq+1 ≥| βn |q nq/p*

This reduces to checking the inequality q − αq + 1 ≥ q/p*, which is true under our choice of α; i.e. with
α = 1/p + 1/q.

The following theorem investigates a necessary condition in the case 1/p + 1/q > 1

Theorem 4. Let 1/p + 1/q > 1 and ϵ > 0. Then
∑

n≥1 n
q
p*−ϵ2 | βn |q< ∞ if B : lp → lq is q-summing, where

ϵ2 = k ϵ with k being a constant.

Proof. . We arque as in Theorem 3, except that we take the vectors xn of lp as follows:

x1 = (a1, 0, · · · )
x2 = x3 = (0, a2, 0, · · · )
x4 = x5 = x6 = (0, a3, 0, · · · )
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and so on, where the a′s will be determined later.
Starting with the right hand side of the q-summing inequality, we have

sup{||
∑

λnxn|| : λ ∈ lq*, ||λ|| ≤ 1} = sup{||a1λ1, a2(λ2 + λ3), a3(λ4 + λ5 + λ6), · · · || : λ ∈ lq*, ||λ|| ≤ 1} = ||A||q*,p ,

where A is the matrix 
a1 0 0 0 0 0 · · ·
0 a2 a2 0 0 0 · · ·
0 0 0 a3 a3 a3 · · ·
...

...
...

...
...


But ||A|| = (

∑∞
n=1 ||An||

r
q*,p)1/r; for example, see Proposition 3 of [2], where An is the 1 × n matrix(

an an · · · an
)
and 1/r = 1/p − 1/q * .

||A||q*,p = sup{||Any|| : y ∈ lq*, ||y|| ≤ 1}
= sup{|an(y1 + · · · + yn) |: y ∈ lq*, ||y|| ≤ 1}

= |an| n
1
q .

Therefore

||A||r =
∑(

n
1
q | an |

) pq
p+q−pq ,

which is �nite if

(
n

1
q | an |

) pq
p + q − pq = O

(
1
n1+ϵ

)
,

or if n | an |q= O
(
1/n1+q/p−q+ϵ1

)
where ϵ1 =

(
1 + q/p − q

)
ϵ

So, we may de�ne an as 1/n2/q+1/p−1+ϵ2 where ϵ2 = kϵ1 and k is a positive number.
On the other hand, calculating the left hand side, we get∑

||Bxn||qq =
∑

| βn |q (| aq1 + 2 | a2 |
q + · · · + n | an |q)

=
∑

| βn |q
( n∑
m=1

m. 1
m2+ q

p −1+ϵ2

)
≈
∑

n
q
p*−ϵ2 | βn |q .

We now are in a position to give the main result about B.

Theorem 5. Let 1 < p ≤ ∞, 1 ≤ q < ∞, and ϵ > 0, and B maps lp into lq . Then
(i) B is q-summing if and only if

∑
nq/p* | βn |q< ∞; 1p +

1
q ≤ 1,

(ii) There exist constants K1 and K2 such that

K1
∑

n
q
p*−ϵ2 ≤ πq(B) ≤ K2

∑
n

q
p* | βn |q; 1/p + 1/q ≤ 1.

Proof. The proof of (i) follows from Corollary 1(a) and Theorem 3, and the proof of (ii) follows from Corollary
1(a) and Theorem 4.

Note. It would be desirable to determine, whether the ϵ in Theorem 12 is really needed or not, but we have not
been able to do this despite our trials in both directions. One may conjecture that the ϵ is not really needed.
This is not only because this is the case in the region 1/p + 1/q ≤ 1, but also, and more importantly, because
the ϵ in the l1-casewas not needed (aswas shown in section 3), which is obviously in the region 1/p+1/q > 1.
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