DE GRUYTER OPEN Concr. Oper. 2016; 3:1–7

Research Article Open Access

Ibrahim Almasri*

Absolutely Summing Terraced Matrices

DOI 10.1515/conop-2016-0001 Received June 26, 2015; accepted December 14, 2015

Abstract: Let $\alpha > 0$. By C_{α} we mean the terraced matrix defined by $c_{nk} = \frac{1}{n^{\alpha}}$ if $1 \le k \le n$ and 0 if k > n. In this paper, we show that a necessary and sufficient condition for the induced operator on l^p , to be p-summing, is $\alpha > 1$; $1 \le p < \infty$. When the more general terraced matrix B, defined by $b_{nk} = \beta_n$ if $1 \le k \le n$ and 0 if k > n, is considered, the necessary and sufficient condition turns out to be $\sum_n n^{\frac{q}{p^*}} \mid \beta_n \mid^q < \infty$ in the region $1/p + 1/q \le 1$.

Keywords: Operator, absolutely summing operators, Terraced Matrices

1 Introduction

In [8, theorem 1], it was shown that

$$||C_{\alpha}||_{l^2 \longrightarrow l^2} \leq 1 + \max \left\{ \frac{\sqrt{n}}{(n+1)^{\alpha-\frac{1}{2}}} : n = 1, 2, \dots \right\}.$$

Corollary 8 in [1] gives a characterization for C_{α} to map l^{p} into l^{q} , this happens if and only if:

$$\alpha \ge 0 \qquad (p = 1, q = \infty)$$

$$\alpha \ge \frac{1}{p^*} \qquad (p > 1, q = \infty)$$

$$\alpha \ge \frac{1}{q} + \frac{1}{p^*} \quad (1 \le p \le q < \infty)$$

$$\alpha > \frac{1}{q} + \frac{1}{p^*} \quad (p > q)$$

In [8, theorem 2], Rhaly, also computed the Hilbert-Schmidt norm of C_{α} , which is $\sum_{n} n^{-2\alpha+1}$. In other words, C_{α} is 2-summing on l^2 if $\alpha > 1$, (see [3, page 84] for instance). We have found it natural to investigate the problem in general; i.e. when is $C_{\alpha}: l^p \longrightarrow l^q$ r-summing. Unfortunately, we no longer have the luxury of the rich theory of Hilbert spaces, which enables us to compute the 2-summing norm of C_{α} exactly.

In section 2 we set up notation and terminology. Section 3 concentrates on the l^1 -case and gives an application. In section 4 we obtain the main result of C_{α} on l^p . Section 5 is devoted to the more general situation about a terraced matrix B.

2 Notations and Definitions

By l^p we mean the space of complex-valued sequences x satisfying

$$||x||_p := (\sum |x_n|^p)^{1/p} < \infty; \ 1 \le p < \infty, \quad ||x||_\infty := \sup |x_n| : \ 1 \le n; \ p = \infty$$

^{*}Corresponding Author: Ibrahim Almasri: Palestine Polytechnic University, Wadi Alharia, P.O.Box 198 Hebron, Palestine, E-mail: imasri@ppu.edu

If $1 \le p \le \infty$, we define the conjugate index p^* of p by $1/p + 1/p^* = 1$.

 $||A||_{p,q}$ denote the norm of the operator A from l^p into l^q . If X is a Banach space, its dual will be denoted by X^* .

Let T be an operator from a normed space X into a normed space Y. Then we say that T is r-summing $(1 \le r < \infty)$ if, for all natural numbers N and for all vectors $x_1, x_2, ..., x_N$ in X, there exists an absolute constant k > 0 such that

$$\left(\sum_{n=1}^{N}||Tx_{n}||^{r}\right)^{\frac{1}{r}} \leq k \sup \left\{\left(\sum_{n=1}^{N}||\phi(x_{n}||^{r})^{\frac{1}{r}}:\phi\in X^{\star},||\phi||\leq 1\right\}.$$

The infimum of all such k is the r-summing norm $\pi_r(T)$ of T. When $r = \infty$, the r-summing norm reduces to the ordinary operator norm.

An equivalent inequality to the above one, which we shall be using, is;

$$\left(\sum_{n=1}^{N}\left|\left|Tx_{n}\right|\right|^{r^{\prime}^{\frac{1}{r}}} \leq \pi_{r}(T)\sup\left\{\left|\left|\sum \lambda_{n}x_{n}\right|\right|: \lambda \in l^{r^{\prime}}, \left|\left|\lambda\right|\right| \leq 1\right\}$$

see, for instance [3, page 35].

A Banach space X has the Dunford-Pettis property if and only if for any Banach space space Y, each weakly compact linear operator $T: X \longrightarrow Y$ is completely continuous; i.e., takes weakly convergent sequences in X into norm convergent sequences in Y.

Throughout this paper *B* will be used to denote, either the terraced matrix defined by $b_{nk} = \beta_n$ if $1 \le k \le n$ and 0 if k > n, or the operator induced by the matrix *B* itself. The matrix C_{α} is *B* with $\beta_n^{-\alpha}$; $\alpha > 0$.

3 The l1- Case

We start with a general result that will be used repeatedly.

Proposition 1. Let $1 \le p$, $q < \infty$ and $A = (a_{nk})$ be any matrix; then $\sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} |a_{nk}|^{p^*})^{\frac{q}{p^*}} < \infty$ implies that the induced operator $A : l^p \longrightarrow l^q$ is q-summing. Furthermore, $\pi_q^p(A) \le \sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} |a_{nk}|^{p^*})^{\frac{1}{p^*}}$

Proof. $||AX||_q^q = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |a_{nk}x_k|^q$ for any $X \in l^p$. Define f_n on l^p ; $n \ge 1$, as follows:

$$f_n(X) = f_n((x_k)) := \sum_{k=1}^{\infty} a_{nk} x_k.$$

Then the f_n are linear functionals with $||f_n|| = (\sum_{k=1}^{\infty} |a_{nk}|^{p^*})^{\frac{1}{p^*}}, 1 \le n$.

This means that there are functionals on l^p with the property

$$||AX||_q^q \leq \sum_{k=1}^{\infty} |f_n(X)|^q \ \forall X \in l^p.$$

By invoking Proposition 3.2 of [5] we get

$$\pi_q(A) \leq (\sum_{n=1}^{\infty} ||f_n||^q)^{\frac{1}{q}} = [\sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} |a_{nk}|^{p^*})^{\frac{q}{p^*}}]^{\frac{1}{q}}$$

Specializing Proposition 1 to the operators we are interested in, we get the following corollary.

Corollary 1. (a) If $B: l^p \longrightarrow l^q$ satisfying $\sum_{n=1}^{\infty} n^{\frac{q}{p^*}} |\beta_n|^q < \infty$, then B is q-summing (b) If $C_\alpha: l^p \longrightarrow l^p$ with $\alpha > 1$, then C_α is p-summing.

Proof. The result follows from Proposition 1 by replacing a_{nk} by β_n in the case of B, and by $n^{-\alpha}$ in the case of C_{α} .

The remainder of this section will be devoted to the l^1 -case. We think that this case is particularly important, because it gives us another reason for the way we proposed our conjecture about B at the end of the paper. Another reason for singling out this case lies in the fact that arguments to be seen later about necessity don't work for the l^1 -case.

The following result gives a necessary condition for B to be 1-summing in the l^1 -case.

Proposition 2. If $B: l^1 \longrightarrow l^1$ is 1-summing, then $\sum_n |\beta_n| < \infty$

Proof. Since *B* is 1-summing, for any $x_1, x_2, \dots, x_N \in l^1$, we have $\sum_{k=1}^N ||Bx_k|| \le \pi_1(B) \sup \left\{ ||\sum_{k=1}^N \lambda_k x_k|| : \lambda \in l^\infty, ||\lambda|| \le 1 \right\}$ Choose *N* vectors as:

$$x_k = \left(0, \dots, 0, \frac{1}{k^{\alpha}}, 0, \dots, 0, \frac{1}{(N+k)^{\alpha}}, 0, \dots, 0, \frac{1}{(2N+k)^{\alpha}}, \dots\right); \alpha > 1$$

With these vectors, and after some calculation, the above inequality reduces to

$$\sum_{n\geq 1} |\beta_n| \left(1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}}\right) \leq \pi_1(B) \sup \left\{ \left\| \left(\frac{\lambda_n}{n^{\alpha}}\right)_{n\geq 1} \right\| : \|\lambda\|_{l^{\infty}} \leq 1 \right\}$$

Use the integral test and observe that the right hand side is finite.

Now we are in a position to state our first main result.

Theorem 1. (a) $B: l^1 \to l^1$ is 1-summing if and only if $\sum_{n=1}^{\infty} |\beta_n| < \infty$ (b) $C_{\alpha}: l^1 \longrightarrow l^1$ is 1-summing if and only if $\alpha > 1$.

Proof. Part (a) follows from Corollary 1(a) with p = q = 1 and from Proposition 2. Part (b) follows from Corollary 1(a) with p = q = 1, and from Proposition 2.

Application. Let t be a sequence in (0,1) that converges to 0, and define the Abel matrix A_t by $a_{nk} = t_n(1-t_n)^k$. In his paper [4, theorem 1], Friday proved the Theorem " A_t is an l-l matrix if and only if t is in l^1 . Using Proposition 1, we obtain a stronger result.

Proposition 3. A_t is 1-summing on l^1 if and only if $t \in l^1$.

Proof. By Proposition 1,

$$\pi_1(A_t) \leq \sum_{n=1}^{\infty} \sup \left\{ |(t_n(1-t_n)^k|: k \geq 1 \right\} \leq \sum |t_n| = ||t||_{l^1}.$$

This proves that the condition is sufficient. The condition is necessary since 1-summing implies boundedness.

4 The C_{α} on l^p Case

To complete the characterization of C_{α} on l^p , we need to investigate a necessary condition for C_{α} to be p-summing on l^p ; 1 . The following lemma will be needed for our argument.

Lemma 1. Let $1 \le p < \infty$. Then $C_1 : l^p \to l^p$ does not have the Dunford-Pettis property.

Proof. Define a sequence of vectors $E_n \in l^p$ as follows: $E_n = (e_1 + \dots + e_n)/n^{1/p}$ where e_i is the standard unit vector with 1 in the ith place and 0 elsewhere. To see that E_n converges weakly, we must show that $f(E_n) \to 0$ for every $f = (f_j)_{j=1}^{\infty}$ of l^{p^*} . But this is equivalent to proving that $n^{-1/p} \sum_{j=1}^{\infty} f_j \to 0$ for every $f \in l^{p^*}$. so let $\epsilon > 0$, and $f \in l^{p^*}$. Then there exists a positive integer N such that $\sum_{j=N}^{\infty} |f_j|^{p^*} < \frac{\epsilon}{2}$ and $(\frac{1}{N})^{1/p} < \frac{\epsilon}{2}$. Letting $n = N^2$ and using Hölder's inequality, we have

$$\mid \frac{1}{n^{1/p}} \sum_{j=1}^{n} f_{j} \mid \leq \mid \frac{1}{n^{1/p}} \sum_{j=1}^{N-1} f_{j} \mid + \frac{1}{n^{1/p}} \sum_{j=N}^{n} f_{j} \mid \leq \frac{1}{n^{1/p}} \left(\sum_{j=1}^{N-1} \mid f_{j} \mid^{p^{\star}} \right)^{1/p^{\star}} \left(\sum_{j=1}^{N-1} 1^{p} \right)^{1/p} + \frac{1}{n^{1/p}} \left(\sum_{j=N}^{n} \mid f_{j} \mid^{p^{\star}} \right)^{1/p^{\star}} \left(\sum_{j=N}^{n} 1^{p} \right)^{1/p}$$

$$< N^{-1/p} + \left(\frac{n-N}{n} \right)^{1/p} \frac{\epsilon}{2}$$

$$\leq \epsilon.$$

On the other hand,

$$||C_1E_n||_p^p = \left\| \left(\frac{1}{n^{1/p}}, \cdots, \frac{1}{n^{1/p}}, \frac{n}{n+1}, \frac{1}{n^{1/p}}, \frac{n}{n+2}, \frac{1}{n^{1/p}}, \cdots \right) \right\|_p^p \ge 1;$$

i.e. $||C_1E_n||_p$ does not converge to 0. Thus C_1 does not have the Dunford-Pettis property on l^p .

Corollary 2. $C_1: l^p \to l^p$ is not r-summing for any $1 \le r < \infty$.

Proof. This result follows from Lemma 1 and from the fact that says: if $T: X \to Y$ is p-summing, then T must have the Dunford-Pettis property (see [7, page 343]).

Now we state and prove a necessary condition for $\mathcal{C}_{\alpha}: l^p \to l^p$ to be p-summing.

Proposition 4. Let $1 \le p < \infty$. If $C\alpha : l^p \to l^p$ is p-summing, then $\alpha > 1$.

Proof. Suppose, on the contrary, that $\alpha \le 1$. We split the proof into two cases: $\alpha < 1$ and $\alpha = 1$. For the case $\alpha < 1$, C_{α} does not even map l^p to l^p , see [1, Corollary 8]. For the case $\alpha = 1$, from Corollary 7 C_1 is not p-summing. Thus α must be larger than 1.

Now we can state the following main result.

Theorem 2. Let $1 \le p < \infty$. Then $C_{\alpha} : l^p \to l^p$ is p-summing if and only if $\alpha > 1$.

Proof. The proof follows from Corollary 1(a) and proposition 4.

Kwapien's result on the equivalence of π_r (see [6, page 109] gives the following Corollary that sounds a little restrictive.

Corollary 3. Let $1 \le p \le 2$. Then $C_{\alpha} : l^p \to l^p$ is r-summing if and only if $\alpha > 1$; $1 \le r < \infty$

5 The General Terraced Matrix B

We shall investigate a necessary condition, as only a sufficient condition was considered in Section 3. We start with the region $1/p + 1/q \le 1$.

Theorem 3. Let $1 , <math>1 \le q < \infty$ and $1/p + 1/q \le 1$. Then B is q-summing implies that $\sum_{n=1}^{\infty} n^{\frac{q}{p^*}} |\beta_n|^q < \infty$.

Proof. Since *B* is q-summing,

$$\left(\sum_{n=1}^{N} \|Bx_n\|_q^q\right)^{1/q} \leq \pi_q(B) \sup \left\{ \left\|\sum_{n=1}^{N} \lambda_n x_n\right\|_p : \lambda \in l^{q^*}, \|\lambda\| \leq 1 \right\}$$

Define the x_n as follows:

$$x_1 = (1,0,0,0,\cdots)$$

$$x_2 = \left(\frac{1}{2\alpha}, \frac{1}{2\alpha}, 0, 0, \cdots\right)$$

$$x_3 = \left(\frac{1}{3\alpha}, \frac{1}{3\alpha}, \frac{1}{3\alpha}, 0, \cdots\right)$$

and so on, where $\alpha = 1/p + 1/q$.

Then the right hand side of the above inequality becomes

$$\begin{split} & \sup \left\{ \| \left(\lambda_{1}, 0, \dots + \left(\frac{\lambda_{2}}{2^{\alpha}}, \frac{\lambda_{2}}{2^{\alpha}}, 0, \dots \right) + \dots + \left(\frac{\lambda_{N}}{N^{\alpha}}, \dots, \frac{\lambda_{N}}{N^{\alpha}}, 0, \dots \right) \| : \lambda \in l^{q^{\star}}, \| \lambda \| \leq 1 \right\} \\ & = \sup \left\{ \| \left(\sum_{m=1}^{N} \frac{\lambda_{m}}{m^{\alpha}}, \sum_{m=2}^{N} \frac{\lambda_{m}}{m^{\alpha}}, \dots, \sum_{m=N}^{N} \frac{\lambda_{m}}{m^{\alpha}}, 0, \dots \right) \|_{p} : \lambda \in l^{q^{\star}}, \| \lambda \| \leq 1 \right\} \\ & = \sup \left\{ \left(\sum_{n=1}^{N} | \sum_{m=n}^{N} \frac{\lambda_{m}}{m^{\alpha}} |^{p} \right)^{1/p} : \lambda \in l^{q^{\star}}, \| \lambda \| \leq 1 \right\} \end{split}$$

This could be thought of as ||A||, where A is the operator from l^{q^*} into l^p induced by the matrix

$$\begin{pmatrix} 1 & \frac{1}{2^{\alpha}} & \frac{1}{3^{\alpha}} & \cdots \\ 0 & \frac{1}{2^{\alpha}} & \frac{1}{3^{\alpha}} & \cdots \\ 0 & 0 & \frac{1}{3^{\alpha}} & \cdots \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

But $||A||_{q^*,p} = ||A^T||_{p^*,q}$ which is bounded when $1 \le p^* \le q < \infty$ (see [1, Corollary 8]). To estimate the left hand side of the above inequality:

$$\sum_{n=1}^{N} \|BX_n\|_q^q = \sum_{n=1}^{N} \left\| \left(\frac{\beta_1}{n^{\alpha}}, \frac{2\beta_2}{n^{\alpha}}, \cdots, \frac{(n-1)\beta_{n-1}}{n^{\alpha}}, \frac{n\beta_n}{n^{\alpha}}, \frac{n\beta_{n+1}}{n^{\alpha}}, \cdots \right) \right\|_q^q$$

Collecting the terms that contain β_n we get $|\beta_n|^q$ $(1 + 2^{q-\alpha q} + \cdots + n^{q-\alpha q} + \cdots)$, which is greater than or equal to $K |\beta_n|^q n^{q-\alpha q+1}$ where K is some constant.

It remains to check whether the following is true, and, if yes, whether $|\beta_n|^q n^{q-\alpha q+1} \ge |\beta_n|^q n^{q/p^*}$ This reduces to checking the inequality $q - \alpha q + 1 \ge q/p^*$, which is true under our choice of α ; i.e. with $\alpha = 1/p + 1/q$.

The following theorem investigates a necessary condition in the case 1/p + 1/q > 1

Theorem 4. Let 1/p + 1/q > 1 and $\epsilon > 0$. Then $\sum_{n \ge 1} n^{\frac{q}{p^*} - \epsilon_2} |\beta_n|^q < \infty$ if $B : l^p \to l^q$ is q-summing, where $\epsilon_2 = k \epsilon$ with k being a constant.

Proof. . We argue as in Theorem 3, except that we take the vectors x_n of l^p as follows:

$$x_1 = (a_1, 0, \cdots)$$

 $x_2 = x_3 = (0, a_2, 0, \cdots)$
 $x_4 = x_5 = x_6 = (0, a_3, 0, \cdots)$

and so on, where the a's will be determined later.

Starting with the right hand side of the q-summing inequality, we have

$$sup\{||\sum \lambda_{n}x_{n}||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = sup\{||a_{1}\lambda_{1}, a_{2}(\lambda_{2} + \lambda_{3}), a_{3}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{3}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{4}(\lambda_{2} + \lambda_{3}), a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\} = ||A||_{q^{\star}, p}, a_{5}(\lambda_{4} + \lambda_{5} + \lambda_{6}), \cdots||: \lambda \in l^{q^{\star}}, ||\lambda|| \leq 1\}$$

where A is the matrix

$$\begin{pmatrix} a_1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & a_2 & a_2 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & a_3 & a_3 & a_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

But $||A|| = (\sum_{n=1}^{\infty} ||A_n||_{q^*,p}^r)^{1/r}$; for example, see Proposition 3 of [2], where A_n is the $1 \times n$ matrix $\begin{pmatrix} a_n & a_n & \cdots & a_n \end{pmatrix}$ and 1/r = 1/p - 1/q *.

$$\begin{aligned} ||A||_{q^*,p} &= \sup\{||A_n y|| : y \in l^{q^*}, ||y|| \le 1\} \\ &= \sup\{|a_n (y_1 + \dots + y_n)| : y \in l^{q^*}, ||y|| \le 1\} \\ &= |a_n| n^{\frac{1}{q}}. \end{aligned}$$

Therefore

$$||A||^r = \sum \left(n^{\frac{1}{q}} \mid a_n \mid\right)^{\frac{pq}{p+q-pq}}$$
,

which is finite if

$$\left(n^{\frac{1}{q}}\mid a_n\mid\right)\frac{pq}{p+q-pq}=O\left(\frac{1}{n^{1+\epsilon}}\right),$$

or if
$$n\mid a_n\mid^q=O\left(1/n^{1+q/p-q+\epsilon_1}\right)$$
 where $\epsilon_1=\left(1+q/p-q\right)\epsilon$

So, we may define a_n as $1/n^{2/q+1/p-1+\epsilon_2}$ where $\epsilon_2 = k\epsilon_1$ and k is a positive number. On the other hand, calculating the left hand side, we get

$$\sum ||Bx_n||_q^q = \sum |\beta_n|^q (|a_1^q + 2|a_2|^q + \dots + n|a_n|^q)$$

$$= \sum |\beta_n|^q \left(\sum_{m=1}^n m \cdot \frac{1}{m^{2+\frac{q}{p}-1+\epsilon_2}}\right)$$

$$\approx \sum n^{\frac{q}{p^*}-\epsilon_2} |\beta_n|^q.$$

We now are in a position to give the main result about *B*.

Theorem 5. Let $1 , <math>1 \le q < \infty$, and $\epsilon > 0$, and B maps l^p into l^q . Then

- (i) B is q-summing if and only if $\sum n^{q/p^*} |\beta_n|^q < \infty$; $\frac{1}{n} + \frac{1}{q} \le 1$,
- (ii) There exist constants K_1 and K_2 such that

$$K_1 \sum n^{\frac{q}{p^*}-\epsilon_2} \leq \pi_q(B) \leq K_2 \sum n^{\frac{q}{p^*}} \mid \beta_n \mid^q; 1/p+1/q \leq 1.$$

Proof. The proof of (i) follows from Corollary 1(a) and Theorem 3, and the proof of (ii) follows from Corollary 1(a) and Theorem 4. \Box

Note. It would be desirable to determine, whether the ϵ in Theorem 12 is really needed or not, but we have not been able to do this despite our trials in both directions. One may conjecture that the ϵ is not really needed. This is not only because this is the case in the region $1/p + 1/q \le 1$, but also, and more importantly, because the ϵ in the ℓ -case was not needed (as was shown in section 3), which is obviously in the region 1/p + 1/q > 1.

Acknowledgement: The author wishes to express his gratitude to Grahame Bennett for his helpful remarks.

References

- [1] G. Bennett, Some Elementary Inequalities, Quart. J. Math. Oxford (2), 38 (1987), 401-425.
- [2] G Bennett, Some Ideas of Operators on Hilbert Space, Studia Mathematica, T. LV. (1976), 27-39.
- [3] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995.
- [4] J. Fridy, Abel Transformation into l^1 , Cand. Math. Bull., vol. 25(4), 1982, 421-427.
- [5] G. Jameson, Summing and Nuclear Norms in Banach Space Theory, Cambridge University Press, 1987.
- [6] S. Kwapien, A remark on p-absolutely summing operators in l_r spaces, Studia Math., 34 (1970), 109-111.
- [7] A Pietsch, Absolute p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
- [8] H. Rhaly, p-Cesaro Matrices, Houston Journal of Mathematics, vol. 15, no. 1, 1989, 137-146.