DE GRUYTER

Open Computer Science 2025; 15: 20250030

Research Article

Ping Zhang, Cheng Li, and Jian Mao*

A multiscale and dual-loss network
for pulmonary nodule classification

https://doi.org/10.1515/comp-2025-0030
received September 27, 2024; accepted April 28, 2025

Abstract: Detecting malignancy in pulmonary nodules holds
significant clinical importance, yet existing image classifica-
tion methods often struggle with inadequate feature integra-
tion and ineffective loss functions. This study proposes two
innovative strategies to address these limitations: first, we
introduce a multiscale feature weighted fusion technique
that enhances the integration of features across different
scales, allowing the model to prioritize critical pixel locations
essential for accurate diagnosis. Second, we combine contras-
tive loss with binary cross-entropy within our training frame-
work to improve learning from both similarities and differences
among paired samples, which fosters better discrimination
between similar nodules while maintaining sensitivity to
variations across classes. Besides, our proposed methodolo-
gies demonstrate promising performance improvements
in detecting pulmonary nodule malignancy, leading to
enhanced performance and reliability compared to conven-
tional approaches.

Keywords: pulmonary nodules, image classification, multi-
scale feature fusion, contrastive loss

1 Introduction

Lung cancer, with its high incidence and mortality rates,
necessitates early diagnosis to improve survival outcomes.
The classification of pulmonary nodules (as shown in
Figure 1) as benign or malignant is essential for identifying
potential malignancies and guiding treatment plans [1,2].
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Traditionally, physicians evaluate these nodules using
computed tomography (CT) images; however, this process
can be time consuming and relies heavily on individual
experience, which may affect both efficiency and accuracy.
To address these challenges, computer-aided diagnosis
(CAD) systems [3,4] have emerged as valuable tools that
utilize advanced image processing and machine learning
algorithms to automatically analyze CT images. By learning
from extensive datasets to detect subtle imaging features,
CAD systems leverage artificial intelligence to aid physi-
cians in making faster and more accurate decisions,
thereby significantly advancing the assessment of pul-
monary nodules and enhancing modern medical imaging.
Previously, many studies have indicated that machine
learning methodologies play a crucial role in advancing
the diagnostic accuracy of pulmonary nodules. For
instance, Liu et al. developed a systematic approach that
quantifies radiological traits and emphasizes semantic
imaging features for predicting malignancy, resulting in
enhanced predictive accuracy [5]. In another study, Fer-
reira et al’s random forest algorithm demonstrated
superior performance compared to other classifiers;
notably, a decision tree using only two features achieved
comparable sensitivity and specificity [6]. Meanwhile, Tu
et al. effectively combined localized thin-section CT with
radiomics feature extraction and machine learning to
accurately classify early-detected pulmonary nodules,
thereby reducing false positives while improving malig-
nancy differentiation [7]. Yang et al. highlighted essential
nodular features through a review focused on ground-glass
opacity nodules, which were vital for developing effective
prediction models [8]. Uthoff et al. contributed by standar-
dizing perinodular features, while Yamada et al. improved
classification accuracy with positron emission tomo-
graphic/CT images [9,10]. Furthermore, Chen et al’s
method had outperformed existing approaches in malig-
nancy prediction; similarly, Liu et al’s integration of CT
findings with CEA levels yielded superior predictions
[11,12]. Recently, many investigations have highlighted
the effectiveness of deep learning techniques, particularly
convolutional neural networks (CNNs), in detecting and
classifying pulmonary nodules from CT scans. Wang et al.
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Figure 1: The samples of different pulmonary nodules.

introduced a hybrid CNN model that enhanced malignancy
risk assessment accuracy by integrating global and local
features, surpassing traditional texture and shape-based
methods [13]. Dou et al. developed a three-dimensional
CNN that significantly reduced false positives by incorpor-
ating multilevel information, thereby improving detection
efficiency [14]. Jin et al’s deep 3D residual CNN further
advanced lung cancer diagnosis by effectively targeting
false positives [15]. Additionally, Feng et al. created a weak-
lysupervised CNN for automated nodule segmentation
using image-level labels, successfully localizing nodules
in CT images [16]. The integration of transfer learning
has also played a crucial role; Zhao et al.’s approach out-
performed other CNN strategies in distinguishing malig-
nant from benign nodules [17]. Recent innovations such
as the multiscale gradual integration CNN had shown sig-
nificant improvements on datasets like LUNA16 [18]. More-
over, the growing body of literature indicated that hybrid
models, attention mechanisms, and ensemble learning
strategies — such as those developed by Yuans et al. and
Xu et al. — were essential for achieving high sensitivity and
accuracy in lung cancer risk assessment [19,20]. These
advancements underscore the continuous evolution of
deep learning methodologies within medical imaging,
highlighting their potential to transform clinical practices
and improve patient outcomes in lung cancer detection
and management.

Previous methods in image classification for detecting
pulmonary nodule malignancy have made significant
strides, but they still face limitations that impact their
effectiveness. A major issue is the inadequate integration
of features from various scales, which leads to a lack of
focus on the discriminative traits necessary for accurate
diagnosis. Traditional approaches often rely on single-scale
feature extraction and can overlook critical contextual
information, affecting performance when distinguishing
between benign and malignant nodules. In addition,
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conventional loss functions like binary cross-entropy

(BCE) do not fully leverage the relationships among paired

samples, impairing generalization across classes. To

address these challenges, we propose two innovative stra-
tegies: first, we implement multiscale feature weighted
fusion (MFWF) to enhance information integration across
different scales through spatial resizing and the computa-
tion of a weight matrix that emphasizes crucial pixel posi-
tions. This pixel-wise weight matrix guides the weighted
fusion of multiscale features, prioritizing the most salient
information. By effectively combining hierarchical details
with semantic information, this approach enhances the
model’s ability to capture complex patterns and improves
its discriminability. Second, the contrastive loss excels at
pulling similar pairs closer together in the embedding
space and pushing dissimilar pairs farther apart, effec-
tively emphasizing relative relationships. Simultaneously,
the BCE loss ensures the model remains sensitive to varia-
tions across differing classes by providing a consistent
supervisory signal focused on classification accuracy for
each sample individually. Therefore, to leverage these
strengths, we combine contrastive loss with BCE loss in a
dual-loss training framework. This approach not only
enhances discrimination among similar samples by fine-
tuning the embedding space for closely related examples,
but also maintains robust sensitivity to interclass variance,
preventing the model from collapsing distinguishable cate-
gories into indistinguishable clusters. Overall, these inte-
grated methodologies improve classification performance
and bolster the model’s ability to generalize across diverse
patient datasets encountered in clinical settings. The main
contributions of this article can be summarized as follows:

— We introduce the MFWF that enhances the integration
of features across different scales, allowing the model to
focus on critical pixel positions and improving its sensi-
tivity to discriminative characteristics essential for accu-
rate diagnosis.

— By employing dual loss, we enable the model to better
learn from similarities and differences among paired
samples, which enhances discrimination among similar
nodules while maintaining sensitivity to class variations.

— Our proposed methods exhibit promising performance
in detecting pulmonary nodule malignancy, highlighting
improvements in accuracy and reliability when com-
pared to existing approaches.

The rest of this article is organized as follows: In
Section 2, it outlines our proposed MFWF approach and
the dual-loss training strategy, detailing the technical
implementation and theoretical foundations underpinning
these methods. Subsequently, in Section 3, we present the



DE GRUYTER

experimental setup, including the datasets utilized for eva-
luation and the metrics employed to assess performance.
Finally, we conclude with a summary of key findings and
future directions for research in this domain in Section 4.

2 Methodology

The main structure of this article is illustrated in Figure 2,
featuring a primary architecture based on the ResNet net-
work. To effectively extract multiscale features of pulmonary
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nodules, we propose the MFWF module. Furthermore, to
enhance discrimination among paired samples while preser-
ving sensitivity to class variations, we have designed a dual-
loss strategy that complements this approach.

2.1 Revisit of residual block

In this section, we first revisit the residual block, which
serves as the fundamental building block of our architec-
tures. The Kkey innovation that the residual block

|

Softmax

Pixel Averaging

Begin/Maglignant

C(Fy,)
— | [
S
]
— | @ —
C(Fyy)
| g
Fig |~
X
| i——
C(Fy,)
=S
X
=
C(Fy,)
2 i
= i
SN g
1] §
Qo H
{—— =

Multi-scale Feature Weighted Fusion

Figure 2: The proposed model is structured based on the ResNet architecture. A multiscale feature fusion module is introduced to effectively extract
multiscale features from pulmonary nodules. Furthermore, a dual-loss strategy is designed to enhance discrimination among paired samples while

preserving sensitivity to class variations, complementing this approach.
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introduces is the concept of skip connections, which facil-
itate gradient flow through the network and mitigate
issues related to vanishing gradients. The mathematical
formulation of a basic residual block can be expressed as
follows:

y = Fx, {6} + x, @)

where X represents the input to the residual block,
F(x, {0}) denotes a series of operations parameterized by
weights {6}, and y is the output of the residual block. The
addition operation in equation (1) allows for the identity
mapping from input X, enabling a direct path for gradients
during backpropagation. To elaborate further, each resi-
dual block typically consists of two or more convolutional
layers along with batch normalization and ReLU activa-
tion. The common configuration within a residual block
could be given as follows:

y = F(F(X, 01), 6) + X. 2

This structure provides not only depth but also enhances
representational capacity while ensuring that valuable fea-
tures are retained throughout multiple layers.

2.2 Multiscale feature weighted fusion

The process begins with inputting an image I € RE*W*C,
where H represents the height, W denotes the width, and C
is the number of channels. By applying the ResNet net-
work, this image undergoes multiple convolutional layers
and activation functions to extract features at various
scales and abstraction levels. At this stage, we obtain cor-
responding feature maps for ith layer, the output feature
map from layer [; can be expressed as follows:

F, = f,(I) € RAZWDy, ®

To reduce dimensionality while enhancing the expressive
power of features, we apply a 1 x 1 convolutional layer to
each extracted feature map. This not only allows us to
reduce the channel dimensions while preserving spatial
information but also enhances the model’s ability to cap-
ture nonlinear representations. This operation can be
described by the following equation:

C(F,) = WO*F, + pO®, 4)

where W represents the weights and b® is its corre-
sponding bhias term. Next, for all processed multiscale fea-
ture maps, we perform spatial resizing to unify their
dimensions to a specified size Hy, Wy. This step is essential
for effective combination and fusion of different scales
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without losing important information or details. The
adjustment can be formulated as follows:

R; = R(C(Fy), Hy, Wy). ©)

After resizing, we obtain a set of new feature maps
expressed as follows:

Rfeatures = 1Ry, Ry, ...

Subsequently, at each pixel position (h, w), we calculate
the average value across different scales to construct a
weight that provides insight into which scale contributes
more significantly. This operation can be defined as
follows:

JRn}. (6)

1 n
M(h,w) = EZR,»(h, w). ™
i=1
Following this calculation, we build a weight matrix
reflecting the importance of each scale through
normalization:
Mh, w
Wl w) = e ) ®

S M, W)

Once these steps are completed, we acquire a weight
matrix for every pixel that emphasizes important features.
Next, these weighted feature maps are summation com-
bined to derive a final fused representation defined by
the following equation:

n
Final = |2 W © Ry|. ©)

t=1

Finally, to achieve classification objectives, we employ a
linear layer yielding class predictions according to:

PQYII) = g(Ftinal, W, bp),

where g(-) refers to softmax, and parameters W}, by, repre-
sent weights and biases learned by the classifier.

(10)

2.3 Dual-loss strategy

In the binary classification task of pulmonary nodule
malignancy, we first prepare a dataset consisting of pairs
of pulmonary nodule images along with their corre-
sponding labels. For each input image pair (I, L), where
L and I, represent two pulmonary nodule images, if both
belong to the same category (either both benign or both
malignant), then the label is set to y = 0; if they belong to
different categories (one benign and the other malignant),
then the label is set to y = 1. Next, we use the proposed
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ResNet as a feature extractor by loading pre-trained
weights and removing the last fully connected layer,
retaining only the part used for generating feature embed-
dings. During this process, for each input image I, we
obtain the feature representation through forward
propagation:

Zs = f(Iy), 1mn

where Z; is the output feature vector, and f denotes the
feedforward process through ResNet. Subsequently, to
optimize model performance, we first define Euclidean
distance to measure the difference in feature embeddings
between the two pulmonary nodule images:

D(Zy,Z5) = ||Z1 — Zy]. (12)
Then we compute the overall contrastive loss
Lcontrastive(y’ D(Zl» Zz))i
Lc(yy D(Zl’ ZZ))
_ {0.5D(Zy, Zy)? ify=0 (13
~ |o.5(max(0, m - D(Zy, Z,))?  ify=1.

In this context, L.(y, D(Zy, Z;)) is the contrastive loss; when
samples are from the same class (i.e., y = 0), we minimize
their distance, whereas when samples are from different
classes (i.e., y = 1), we desire that their distance exceeds
some threshold m. Simultaneously, we use BCE loss to
assess how well the network predicts given inputs.
Corresponding to each category, the network produces a
logits value that is transformed into probability via a sig-
moid function:

pOIk) = a(z), (14)

where p(y|ls) indicates the probability of malignancy given
provided pulmonary nodule image I; and z is its logits
value after mapping; while function g(J) maps inputs
into output space via the neural network structure. Thus,
the BCE loss can be defined as follows:

Lyce(y, pOYID)) = —[y log(p(y|D) + (1 - y)log(1 - pyII))].

Finally, these two losses are combined into an overall loss
function:

zg = g(Iy),

15)

L qual = Leontrastive + Lices (16)

where L g4, represents total loss including contrastive loss
and binary cross-entropy loss. During training, paired
data will be passed into model preferentially, followed
by performing forward propagation in every epoch leading
towards obtaining feature embedding accordingly. Full con-
sideration regarding total loss would include comprehensive
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optimization schemes toward respective parameter updates
throughout iterations.

3 Experiment

In this section, we outline a series of experiments aimed at
validating the effectiveness of our proposed methodologies
for detecting pulmonary nodule malignancy. We begin by
describing the dataset utilized, along with the implementa-
tion details and evaluation metrics. Following this, we con-
duct a systematic set of experiments to assess and confirm
the efficacy of our proposed model.

3.1 Datasets

The LIDC-IDRI (Lung Image Database Consortium and
Image Database Resource Initiative, https:/www.
cancerimagingarchive.net/collection/lidc-idri/) is a public
database dedicated to the detection and classification of pul-
monary nodules. It consists of CT scan images from 1,018
patients, with slice thicknesses varying from 0.6 to 5 mm.
To ensure accuracy, each nodule’s diagnostic information —
including location, diameter, malignancy classified on
a scale of 1 to 5, calcification level, and spiculation — has
been independently annotated by four radiologists. This
research aims to develop a network that classifies nodules
as benign or malignant based on a voting strategy;
specifically, if at least half of the experts rate a nodule above
3, it will be classified as malignant; otherwise, it will be
deemed benign. To simplify model complexity, only the
center cross-section image of each nodule is used as input.

3.2 Implementation details

The classification network was developed in an experimental
environment using Keras, leveraging the power of an Nvidia
GTX 3090 GPU. In addition, we implemented a learning rate
adaptation strategy known as ReduceLROnPlateau, which
adjusts the learning rate based on validation performance
metrics. To further enhance model generalization, we applied
various data augmentation techniques such as random rota-
tions, vertical and horizontal flips, and brightness adjust-
ments. The experimental results are validated by cross-vali-
dation to ensure generalizability, where performance metrics
are averaged over all folds.
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3.3 Evaluation metrics

Accuracy measures the overall model performance in cor-
rectly classifying instances. It is calculated as the ratio of true
positives (TP), which are correctly identified positive cases,
and true negatives (TN), which are correctly identified nega-
tive cases, to the total number of instances assessed (including
false positives (FP) and false negatives (FN)):

TP + TN
TP + TN + FP + FN’

Accuracy = an

Sensitivity indicates the model’s ability to identify
actual positive instances. It is defined as the proportion
of true positives relative to all actual positives (TP plus FN):

TP

_—. 18
TP + FN 8)

Sensitivity =
Specificity assesses the model’s effectiveness in identifying
negative instances. It expresses the proportion of TN out of
all actual negatives (TN plus FP):

N

—— 19
TN + FP 9)

Specificity =
The area under receiver operating characteristic (ROC) curve
(AUC) summarizes the model’s capability to discriminate
between classes; higher values indicate better performance.
AUC is evaluated by plotting the true positive rate against the
false positive rate across various thresholds.

3.4 Evaluation of multiscale feature
weighted fusion

This experiment evaluates the impact of MFWF on model
performance. A comparison is made between the classifi-
cation different evaluation metrics of the model employing
the proposed MFWF and that without (w/o) MFWF as
shown in Table 1. The results indicate an effective enhance-
ment in the recognition of critical features across varying
scales, suggesting that the integration of information from
multiple scales allows for improved attention to essential
characteristics relevant to accurate classification. This

Table 1: Evaluation of multiscale feature weighted fusion

Accuracy (%) Sensitivity (%) Specificity (%) AUC
w/ 90.12 90.00 90.23 0.902
o MFWF
w/ 91.34 92.44 90.26 0.924
MFWF
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improvement highlights the effectiveness of our approach
in addressing the limitations associated with single-scale
methods, ultimately leading to better diagnostic capabil-
ities in classifying pulmonary nodules.

3.5 Different fusion modes of MFWF

In the MFWF process, we examine various fusion techni-
ques such as averaging, concatenation, and linear fusion
alongside simple summation for integrating features from
different layers. As shown in Figure 3, our experimental
results demonstrate that summation consistently outper-
forms the other methods due to its ability to emphasize
significant features captured in deeper layers while
avoiding dimensionality issues present in concatenation.
Unlike averaging, which dilutes key information by giving
equal weight to all inputs, summation effectively enhances
classification performance by retaining critical details.
While linear blending shows promise in specific contexts
through its adaptability, it does not achieve the robust
performance exhibited by the summation method.

3.6 Impact of dual-loss training strategy

The experiments conducted to evaluate the benefits of
combining Lgya With Leonirasive and Lyce demonstrate
enhanced generalization performance, as shown in
Table 2. The dual-loss strategy ultimately achieves superior
results. This improvement can be attributed to its ability to
facilitate learning from both similarities and differences
among paired samples. By integrating both types of infor-
mation, the model gains a more nuanced understanding of
the relationships between benign and malignant nodules,
surpassing the performance of using a single loss function
(Lbce or Lcomrastive) alone.

3.7 The integration of various input sizes

In the experiment, image sizes of 64 x 64, 96 x 96,
128 x 128, 256 x 256, and 512 x 512 are utilized. As illu-
strated in Figure 4, the results show that the model per-
forms best at an input size of 128 x 128. This optimal per-
formance stems from the ability to balance sufficient detail
capture with manageable computational complexity. At
this size, the model effectively retains important features
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Figure 3: Different fusion modes of MFWF. a, b, c, d represents the averaging, concatenation, linear, and summation, respectively.

necessary for classification while avoiding information
loss seen in smaller sizes and excessive noise found in
larger sizes. Ultimately, the choice of 128 x 128 enables
efficient focus on significant patterns, leading to improved
feature extraction and enhanced classification accuracy in
deep learning models.

Table 2: Impact of dual-loss training strategy

3.8 Comparison with state-of-the-art models

To validate the proposed methods further, a comparative
analysis is implemented against several state-of-the-art
image classification models currently employed for malig-
nancy detection in pulmonary nodules. Notably, since the

Accuracy (%) Sensitivity (%) Specificity (%) AUC
Lice 90.72 91.53 90.01 0.905
Leontrastive 89.16 90.02 88.37 0.868

Lyce * Leontrastive 91.34 92.44

90.26 0.924
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Accuracy for Different Input Sizes

93
92
91.34
91.10 91.12

91 —
oy
® 90.58
3
g 90.20

) . l

89

88 - T T l T

64x64 96x96 128x128 256x256 512x512
Input Size

Figure 4: The integration of various input sizes.

sizes of each method in the original research is not the
same, for a fair comparison, we reemploy those methods
on the same data to validate the effectiveness of our pro-
posed method. All the hyperparameters are obeyed the
original settings. Here, we compare those methods as
follow: Nibali et al. [21], Shen et al. [22], Zhang et al. [23],
Wang et al. [24], Zhang et al. [25], Huo et al. [26], Ding et al.
[27] (only using the single stream and modality), and Man-
zari et al. [28]. As shown in Table 3 and Figure 5, the results
indicate that the proposed approach consistently outper-
forms existing methodologies across all evaluation metrics.
Notably, we conduct paired t-tests to compare our pro-
posed method with other existing approaches, and the
p-values obtained from these comparisons are all below
0.05, thereby confirming the statistical significance of the
reported improvements. Furthermore, this improved per-
formance can be attributed to the effective integration of
multiscale features employed during training, which
enhances the model’s ability to discern subtle differences
between benign and malignant nodules. In addition, the
use of contrastive loss facilitates better learning from

Table 3: Compared with state-of-the-art methods
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Figure 5: The ROC comparisons with state-of-the-art methods.

similar samples, contributing to an overall increase in
diagnostic accuracy and reliability. These findings under-
score the advancements achieved by our proposed
methods in enhancing the classification capabilities for
pulmonary nodule malignancy.

3.9 Different depths of ResNet

The influence of different depths of ResNet on perfor-
mance is investigated through experiments examining var-
ious architectures. As shown in Figure 6, results indicate
that as the depth of ResNet increases, performance initially
improves due to enhanced capabilities in capturing com-
plex features and learning intricate hierarchical represen-
tations. This improvement arises because deeper networks
can learn more abstract representations, allowing them to
model complex patterns in the data effectively. However,
after reaching a certain depth, this performance stabilizes,
suggesting diminishing returns regarding further depth.

Accuracy (%) Sensitivity (%) Specificity (%) AUC
Nibali et al. [21] 87.85 84.88 90.74 0.875
Shen et al. [22] 86.16 83.42 88.84 0.862
Zhang et al. [23] 85.92 85.12 86.72 0.859
Wang et al. [24] 85.92 91.46 80.52 0.852
Zhang et al. [25] 90.61 91.22 90.02 0.908
Huo et al. [26] 85.08 91.7 78.62 0.841
Ding et al. [27] 84.96 84.39 85.51 0.847
Manzari et al. [28] 84.72 87.56 81.95 0.853
Ours 91.34 92.44 90.26 0.924
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Figure 6: Comparisons with different depths.

The saturation occurs because very deep networks may
struggle with issues like overfitting and increased difficulty
during training. Overall, while increasing depth enhances
classification performance up to a point by leveraging
these advanced capabilities, careful consideration is neces-
sary regarding training dynamics and computational
resources in deeper configurations.

4 Conclusion

In this article, we present innovative strategies to enhance
the effectiveness of image classification for classifying pul-
monary nodule malignancy. Our approach addresses lim-
itations in previous methods, notably the inadequate inte-
gration of multiscale features and the suboptimal use of
conventional loss functions. By implementing multiscale
feature weighted fusion, we improve information integra-
tion across various scales, allowing our model to focus on
key pixel positions essential for accurate diagnosis.
Furthermore, the combination of contrastive loss with
binary cross entropy facilitates superior learning from
similarities and differences among paired samples, enhan-
cing discrimination between similar nodules while main-
taining sensitivity to class variations. The results demon-
strate that our methodologies yield improvements in
classification performance and reliability compared to
existing approaches. Looking ahead, future research could
explore further optimization of feature integration techni-
ques and investigate additional hybrid loss functions that
leverage more complex relationships within datasets,
aiming to refine diagnostic accuracy even further and
expand applications to other medical imaging scenarios.
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