DE GRUYTER

Open Computer Science 2025; 15: 20250043

Research Article

Michal Mrena*, Michal Varga, Miroslav Kvassay, and Marek Klimo

Comparison of various in-order iterator

implementations in C++

https://doi.org/10.1515/comp-2025-0043
received March 1, 2025; accepted June 14, 2025

Abstract: Data structures typically use sequential or hier-
archical arrangements of elements. Hierarchical data
structures are commonly referred to as trees. Trees can
be implemented and applied in various ways from simple
to relatively sophisticated structures. Undoubtedly, the most
well-known tree structure is the binary tree. Such a tree is
essential for efficient implementations of (binary) search
trees, which typically provide operations like find, insert,
and remove. In addition to these, the operation of tree tra-
versal — that sequentially accesses all the elements — is also
very important. Data structure libraries mostly implement
traversal using the iterator design pattern. The article exam-
ines different approaches to implementing an iterator for
a binary tree. The article’s main contribution lies in an experi-
mental comparison of various iterator implementations.
The comparison also includes an Al-generated iterator.
The results show that the simple, straightforward approach
commonly used in standard libraries is the fastest and that
the Al-generated iterator performs reasonably well.

Keywords: Al-assisted programming, binary tree, binary
search tree, C++ compilers, in-order iterator, tree traversal

1 Introduction

An important characteristic of any data structure is how
the elements and the relationships between them are orga-
nized. Based on the multiplicity of these relationships, we
can divide the structures into sequential, hierarchical, and

* Corresponding author: Michal Mrena, Department of Informatics,
University of Zilina, Zilina, Slovakia, e-mail: michal.mrena@fri.uniza.sk
Michal Varga: Department of Informatics, University of Zilina, Zilina,
Slovakia, e-mail: michal.varga@fri.uniza.sk

Miroslav Kvassay: Department of Informatics, University of Zilina, Zilina,
Slovakia, e-mail: miroslav.kvassay@fri.uniza.sk

Marek Klimo: Department of Informatics, University of Zilina, Zilina,
Slovakia, e-mail: marek.klimo@fri.uniza.sk

network. In the simplest sequential organization, each ele-
ment has at most one predecessor and at most one suc-
cessor — the multiplicity of the relationships is 1:1. The
hierarchical organization extends this by allowing each
element to have zero or more successors. Thus, the multi-
plicity is 1:N. Such an organization is also known as a tree,
which is the term we will use in the rest of the article. The
most general organization is the network, which allows for
multiple predecessors and multiple successors for each
element — such structures are known as graphs. The multi-
plicity of the relationships is denoted as M:N.

In this article, we focus on the tree structures, which play
a pivotal role in various areas of computer science, such as
operating systems [1], data structures [2], knowledge repre-
sentation [3], or cybersecurity [4]. Out of those areas, we focus
on the data structures, where one of the key applications lies
in the implementation of search trees. Among the search
trees, binary trees have a special status. They are used to
implement the binary search tree (BST) and its extensions.
Such a tree appears in some form in the standard libraries of
almost every programming language, regardless of the pro-
gramming paradigm (from functional [5] to imperative [6]).

BST typically provides operations like find, insert, and
remove. These operations can be implemented efficiently,
thanks to an internal ordering of the tree. Another important
operation is tree traversal. This operation sequentially accesses
all the elements of the tree. The ordering of BST allows for a
special type of traversal known as in-order traversal. This tra-
versal accesses the elements as an ordered sequence. In object-
oriented languages, we usually use the iterator design pattern
to implement the traversal. The iterator that implements the
in-order traversal is, therefore, known as the in-order iterator.
An iterator can be implemented in multiple ways, which differ
in the way the current position is maintained and the algo-
rithm for moving to the subsequent position.

Since tree traversal is a frequently used operation, the
chosen implementation must be fast and efficient. We iden-
tified three principal approaches to the implementation of
an iterator. In this article, we focus on an experimental
comparison of the selected implementations. We perform
the comparison between our implementation of BST and
iterators in C++. We compare our implementations with

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/comp-2025-0043
mailto:michal.mrena@fri.uniza.sk
mailto:michal.varga@fri.uniza.sk
mailto:miroslav.kvassay@fri.uniza.sk
mailto:marek.klimo@fri.uniza.sk

2 =—— Michal Mrena et al.

one from the standard library. Since there are three
notable implementations of the library, namely, libstd++,
libc++, and Microsoft STL, we compared our implementa-
tion with each library utilizing the relevant compiler — gcc,
clang, and MSVC.

Currently, the use of so-called artificial intelligence
(AI) is omnipresent. This elusive term is usually just a pla-
ceholder for querying a large generative language model
such as ChatGPT. In applied computer science, it is com-
monly used to generate source code. Students see this tool
as an easy shortcut to achieving desired goals, such as
solving an assignment or a term project without deeper
prior knowledge of the matter. Therefore, we included
iterators generated by different generative AI chatbots
(chatbot in short) in our iterator comparison to see how
they perform in comparison with our implementations.

Our preliminary research, published in a conference
article [7], also examined the in-order iterators implemen-
tation. However, in the article, we used a rather special
implementation of the BST, which uses two levels of
abstraction. That implementation is part of a robust data
structure framework designed primarily for teaching [8,9].
In this article, we proceed with a simpler, straightforward
implementation that resembles those used in practice.

This article is structured as follows. Section 2 contains
necessary definitions and descriptions of the properties of
tree structures used in the rest of the article. In its second
part, it describes BSTs as a specific application of the tree
structure. Section 3 focuses on different approaches to the
implementation of the traversal of a binary tree. Section 4
describes how we used different chatbot models to gen-
erate the iterators and discusses the quality of the gener-
ated code. Finally, Section 5 presents an experimental com-
parison of the approaches described in Section 3. Section 6
is the conclusion.

2 Binary tree

2.1 Tree

Atree is a special type of graph. Thus, the set of all trees is a
subset of the set of all graphs. The literature provides mul-
tiple equivalent definitions of the tree. In this article, we
use the definition that says that a graph is a tree if it is
acyclic and connected — each edge is a bridge (removing the
edge would cause the graph to split into two disconnected
subgraphs) [10]. We use the term node as a synonym of the
vertex since it is a more common name used in the context
of trees.

DE GRUYTER

A tree is a hierarchical structure. The edges denote the
parent—son relationship. A node can have multiple sons but
at most one parent. There is at most one node that has no
parent, which we call the root of the tree. A node that has
no sons is called leaf. All other nodes are internal nodes.
The number of sons of a node is also known as its degree.
Another important property of a node is its level, defined as
the distance from the root node, i.e., how many times we
need to access the parent to reach the root. The root node
has a level of zero. A tree is considered balanced if the level
of all leaves is roughly the same. In Figure 1, we can see an
example of a balanced tree with nodes labeled using letters
A-F. Node A is the root node. Nodes C, D, E, and F are
leaves, and B is an internal node. Node A has degree three,
node B has degree two, and the leaves have degree zero.
Node A has a level of zero; nodes B, C, and D have a level of
one; and nodes E and F have a level of two. Depth of a tree
is defined as the maximum of levels of its nodes, i.e., a tree
consisting of a single node has depth zero.

The tree is a recursive structure — each son of a node
and, consequently, each node of a tree — can be considered
as the root node of a standalone tree, which we sometimes
refer to as subtree. This property is important in the design
of recursive algorithms that operate on the tree.

The literature classifies trees in several ways using dif-
ferent criteria. One such criterion is the limit in the degree of
nodes. Using this criterion, we can classify trees as:

— multi-way - there is no limit to the degree of nodes,
— K-way — each node has degree at most KE N,
— binary - a special case of K-way tree for K= 2.

Though the binary tree is just a special case of the
more general K-way tree, it is listed as a separate category.
The reason is that it has numerous applications and, there-
fore, has been studied extensively by computer scientists.
In addition to the separate category, we also use specific
names when we work with binary trees. Namely, we refer

i

Figure 1: Example of a tree with seven nodes labeled using letters A-F.

DE GRUYTER

to the two sons of a node as left son and right son.
Furthermore, for a balanced binary tree of size n, we can
estimate the depth as log,(n + 1) - 1.

2.2 BST

One of the numerous applications of binary trees is the
implementation of BSTs. BST [11,12] is an implementation of
the Abstract Data Type (ADT) table, which is also known as
map [13], dictionary [14,15], or as an associative array1 [16].
The ADT table restricts the domain of the elements by the
condition that each element needs to be associated with a
unique key. Consequently, its implementations typically store
pairs of the form (key, value). The three main operations
defined by the ADT table are summarized in Table 1.

The table implementations aim to provide an efficient
implementation of the above operations. To do so, BST
imposes another restriction on the domain — a strict weak
ordering on the keys must exist, ie., the keys must be com-
parable using the operator <. BST stores the (key, value) pairs
in the nodes and forces a notoriously known restriction on
the structure. Let us denote the key stored in node A as kev(A),
the left son of node A as rerrson(4), and the right son as
RIGHTSON(A). Then, we denote the restriction as follows:

* KEY(LEFTSON(A)) < KEY(A),
¢ KEY(A) < KEY(RIGHTSON(A)).

This restriction allows for a simple implementation of the
FIND operation. In each node A — starting in the root node —
we perform one of the following actions:

o if keY(A) = key, return vaLue(4);

o if key < kev(A), repeat the procedure in LerTsON(A);

« if kev(A) < key, repeat the procedure in riGHTSON(A);

« if the node does not exist, return failure.

Let us note the recursive nature of the operation, which
follows from the recursive nature of the underlying tree
structure. Implementation of other operations follows
a similar procedure. For details on their implementation,
we refer to the existing literature [17].

Figure 2 shows a simple BST with integer keys. The shape
of the tree in the figure is just one of numerous possible
shapes. Unfortunately, the shape of the tree influences the
complexity of the operations. In the best case — when the tree
is balanced — the time complexity of the operations is

1 On the one hand, the name array is a bit misleading; on the other
hand, the adjective associative describes the table well.

—_ 3

In-order iterator implementations in C++

Table 1: Operations defined by the ADT table

Operation Description

Find (key): value
Insert (key, value)
Remove (key)

Returns value associated with key
Inserts the pair (key, value)
Removes value associated with key

O(logn), where n is the number of nodes. However, the
time complexity can be as bad as O(n) in the worst case.
This happens when the tree degenerates to a linked list
(which also is a valid binary tree), for example, as a result
of inserting keys in ascending or descending order.

This disadvantage is addressed by various extensions
of the BST that implement a mechanism that automatically
balances the tree after each operation. Examples of such
extensions are the Treap [18], AVL tree [2], Splay tree [19],
or Red-black tree [20], which are typically implemented in
standard libraries of programming languages. Thus, the
BSTs that programmers encounter in practice are practi-
cally guaranteed to be balanced, thanks to the mentioned
extensions.

3 Binary tree traversal

Some operations, such as querying the size of the structure,
are common for different ADTs. One such operation is
traverse. The goal of the operation is to sequentially access
each element of the underlying data structure and, typi-
cally, perform some operation on the element. Traversal of
a tree can be implemented in multiple ways [17]. Since a
tree is a graph, the traversals are based on the depth-first
search (DFS) and breadth-first search (BFS) traversals from
the domain of graph theory [2]. In general (for any tree),
the following standard tree traversals exist [17]:
* pre-order — process the current node and then proceed
with the traversal of the sons,
* post-order — traverse all sons and then process the cur-
rent node,
* level-order — process nodes with level 0, then nodes with
level 1, all the way to the nodes with the highest level.

In the special case of the binary tree, an additional tra-

versal exists

* in-order — traverse left subtree, process current node,
and then traverse right subtree.

In Table 2, we can see the results of the mentioned tra-
versal applied to the BST in Figure 2, in which the process

4 —— Michal Mrena et al.

/@
()

Figure 2: Example of a simple BST with integer keys depicted in the
nodes.

operation reads and prints the key stored in the node. Let
us note the last row of the table (in-order), which contains
keys in ascending order. This is not a coincidence but
rather a property of the traversal applied to a tree with
BST order — the keys will always be accessed in ascending
order (hence the name of the traversal).

3.1 Iterator

The implementation of the traversals in a specific program-
ming language may differ according to the conventions of
the language and the programming paradigm used. For
example, in functional programming, libraries typically
define a function that takes two parameters, namely,
a data structure and a function to apply to each
element of the data structure [21]. Each type of traversal
is implemented as a standalone function.

In object-oriented programming, libraries usually use
the iterator design pattern [22]. An iterator is an object that
allows efficient access to elements of a data structure
without exposing internal details of the data structure.
An iterator usually possesses knowledge of the internal
organization of a data structure, which allows it to access
its elements efficiently. The interface of the iterator differs
between different programming languages. However, con-
ceptually, it can be summarized by the operations
(methods) presented in Table 3.

Table 2: Results of different traversals applied to BST from Figure 2

Traversal Order of node processing
Pre-order 1,5,3,7,17
Post-order 3,7,517, 1
Level-order 1,517,3,7
In-order 3,57,1,17

DE GRUYTER

Table 3: Basic operations provided by an iterator

Operation Description

INiT(root) Initializes the iterator for a tree with root
CanAbvance(): bool Checks if the iterator can be advanced
ADVANCE() Moves the iterator to a next element

Access(): element Returns reference to the current element

Many programming languages contain a so-called for-
each loop, which conveniently iterates over all elements of
a data structure. Such loops are usually just syntactic sugar
for an explicit iteration of the structure via iterator [23-25].
Such languages usually define an interface that prescribes
a method that returns an iterator of the structure (which is
used by the for-each loop). The iterator often also imple-
ments an interface prescribing methods similar to those
presented in Table 3. Just like with the functional
approach, each type of traversal is implemented as a dif-
ferent iterator type. However, since the interface pre-
scribes only a single method, each (iterable) data structure
has only one primary type of iterator?.

As stated at the beginning of this section, BSTs and
their extensions work conveniently with the in-order tra-
versal. Consequently, implementations of such trees use an
in-order iterator as the primary iterator type. In practice,
this means that when we use a for-each loop over, e.g.,
std::map (C++), TreeMap (Java), or SortedDictionary
(.NET), we access the keys in ascending order®. The men-
tioned data structures are part of the standard libraries of
the respective languages. Thus, the in-order traversal is
arguably the most frequently used traversal. Therefore,
we focus solely on this type of traversal in the article.
We start by describing different approaches to the imple-
mentation of in-order iterators.

3.2 Queued iterator

The first approach that we describe aims at simplicity at
the cost of higher memory complexity. It builds on the fact
that the functional approach can also be used in impera-
tive languages. In Algorithm 1, we can see a simple recur-
sive implementation of the in-order traversal. The algo-
rithm has two parameters, node — the root of the tree to

2 Naturally, it can provide methods that return other iterator types.
3 More precisely, in the ascending order concerning the comparator
used to compare the keys. In general, this is true for all data structures
based on a BST, such as sets, multisets, and multimaps.

DE GRUYTER

iterate over, and f - a function to apply to each element of
the tree.

Algorithm 1. Functional approach to the implementation
of in-order traversal.

procedurerrocESSINORDER (node, f)
if node # NULL then
ProcessINOrDER (LEFTSON (node), f)
f(node)
ProcessINOrDpER (RigHTSON (node), f)
end if
end procedure

It might seem that the presented algorithm is sufficient
and that there is no need for an actual iterator. Indeed,
such a simple approach is sufficient in many situations.
Especially since most imperative programming languages
support lambda functions, which can be conveniently used
as the parameter f. Containers often provide a method that
accepts a function to be applied to all elements, for
example, the forEach method in Java [26]. However, an
iterator has multiple advantages. For example, it allows
multiple simultaneous traversals, it can traverse only
part of the structure, and, most importantly, its advance-
ment can be programmatically controlled.

The implementation of the iterator is based on the
usage of a First-In-First-Out (FIFO) queue. The queue is
filled during the creation of the iterator using Algorithm 1
with a simple lambda function that pushes the element
into the queue. The other operations of the iterator are
then defined as simple operations on the queue.
Consequently, the implementation is really simple — it
fits into a single table (Table 4). In the table, we can see
that the Inir operation is the most expensive. On the con-
trary, Apvance and Access operations do not require any
navigation in the tree, so the traversal itself should be
among the fastest. The actual performance also depends
on the data structure used to implement the queue. Stan-
dard implementations usually use a linked list, a dequeue,

Table 4: Implementation of the queued iterator operations - assuming
that the iterator has a member variable queue - an FIFO queue

Operation Implementation

Init ProcessInOrder(node, Ax— Push(queue, x))
CanAdvance ~IsEmpty(queue)

Advance Pop(queue)

Access Peek(queue)

In-order iterator implementations in C++ === 5

or a circular buffer (array). In our implementation, we
used std::vector with pre-allocated capacity. Finally,
the last implementation remark concerns C++ and, pos-
sibly, other languages that support value semantics. C++
uses iterators extensively in its standard library and passes
them around by value. Therefore, using an iterator with
a state of considerable size (the queue member variable®)
would result in many expensive copies. In the worst case,
the size of the queue is the same as the size of the entire
tree. Therefore, such an iterator is practically useless out-
side of a for-each loop.

3.3 Explicit iterator

As we mentioned, one of the disadvantages of the functional
approach is that the execution of the ProcessINOrDER function
cannot be programmatically controlled — the function cannot
be “paused” and “resumed” later —, thus, all the elements are
visited within a single call of the function. Therefore,
the second approach we present is based on the idea of the
ProcessINOrpEr and allows the user to control the next
recursive call by calling the Apvance operation. Algorithm 1
is short and simple because, in the background, it implicitly
uses the process call stack to store current and past positions
in the iteration.

The explicit implementation is based on an explicitly
maintained stack of positions (member variable of the
iterator). The position is represented by a structure that
matches the call stack frame of the ProcessINOrpER function.
Table 5 contains fields of the structure, their types, and get
and set functions used in pseudocode. Algorithm 2 contains
pseudocode describing the implementation of the operation
Apvance. The code uses two auxiliary operations trycoLert and
TRYGORIGHT, Which are also presented in the pseudocode.
Furthermore, the code also uses operations pustposiTion and
POPPOSITION t0 maintain the stack of positions.

In our implementation, we use an intrusive linked list
to implement the stack. Our structure described in Table 5
has one additional field — a pointer to an instance of the
previous position. This is represented using the stack
member variable in the pseudocode. Another option is to
use a stack implementation from the standard library,
which typically uses a linked list, an array list, or a deque.
Just like with the queued iterator, in C++, we also need to
consider the cost of copying the stack when we pass the

4 Member variables are also known as fields, attributes, or properties
in some programming languages.

6 —— Michal Mrena et al.

Table 5: List of fields of the structure representing a position in
the iteration of a binary tree; the 1 symbol represents a pointer

Field Type Get Set
isProcessed Boolean IsProcessed SetIsProcessed
node T node Node SetNode

son T node Son SetSon
sonOrder? integer SonOrder SetSonOrder
next? 1 position — —

%Value 0 represents left son, 1 right son, and -1 an invalid value and ?
Used in our intrusive list implementation. Used by the pusHposiTion and
popposITION helper functions.

iterator by value. Fortunately, the size of the stack is con-
siderably limited - it is constrained by the depth of the
tree, which, assuming that the tree is balanced, can be
calculated as [log,(n + 1)1.

Algorithm 2 Implementation of the Apvance operation
of the explicit iterator.

Used member variables: stack, position
procedure Apvance()
if = IsProcesseD (position) then
if SoNOrpER (position) # 0 A
TryGoLErT (position) then
PusuPosiTioN (stack, Son (position))
Apvance ()
end if
else
if SoNORrDER (position) #1 A
TryGoRicHT (position) then
PusHPositioN (stack, Son (position))
Apvance ()
else
PorPosrtion(stack)
if positon # NULL then
AbvaNnce ()
end if
> Current subtree processed. Backtrack

> Process left subtree.

> Process right subtree.

end if
end if
end procedure
procedure TryGoLErr (position)
SerSon (position, LerrSon (Nobe(position)))
if Son (position) # NULL then
SerSoNOrpER (position, 0)
return True
else

DE GRUYTER

SETSONORDER (position, —1)
return False
end if
end procedure
procedure TryGoRiGHT (position)
SerSoN (position, RicatSoN (Nobe(position)))
if Son(position) # NULL then
SETSONORDER (position, 1)
return True
else
SETSoNORDER(pOSition, —1)
return False
end if
end procedure

3.4 Stateless iterator

The last approach that we present does not require any
auxiliary data structure. It maintains the current position
in the form of a single pointer to the current tree node. Hence,
we refer to it as stateless. The main logic of the iteration is
implemented in the Apvance operation, and it requires a
simple initialization procedure in the Inir operation. The pseu-
docode of these two operations can be found in Algorithms 4
and 3, respectively. Let us note that this exact algorithm is
used in the implementation of the Red-black tree in libc++
standard library [27], MS STL standard library [28], and a
similar algorithm is used in the libstdc++ standard library
[29] of the C++ language. However, there is one a notable
difference between our implementation of the Inrr operations
and analogous implementations from standard libraries —
our Inmr starts at the root node and searches the leftmost
node (with O(logn) complexity) while the standard imple-
mentations track the leftmost node explicitly and, thus, create
the iterator with O(1) complexity.

Algorithm 3 Implementation of the IniT operation of
the stateless iterator.

Used member variables: current
procedure IniT (root)
current < root
next< LertSon (current)
while next+ NULL do
current < next
next< LertSon (next)
end while
end procedure

DE GRUYTER

Algorithm 4 Implementation of the Apvance operation of
the stateless iterator.

Used member variables: current
procedure Apvance ()
right< RicutSon(current)
if right# NULL then
current < right
next< LertSon (right)
while next+ NULL do
current < next
next< LertSoN (next)
end while
else
while IsRicuTSon (current)
current<+ Parent (current)
end while
current+ Parent (current)
end if
end procedure

4 Al-generated iterator
implementation

The use of Al in programming has experienced a major
boom in recent years. Development environments now
directly integrate extensions that provide sophisticated
code completion — not just based on identifiers but on
the assumed intent of the programmer. Moreover, it is
now possible to use various tools to generate code purely
based on a verbal description. These tools are, naturally,
widely used by students. The original motivation to explore
different approaches to iterator implementation arose
from a course in which we addressed this topic.
Therefore, we decided to include iterators generated by
chatbots in the comparison to see how they perform com-
pared to human-written implementations.

4.1 Query

When writing the query for the chatbots, we avoided
specifying iterator properties beyond the fact that we
wanted an in-order iterator. This is because we did not
want to affect the form of the generated iterator. The
goal was to write the query similarly to how a student
would write it. Our query for chatbots, therefore, looked

In-order iterator implementations in C++ == 7

struct Node {
Node(const K& key, const T& data);
std: :pair<K, T> m_data;
Node* m_parent;
Nodex m_left;
Nodex m_right;
3

Figure 3: C++ structure representing node of BST.

like the following:

Provide an implementation of an in-order iterator in C++
for a BST, which has the following node structure:

and was followed by the structure of our node, which
can be seen in Figure 3. We chose to query four popular
chatbots, namely, ChatGPT, Gemini, Copilot, and Deep-
Seek [30-33].

4.2 Iterators in C++

Before we proceed with the description of the iterators
generated by chatbost, let us briefly describe how itera-
tors are implemented in C++ according to its standards
to make the following section more clear. C++ does not
have an interface (in the sense of virtual methods)
that must be implemented by an iterator. Instead, any
class that overloads a prescribed set of operators with
certain behavior and provides prescribed member types
can be used as an iterator. We can see a list of selected
operators and the corresponding iterator operation in
Table 6.

4.3 Al iterator

All chatbots responded to us with a fundamentally iden-
tical implementation of the in-order iterator. They dif-
fered only in details, which we describe later.
Henceforth, in the article we will describe only one imple-
mentation of the iterator, which we will refer to as
the Al iterator. Concerning the implementation, the Al
iterator comes closest to the implementation of the
explicit iterator we described in Section 3.3. The

5 We want to to emphasize that the name does not imply that the
iterator uses Al to traverse the tree, the Al part only indicates that the
iterator was generated by AL

8 =— Michal Mrena et al.

implementation of the key operations Inir and Apvance
of the AI iterator can be seen in Algorithms 5 and 6,
respectively.

The implementation is built on a stack of nodes that
is used to store the current position and previous posi-
tions. All generated implementations used std: :stack
from the standard library, which internally uses a deque
to store the elements. Similar to the explicit iterator,
when working with the AI iterator, we need to consider
the impact of stack copying when we pass the iterator by
value. Here, too, however, the stack size is considerably
limited.

Algorithm 5 Implementation of the Init operation of
the Al iterator.

Used member variables: stack
procedure Init (root)
node « root
while node+ NULL do
Pusu (stack, node)
node< LertSon (node)
end while
end procedure

Algorithm 6 Implementation of the Apvance operation of
the Al iterator.

Used member variables: stack
procedure Apvanck ()
node< Pop (stack)
right< RicurSon (node)
while right# NULL do
PusH (stack, right)
right— LerrSon(right)
end while
end procedure

Table 6: Operators in C++ and corresponding language-agnostic iterator
operations

Operation Operator
CanAdvance() operator!=
ope rator==
Advance() operator++
AdvanceInOppositeDirection() operator-
Access() operatorx

DE GRUYTER

4.4 Summary

Each chatbot generated code that was functional and able
to compile. However, each had minor C++ language-spe-
cific flaws and, in some cases, minor logic errors in some
operations.

ChatGPT generated a valid C++ iterator. However, it intro-
duced a bug in the operator!=. The issue was that it only
checked if at most one of the stacks (of two iterators com-
pared) was empty. Such implementation works correctly
when we just use the iterators to traverse the entire tree
(for example, by using the for-each loop), but would fail in
a general comparison of iterators. After pinpointing the
issue, ChatGPT provided the correct implementation.
Gemini provided a more extensive implementation of an
in-order iterator. In addition to the operator++, it also
provided (without explicitly asking for it to be generated)
an implementation of operator-. Furthermore, it also gen-
erated the correct member types required by the C++ stan-
dards by an iterator. Also, in contrast with ChatGPT, it
provided the correct implementation of the operator!=.
Copilot provided an interesting answer. The code it gener-
ated was almost identical to the code generated by
ChatGPT. However, surprisingly, it used different names
for the operations. Instead of overloding operator!= and
operator++, it used operations named hasNext () and next
(), which are used in the Java programming language.
However, at least it generated the hasNext() (equivalent
of the operator!=) correctly. After pointing out this issue,
the Copilot provided the correct answer.

Deepseek was the last chatbot that we tried. The code
provided was almost identical to the one provided by
ChatGPT. Like ChatGPT, it also generated operator!=
that would not work correctly in general. Once again, after
pointing out the issue, the correct implementation was
provided.

In summary, each chatbot provided a working and
(almost) correct in-order iterator implementation.
However, only Gemini generated a class that fulfilled all
the C++ iterator requirements. Naturally, we assume that
the other chatbots would also be capable of generating a
complete iterator implementation (from the C++ language
point of view) after explicitly asking for it. However, this
requires a deeper knowledge of the chatbot from the user.
Unfortunately, students or programmers coming from
another programming language may not possess the
required knowledge, and consequently, they may not
know what to ask for. Also, the bug introduced to
operator- by two chatbots is a bit concerning because it
does not show up in normal use but may show up later in
specific use of the iterator. Finally, an interesting question

DE GRUYTER

Table 7: Names of iterator implementations used in the presentation of
the results

-_ 9

In-order iterator implementations in C++

Algorithm 7 Replication evaluating the speed of a parti-
cular iterator type.

Iterator name Section

Stateless Section 3.4
Explicit Section 3.3
AL Section 4.3
Queued Section 3.2

is how the Al-generated implementation will perform com-
pared to the ones written by humans. We provide the
results of our comparison in the following section.

5 Experimental comparison

So far, in this article, we have described various
approaches to the implementation of an in-order iterator,
including an iterator generated by a chatbot. We proceed
with an experimental comparison of all the described
implementations. Table 7 contains the names of the itera-
tors we use in the presentation of the results, along with
references to the sections in which their implementation is
described. The source code, along with the results of the
experiment, is available online®.

5.1 Experiment setup

In practice, programmers use one of the mentioned exten-
sions of the BST, which means that the trees they work with
are well-balanced. Therefore, in the experiment, we focused
only on the traversal of balanced trees. For simplicity, we
implemented a plain BST with the node type shown in
Figure 3. To construct a balanced tree with n nodes, we first
generate a sequence of the form [0, 1, ...,n - 1]. Then, we
inserted the median of the sequence, split the sequence in
half, and repeated the procedure on each half until the halves
consisted of a single number. Using this procedure, we con-
structed a tree for different values of n, specifically, for
n=2k-1fork=1,2,..,25. The given values gave us a per-
fectly balanced tree (also known as a perfect binary tree) with
depth k — 1. We believe that a BST generated in this way
closely resembles, for example, a Red-black tree (which guar-
antees logarithmic complexities) and that it is a good-enough
approximation of a tree structures that emerge in practice.

6 https://gitlab.kicon.fri.uniza.sk/varga02/itercomp.

procedure RunReplication (n)
bst— GenerateBST (n)
StartStopwatch ()
iterator«< CreatelTERATOR(ROOT(DSt)
while CanAbvance(iterator) do

Access (iterator)
Advance (iterator)
end while
StopStopwatch ()
end procedure

The C++ language is implemented in multiple compi-
lers. The three most notable ones are GCC, clang, and
MSVC. In addition, each of those compilers comes with
its own implementation of the standard library.
Therefore, we decided to run the experiments with each
compiler and its standard library. The summary of the
compilers and standard libraries used is given in Table 8.
The experiments were performed on a PC with an Intel i9-
10900KF processor with 128 GB of DDR4 RAM running the
Void Linux operating system (for gcc and clang) and Win-
dows Education (for MSVC). For each value of n, we mea-
sured the average time required to iterate over all tree
elements (including time to initialize the iterator with the
IntT operation) using different iterators. The averages were
obtained by 100 replications for better accuracy. Algorithm
7 presents a summary of the code for single replication.
Furthermore, we wanted to assess the quality of our imple-
mentation. Thus, in addition to our BST, we conducted the
same experiment using std: :map (which is implemented
as a Red-black tree) of the same size, containing the same
elements. Naturally, the exact shape of the Red-black tree
may differ from our balanced BST. However, since the Red-
black tree also guarantees the balance of the tree, we may
consider them isomorphic (approximately).

5.2 Results and discussion

We present the results of the comparison in the form of
line charts. In the charts, the x-axis displays the depth of

Table 8: Versions of the compilers and standard libraries used in the
experiment

Compiler Version Standard library
gcc 13.2.0 libstdc++

clang 19.1.4 libc++

MSvC 19.43.34808 MS STL

https://gitlab.kicon.fri.uniza.sk/varga02/itercomp

10 — Michal Mrena et al. DE GRUYTER
--&- Explicit, clang P
1004 & Al, clang /.‘ b
—A— Stateless, clang .
—&- Queued, clang A
108 ~& std:map, clang A
107 .
_ 1064
(%)
A=?
[
104 ol
103 4
102 4
0 5 10 15 20 25

Depth

Figure 4: Average total duration in nanoseconds required to create and iterate over all elements of a tree using different iterators and the clang

compiler.

the perfectly balanced tree. Therefore, it is scaled linearly
in the depth and logarithmically in the number of nodes n.
The y-axis displays nanosecond duration and is scaled
logarithmically. The duration presented in each chart is
an average value obtained from 100 replications.

Figures 4-6 show the average total time required to
create an iterator and iterate over all elements of the tree
using different compilers. The results are quite similar for
the GCC and clang compilers. Up until depth 16, all the
iterators perform roughly the same, except the explicit

--@- Explicit, gcc
10° 4 -@- Al, gcc
—@— Stateless, gcc
—8- Queued, gcc
108 4 -® std:map, gcc
107 .
106 1
n
=
g
E 10° 4
104 .
103 4
102 .

0 5 10

15 20 25
Depth

Figure 5: Average total duration in nanoseconds required to create and iterate over all elements of a tree using different iterators and gcc compiler.

DE GRUYTER In-order iterator implementations in C++ == 11

--Hl- Explicit, msvc p |
1024 M- Al msvc .
—B— Stateless, msvc n’ .
-,
—l- Queued, msvc R 2
105 ~® stdzmap, msvc L
107 4
w 105 4
=
[
£
F 1054
104 4
103 4
102 4

0 5 10 15 20 25
Depth

Figure 6: Average total duration in nanoseconds required to create and iterate over all elements of a tree using different iterators and MSVC compiler.

iterator, which is consistently slower. From this point on, the significant. The MSVC compiler shows slightly different
performance becomes more similar, while the AI and state- results, mainly in the performance of the explicit iterator,
less iterators are slightly faster than the others. However, let which is consistently the slowest for all depths of the tree.
us remind the logarithmic scale of the y-axis, which means However, the performance of the other iterators is almost
that the real difference in the performance is more identical, especially for higher depths of the tree.

--&- Explicit, clang A
1094 —-&- Al clang /‘/.
—A— Stateless, clang Ve
—&- Queued, clang _,A‘/
108 { -A& std::map, clang ./A/
107 .
106 .
n
=
g 105 -
£
104 .
103 .
102 .
101 B
0 5 10 15 20 25
Depth

Figure 7: Average total duration in nanoseconds required to create different iterators when using clang compiler.

12 —— Michal Mrena et al. DE GRUYTER
--@- Explicit, gcc
10°7 -@- Al, gcc ./)
—@— Stateless, gcc .-/

—8- Queued, gcc
10°] -@ std:map, gcc

107 4

106 B

105 4

Time [ns]

4
10 ‘)

103 4
102 4

101 4

~e-0-0--0 0 -0 0 -

... -
o -0-90-0-.4 @ -0 o _g-0- o

0 5 10

15 20 25

Depth

Figure 8: Average total duration in nanoseconds required to create different iterators when using gcc compiler.

Figures 7-9 present the average time required to Init
an iterator. These results are more influenced by the spe-
cifics of the particular implementation. First, we can see
that the time grows linearly (considering the logarithmic
scale of the y-axis, the real dependency on the depth is
exponential) with the depth for the queued iterator. This

agrees with the expectation since this iterator needs to
traverse the entire tree in the Inir operation. It is inter-
esting to observe that the complexity of the Inir operation
of the std::map iterator is constant. However, this also
agrees with the expectation since all three tested standard
libraries (Table 8) use an optimization, which remembers

--M- Explicit, msvc
—m- Al, msvc r/.
108 4 —— Stateless, msvc './
—#- Queued, msvc .
N .. B
B std::map, msvc .
. //l/
/.
y |
106 + .
A
£ 7
: A
i g
o 10
£ s
F -
l'/
3 a”
/r e |
ol Y it
a ...'l__ RUSFRaes ton PN ||
- el '__-__.__..._
’ 3 — g B R
? =g =:|f‘-"-~-=-—-l——~l--luul——l =g F
- .
" L= m-m- 8
o
° 5 10 15 . -

Depth

Figure 9: Average total duration in nanoseconds required to create different iterators when using MSVC compiler.

DE GRUYTER In-order iterator implementations in C++ === 13

--&- Explicit, clang 4
109 &= Al clang A
—A— Stateless, clang B N
—&- Queued, clang ok i
1084 -& std:map, clang o ,A/
107 .
106 .
‘@
=
[
£ 105 5
£
104 4
103 .
102 .
101 .
0 5 10 15 20 25
Depth

Figure 10: Average total duration in nanoseconds required to iterate over all elements of a tree using different iterators and clang compiler.

the leftmost node and, thus, all three implementations are construction. This agrees with the results, especially for
able to initialize the iterator in constant time. The observed GCC and clang.

growth of the duration for the other iterators should be Figures 10-12 show the average time required to tra-
logarithmic (the real dependency is linear in the depth) verse the tree. These figures are similar to the figures in
since they need to visit all levels of the tree in their Figures 4-6. This once again agrees with the expectation

--@- Explicit, gcc 'y
109 - -@- Al, gcc .'.';‘.
—&— Stateless, gcc .
—8- Queued, gcc
1084 -@® std:map, gcc " T/./
107 .
106 .
‘o
=
[
£ 10 1
£
104 B
103 .
102 .
101! 4
0 5 10 15 20 25
Depth

Figure 11: Average total duration in nanoseconds required to iterate over all elements of a tree using different iterators and gcc compiler.

14 —— Michal Mrena et al. DE GRUYTER
--H- Explicit, msvc .=
1094 —-M- Al, msvc .a
—l— Stateless, msvc .
-8 - Queued, msvc ®) =
:
1084 - std::map, msvc .‘,,. .‘/
107 4
106 4
‘@
k=
[
£ 107
=
104 B
103 4
102 4
101 4
0 5 10 15 20 25

Depth

Figure 12: Average total duration in nanoseconds required to iterate over all elements of a tree using different iterators and MSVC compiler.

since the time for the initialization of the iterators becomes
negligible for bigger trees. There is one exception, though,
and it is the queued iterator, which does the majority of the
work in the Inr operation. In the subsequent iteration, it
should be the fastest one, and this is exactly confirmed by

the results.

Finally, Figure 13 shows the average total time required
to iterate over all elements of the tree. It presents the same
data that was already in Figures 4-6, but this time, it compares
the performance of std:map iterators from different
standard libraries in a single chart. The results clearly show
that the performance is practically identical for bigger trees.

-A& std::map, clang 2
1094 -@ std:map, gcc -
-B std::map, msvc /./
A&
108 4 ‘,,.l"
Py
.4.
107 4 ’}*
/""
106 "‘
e z’“'.
" B
£ 10° X
F PR
X
i
10% § 0d
103 4 . .:Xl
"
v
N Y 4
102 5 A 4
B -m 9 ¢ _A
PR . A
-4 7
0 5 10 15 20 25
Depth

Figure 13: Average total duration in

nanoseconds required to iterate over all elements of a tree using different iterators and MSVC compiler.

DE GRUYTER

6 Conclusion

A binary tree is a special type of tree that has numerous
applications in computer science. One such application is that
it is the underlying memory structure of a BST. In addition to
the standard table operations, the BST (and its extensions)
also supports the operation of traversal. Traversal does a
sequential access of all elements stored in the tree. The tra-
versal is usually implemented using the iterator design pat-
tern. In this article, we focused on the in-order traversal,
which is specific to binary trees. The in-order traversal is
used in a for-each loop that iterates an ordered table (a table
that uses some form of a hinary tree in the background)
implementation, which is part of the standard library of all
commonly used programming languages. Hence, we focused
only on this traversal in this article, since it is arguably the
one that is most frequently used. We aimed to compare dif-
ferent approaches to the implementation of in-order iterators.
Students are often required to implement such an iterator in
their algorithms and data structures courses. Since many of
them nowadays use generative Al to write code, we also
included an Al-generated implementation of an in-order
iterator in the comparison.

The main conclusion of our comparison is that the sim-
plest in-order implementations with relatively low memory
complexity have the best performance. This was observed
consistently for different sizes of the tree as well as different
compilers. The implementation of one such iterator we used
in the comparison was generated by an Al chatbot. This
iterator was easy to incorporate into our project. This shows
that we can use a simple query to an Al chatbot, and we get
code that is easy to integrate and has decent performance.
The results also provided topics for future research. For
example, we will try to explain why the performance of
the iterators changes for trees of depth 16 or more.

Funding information: This work was funded by the EU
NextGenerationEU through the Recovery and Resilience
Plan for Slovakia under the project No. 09103_03_V02_00030.

Author contributions: All authors have accepted responsi-
bility for the entire content of this manuscript and
approved its submission.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: The data that supports the
findings ara available in the following repository:
https://gitlab.kicon.fri.uniza.sk/varga02/itercomp or from
the corresponding author upon request.

In-order iterator implementations in C++ == 15

References

[11 A Silberschatz, P. B. Galvin, and G. Gagne, Operating system
concepts, 10 edn., Wiley, Hoboken, NJ, USA, 2018.

[2] T.H.Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 3rd edn., The MIT Press, 2009.

[31 E. N. Zaitseva and V. G. Levashenko, “Construction of a reliability
structure function based on uncertain data,” IEEE Trans. Reliability,
vol. 65, pp. 1710-1723, 2016.

[4]). Piatkowski and S. Szymoniak, “Methodology of testing the
security of cryptographic protocols using the cnmtree framework,”
Appl. Sci., vol. 13, no. 23, 12668, 2023.

[51 C. Okasaki, Purely functional data structures, Cambridge University
Press, New York, NY, 1998.

[6] F.M. Carrano and T. M. Henry, Data abstraction and problem
solving with C++: Walls and mirrors, 7th edn., Pearson Addison
Wesley, 2017.

[71 M. Mrena, M. Varga, and M. Kvassay, “Comparison of the
approaches to the traversal of a binary tree structure using
iterators,” In 2024 IEEE 17th International Scientific Conference on
Informatics (Informatics), pp. 248-253, 2024.

[8] M. Varga, M. Kvassay, M. Mrena, V. Klima, A. Kavicifjka, and
N. Adamko, Algoritmy a tdajové struktiry, 2. diel: Abstraktné
pamét’ové typy a Struktdry, in slovak. Zilinska Univerzita
v Ziline, EDIS-vydavatel’o UNIZA, 2024, ISBN: 978-80-554-2135-3.

[9] M. Varga, M. KvaSay, M. Mrena, V. Klima, A. Kavicifjka, and
N. Adamko, Algoritmy a ddajové Strukttry, 3. diel: Abstraktné udajové
typy a Struktdry, in slovak. Zilinska Univerzita v Ziline, EDIS-
vydavatel’o UNIZA, 2024, ISBN: 978-80-554-2136-0.

[10] J. A. Bondy and U. S. R. Murty, Graph theory with applications.
Elsevier Science Publishing, New York, 1976.

[11] P. F. Windley, “Trees, forests and rearranging,” Comput. /., vol. 3,
no. 2, pp. 84-88, 1960.

[12] D. E. Knuth, The art of computer programming, Volume 3: (2nd ed.)
sorting and searching, Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1998.

[13] java.util.map. 2025. https://docs.oracle.com/javase/8/docs/api/
java/util/Map.html, Accessed: 2025-02-24.

[14] .net dictionary. 2025. https://learn.microsoft.com/en-us/dotnet/
api/system.collections.generic.dictionary-2?view=net-8.0.
Accessed: 2025-02-24.

[15] Python dictionary. 2025. https://docs.python.org/3/tutorial/
datastructures.html#dictionaries, Accessed: 2025-02-24.

[16] Php associative array. https://www.php.net/manual/en/language.
types.array.php, 2025, Accessed: 2025-02-24.

[17] N. Wirth, Algorithms and data structures, Prentice-Hall International
editions, Prentice-Hall International, 1986.

[18] R. Seidel and C. R. Aragon, “Randomized search trees,”
Algorithmica, vol. 16, pp. 464-497, 1996.

[19]1 D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,”

J- Acm, vol. 32, no. 3, pp. 652-686, 1985.

L. J. Guibas and R. Sedgewick, “A dichromatic framework for

balanced trees,” In: 19th Annual Symposium on Foundations of

Computer Science (sfcs 1978), pp. 8-21, 1978.

[21]1 G. Hutton, Programming in Haskell, 2nd edn., Cambridge University

Press, 2016.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software, Addison-Wesley

Longman Publishing Co., Inc., USA, 1995.

[20]

[22]

https://gitlab.kicon.fri.uniza.sk/varga02/itercomp
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?view=net-8.0
 https://docs.python.org/3/tutorial/datastructures.html#dictionaries
 https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://www.php.net/manual/en/language.types.array.php
https://www.php.net/manual/en/language.types.array.php

16

[23]

[24]

[25]

[26]

[27]

= Michal Mrena et al.

Range-based for loop. 2025. https://en.cppreference.com/w/cpp/
language/range-for, Accessed: 2025-02-24.

The for-each loop. 2025, https://docs.oracle.com/javase/8/
docs/technotes/quides/language/foreach.html, Accessed:
2025-02-24.

The foreach statement. 2025, https://learn.microsoft.com/en-
us/dotnet/csharp/language-reference/statements/iteration-
statements#the-foreach-statement, Accessed: 2025-02-24.
Iterable.foreach. 2025. https://docs.oracle.com/en/java/javase/17/
docs/api/java.base/java/lang/Iterable.html#forEach(java.util.
function.Consumer), Accessed: 2025-02-24.

Livm project - libc++. 2025. https://github.com/llvm/llvm-project/
blob/f11c0a1a0d9306456a99e609833d7h188fa904fb/libcxx/
include/__tree#L194, Accessed: 2025-02-24.

[28]

[29]

[30]

31

B2]

[33]

DE GRUYTER

Microsoft stl. 2025, https://github.com/microsoft/STL/blob/
ef1d621d51263285aff8e560a214f5477d63d687/stl/inc/xtree#L49,
Accessed: 2025-02-24.

Gcce - libstdc++. https://github.com/gcc-mirror/gec/
blob/6fce4664d4a2e44843bd1464930696c819906d0f/
libstdc%2B%2B-v3/src/c%2B%2B98/tree.cc#L83, 2025. Accessed:
2025-02-24.

Openai’s chatgpt 3.5. 2025. https://chatgpt.com/, Accessed: 2025-
02-24.

Gemini 2.0. https://gemini.google.com/app?hl=sk/, 2025.
Accessed: 2025-02-24.

Microsoft copilot. 2025, https://copilot.microsoft.com/, Accessed:
2025-02-24.

Deepseek v2.5. 2025, https://www.deepseek.com/, Accessed: 2025-02-24.

https://en.cppreference.com/w/cpp/language/range-for
https://en.cppreference.com/w/cpp/language/range-for
https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/foreach.html
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements#the-foreach-statement
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements#the-foreach-statement
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements#the-foreach-statement
 https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Iterable.html#forEach(java.util.function.Consumer)
 https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Iterable.html#forEach(java.util.function.Consumer)
 https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Iterable.html#forEach(java.util.function.Consumer)
https://github.com/llvm/llvm-project/blob/f11c0a1a0d9306456a99e609833d7b188fa904fb/libcxx/include/__tree#L194
https://github.com/llvm/llvm-project/blob/f11c0a1a0d9306456a99e609833d7b188fa904fb/libcxx/include/__tree#L194
https://github.com/llvm/llvm-project/blob/f11c0a1a0d9306456a99e609833d7b188fa904fb/libcxx/include/__tree#L194
https://github.com/microsoft/STL/blob/ef1d621d51263285aff8e560a214f5477d63d687/stl/inc/xtree#L49
https://github.com/microsoft/STL/blob/ef1d621d51263285aff8e560a214f5477d63d687/stl/inc/xtree#L49
https://github.com/gcc-mirror/gcc/blob/6fce4664d4a2e44843bd1464930696c819906d0f/libstdc%2B%2B-v3/src/c%2B%2B98/tree.cc#L83
https://github.com/gcc-mirror/gcc/blob/6fce4664d4a2e44843bd1464930696c819906d0f/libstdc%2B%2B-v3/src/c%2B%2B98/tree.cc#L83
https://github.com/gcc-mirror/gcc/blob/6fce4664d4a2e44843bd1464930696c819906d0f/libstdc%2B%2B-v3/src/c%2B%2B98/tree.cc#L83
https://chatgpt.com/
https://gemini.google.com/app?hl=sk/
https://copilot.microsoft.com/
https://www.deepseek.com/

	1 Introduction
	2 Binary tree
	2.1 Tree
	2.2 BST

	3 Binary tree traversal
	3.1 Iterator
	3.2 Queued iterator
	3.3 Explicit iterator
	3.4 Stateless iterator

	4 AI-generated iterator implementation
	4.1 Query
	4.2 Iterators in C++
	4.3 AI iterator
	4.4 Summary

	5 Experimental comparison
	5.1 Experiment setup
	5.2 Results and discussion

	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

