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Abstract: Automatic speech emotion recognition has become
an important research subject in the area of speech signal
processing. The performance of classification algorithms
depends on the features extracted from speech. In this
work, a new framework for emotion recognition is pro-
posed based on the long-term average spectrum (LTAS).
Our framework is evaluated through a comparative study,
where classifiers such as artificial neural network, K-nearest
neighbours, logistic regression, Bayesian algorithms, tree-
based logistics, and support vector machine were used.
The framework was experimentally tested using the well-
known Toronto Emotional Speech Set database, and the
results were compared against state-of-the-art alternatives,
using mel frequency cepstral coefficients, filter bank ener-
gies, and chroma coefficient speech coding, on this database.
Comparative experiments showed that the use of LTAS
achieved higher performance, with accuracies of 96-99%
in terms of correct classification of speech emotion, com-
pared with the best performance of 97% for the state-of-
the-art alternatives. Different sampling frequencies were
used to extract LTAS, and the classifiers were tested indivi-
dually. The main contribution of this work is to demonstrate
that the new framework using LTAS significantly reduces the
number of parameters down to 87.5 values per s (approxi-
mately), as opposed to the 1,200 values used in the best-per-
forming state-of-the-art alternatives; this means that the pro-
cess of feature extraction is significantly reduced and the
performance in terms of correct classification is improved.
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1 Introduction

Automatic speech emotion recognition (ASER) is a challen-
ging task, due to the gap between real human emotions
and acoustic features [1]. ASER plays a very important
role in human-computer interaction (HCI), as it provides
important psychological information about a speaker, thus
enabling devices to recognise a person’s emotions through
conversation and then to make relevant decisions about
them. Emotion recognition also lies at the centre of affec-
tive computing and has had many applications for several
decades; its applications have been visualised in the study
by Picard [2]. Emotion recognition is used in areas such as
multimedia applications, health care, and HCI [3]. Research
has shown that an absence of emotion causes discomfort
for a human when communicating with a computer [4],
suggesting that the use of emotions in human-computer
interfaces could be desirable. In addition, studies of the
influence of certain products on clients’ feelings can deter-
mine whether the product will be bought or rejected [5].
Also, studies of products influencing client feeling, could
determine if the product is bought or rejected [5]. In the area
of education, affective computer applications could improve
and prepare the student’s mental state for learning [6-8].

From experiments with emotions, it has been sug-
gested that an extremely positive mood is not beneficial
for learning and that a slightly negative emotional state
promotes critical thinking [9]. In areas such as psychology,
emotion recognition could help psychologists to detect
emotions in people with expressive difficulties [10]. Appli-
cations in the domain of rehabilitation, where emotional
comprehension of the patients is crucial, could result in
shorter and more successful recoveries. Researchers in
psychology and neuroscience have been interested in the
benefits of emotions, and in this context, the use of auto-
mated emotion recognition can be helpful [11].
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An ASER system with low complexity in terms of
implementation and a quick response time could be desir-
able in the areas discussed earlier. Feature selection poses
an important challenge for ASER, due to its strong influ-
ence on the performance of the whole system, and there
are no single features, frameworks, methods, or algorithms
that yield high and stable performance in all scenarios of
speech emotion classification. Research and experimenta-
tion in this area is therefore valuable.

Speech emotion classification results have been
reported in several studies. In the study by Jiang et al.
[1], the interactive emotional dyadic motion capture
dataset was used, and an accuracy of 64% was obtained
for correct classifications. Kerkeni et al. [12] used the Berlin
and Spanish databases and combined empirical mode
decomposition with the Teager-Kaiser energy operator to
achieve an accuracy of 91.16%. Their experiments involved
a set of features such as energy cepstral coefficients, fre-
quency-weighted energy cepstral coefficients, and mel
frequency cepstral coefficients based on the recon-
structed signal.

Praseetha and Vadivel used the TESS database and a
deep neural network (DNN) to obtain an accuracy of
89.58% and used a recurrent neural network (RNN), known
as a gated recurrent unit (GRU), for speech emotion recog-
nition with an accuracy of 95.82%, using the features of Mel
frequency cepstral coefficient (MFCC) and delta MFCC [13].
Two other studies by Shaw and Saxena in 2016 [14] and
Palo and Chandra in 2015 [15] used MFCC. Karimi and
Sedaaghi [16] and Emerich and Lupu [17] used time-domain
based methods. A discrete wavelet transform was also used
by Emerich and Lupu, and their results indicated an accu-
racy of 96.57%. Perceptual linear prediction (PLP), linear
prediction coefficient (LPC), linear prediction cepstral coef-
ficient (LPCC), and MFCC were used by Palo and Chandra,
who reported an accuracy of 80%. Nanavare [18] and Bastug
[19] also experimented with classification for speech emo-
tions using MFCC, as this feature is typically employed for
speech processing.

Most existing methods for ASER use MFCC as the main
feature, as this leads to the extraction of detailed informa-
tion from speech; however, the number of parameters
(values) involved in these classification methods is rela-
tively high. The values for codification of the speech
scheme must be processed by filters and classifiers, which
affects the time required for value extraction, filtering, and
training, as well as the precision of the classification
[20,21], among other disadvantages. Efforts have been
made to reduce the number of speech parameters [22,23].
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Gambhir et al. [24] worked with the Hindi language, and
considered 27,145 speech keywords developed by Tata Insti-
tute of Fundamental Research and 23,664 of 1-s utterances
English speech commands, using Google TensorFlow and
Artificial Intelligence Yourself English Speech Commands,
which had not been explored and examined well on AVR
systems [24]. In their article, they presented a three-layered
two-dimensional sequential convolutional neural architec-
ture (Sequential Conv2D) as an end-to-end system that could
instantaneously exploit speech signal spectral and temporal
structures. They trained and tested their model on different
cepstral features such as frequency and time variant-mel-
filters, gamma-tone filter cepstral quantities, bark-filter
band coefficients, and spectrogram features of speech struc-
tures. The performance of convolutional layers trained on
spectrograms was reported to give an accuracy of 91.60%,
better than for other cepstral feature labels for English
speech. The same model achieved an accuracy of 69.65%
for Hindi audio words, where bark-frequency cepstral coef-
ficients features outperformed spectrogram features.

Many other works in the field of speech emotion clas-
sification have been proposed; however, the high number
of features involved and their impacts in various ways on
computational cost mean that these methods are unsui-
table for emotion classification, primarily when the
response time is crucial.

In this article, an ASER framework based on LTAS is
proposed, its performance is tested, and a comparative
study is conducted with current methods in the literature,
using the Toronto Emotional Speech Set (TESS) database.
The experimental study was performed with seven emo-
tions (classes): anger, disgust, fear, happiness, pleasant-
ness, surprise, sadness, and neutrality. Our framework
based on LTAS was tested against a multilayer perceptron
(MLP) neural network, k-nearest neighbours (KNN), sequen-
tial minimal optimisation (SMO), and a variety of tree-based,
logistic, and Bayesian algorithms. The main aims of this
work were to experiment with alternative speech features
and to reduce the number of features and their respective
parameters, to make this approach suitable for the high
performance requirements of speech emotion classification.
This article is organised as follows: Section 2 reviews the
main features used for speech emotion recognition. In Sec-
tion 3, we describe the methods and frameworks employed
in this study. Section 4 explains the speech codification pro-
cess, based on frequencies and features in the time domain
that are commonly used in ASER. Section 5 presents the
experimental results and the methods used. The conclusions
are drawn in Section 6, with suggestions for further work.
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2 Speech features

In this section, we review the speech codification process
based on the frequencies and features of the time domain
that are commonly used in emotion recognition. The energy,
zero crossing rate, and pitch are measures commonly used
in the time domain, whereas in the frequency domain, the
most widely used are MFCC, LPC, LTAS, and mel filter banks.

2.1 Energy

The energy is obtained as the sum of squares of the signal
amplitudes, and it is proportional to Pa?s [17,25] because
x(t) is the amplitude of sound, given in Pa. Then, the
energy is defined as follows:

= x%0). o))

This feature has been used for vowel recognition from
speech signals, phoneme speech segmentation [26], and the
detection of voice presence in high-quality speech signals.

2.2 Fundamental frequency

The fundamental frequency (F) is the vibratory frequency
of the vocal cords. The number of air pressure oscillations
per second determines the Fy. The pitch is related to F, as it
is how Fj is perceived by our ears. The F; is usually used for
tasks such as gender identification and as an important
indicator of emotional status.

2.3 Mel spectra

Mel spectra are obtained by passing a speech signal through
a triangular filter bank, where the result is given as a vector
of spectra. Each spectrum in the vector is obtained by an
individual filter, where the size of the vector is the same as
the number of filters in the bank (Figure 1).

The axes of the triangular filters are distributed
according to the nonlinear mel scale proposed by Stevens
and Volkman [27], where the borders of the filters lie on
adjacent frequency axes. These authors proposed that the
perception level with respect to a frequency that is heard
follows a logarithmic scale expressed by the equation:

F(f) =295 logw[l + 7{;—0] @
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Figure 1: Extraction of a spectrum through mel filter banks.

This speech codification has been used in various types
of speech research, such as speaker recognition and speech
segmentation [28].

2.4 Linear predictive coding (LPC)

LPC is a scheme for representing voice production. The LPC
models a filter, through which sound source passes. The
filter represents a function for obtaining speech parameters
such as pitch, formants, and vocal tract [29]. It is helpful in
terms of representing signals in a compressed way for net
transmissions, thereby removing redundancy. The model is
also known as linear prediction (LP), where a speech signal
is approximated as a linear combination of its previous
values [30].

The MFCC measures the spectral variations of frequen-
cies, thus enabling the treatment of the frequencies in the
time domain [31] as the cepstrum is a periodicity measure
of frequency. This approach to speech codification has
been used in many applications, such as the detection
and classification of infants’ cries [32,33].

2.5 MFCCs

MECC is the most typical method used to extract spectral
information from audio data. MFCCs are based on the mel
scale in the frequency domain, which follows the distribu-
tion of the human ear. This codification scheme for audio
has been applied to a wide variety of studies into speech
processing due to its robustness in regard to speaker and
recording variability [30].
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MEFCC extraction starts by applying a pre-emphasis
filter to emphasise the higher frequencies, as these fre-
quencies are reduced in the recording process; at the
same time, some effects from the glottal source are also
reduced. The spectral slope is increased by 6 dB/octave
over the frequency F as the input parameter. A Hamming
window is used to reduce spectral distortions by splitting
the continual signal into frames of 20 or 30 ms (typically),
overlapping by 10 ms [34].

The MFCC features are derived from the fast Fourier
transform (FFT) spectral magnitudes passed through the
mel filters bank, and the logarithm of the energy on each
filter is computed before applying a cosine discrete trans-
form to produce the MFCC feature vectors.

2.6 Long-term average spectrum (LTAS)

LTAS represents the averaged spectral information on the
vocal tract over the frequencies. The process of extracting
LTAS from a speech signal involves applying framing with
overlapping and computing its spectral power and then
obtaining the spectral average. A Hamming window is
then applied to each frame to smooth the edges, and an
FFT is applied to these frames [35]. The LTAS is obtained
using a frequency step (bin width) that ranges from zero to
the maximum frequency of the speech signal. At each step,
an averaged spectrum is computed. The size of the LTAS
vector is the same for all signals with the same sampling
frequency. LTAS represents the power spectral density in
dB/Hz and is frequently expressed in logarithmic form as
follows:

PSD(/)
Przef

PSDgp(f) =10 - 10g10 s 3

where B = 2 - 107 Pa. Then, this logarithmic power spec-
tral density is the quantity stored in an LTAS [25]. This
power spectral density can be calculated from the sound
complex spectrum x(t) in the time range T = t, — t;, mea-

sured in Pa?/Hz:
2
PSD = @ @

The average sound power is obtained in the range time
(t, ) as follows:
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Figure 2: Spectrum for the sentence “Say the word wire.”
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Figure 3: LTAS for the sentence “Say the word wire.”

LTAS is the average of the spectrum over a long speech
signal and is used to describe the resonance characteristics
of a speaker; in general, it is useful for recognition of
a speaker [35], including gender, age, and diseases [36]
and forensic usage [37]. In general, LTAS encodes speech
signals with the voice quality [38].

In order to demonstrate the simplicity of LTAS repre-
sentation, the spectrum and LTAS were extracted from the
sentence “Say the word ‘wire™, spoken by a woman, and
both kinds of signals were graphed. The spectrum shows
a high level of variability in its values over the frequencies
(Figure 2), and a summarised version of the spectrum is
therefore used, such as LTAS (Figure 3).

3 Speech emotion recognition

Several features are used in the speech recognition pro-
cess, such as delta MFCC and MFCC [13]; MFCC, LPC, LPCC,
and PLP [15]; and MFCC, zero crossing rate, energy, and
chroma coefficients [39], among others. In this section, we
review the different speech measures and coding used in
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the literature and describe the usage of different measures
and speech codification processes.

3.1 MFCC, LPC, LPCC, and PLP for emotion
recognition

MECC, LPC, and PLP were described and compared in
terms of their individual effectiveness for emotion recogni-
tion by Palo and Chandra [15] using three and four classes
(boredom, anger, sadness, and surprise). The results indi-
cated that an MFCC-based method could achieve the best
accuracy of 80.00-83.20% followed by a method based on
PLP speech codification (70-74.3% accuracy), and finally,
a framework based on LPC (48.60-56.20% accuracy).
The authors concluded that methods based on MFCC gave
the best performance.

3.2 Excitation source analysis with MFCC

Pravena and Govind [40] experimented with the IITKGP-
SESC and EmoDb emotional databases. The speech codifi-
cation used was MFCC, and a Gaussian mixture model
(GMM) was used as a recognition system. With EmoDb,
four classes were considered (anger, happiness, boredom,
and neutrality), and 80% of the total utterances were
tested. The best performance in terms of emotion recogni-
tion was obtained using 256 Gaussian mixtures, where the
average accuracy was 73.28% for the classification of these
five emotions. In this study, 39 MFCC coefficients were
extracted from 20 ms frames with an overlap of 10 ms,
and information on the MFCC velocity and acceleration
coefficients of each emotion utterance was obtained.

3.3 Mixed time- and frequency-domain
features

In work by Karimi and Sedaaghi [16] and Sundarprasad
[39], time and frequency-domain features were used. The
statistical features of pitch, energy, MFCC, LPC, and PLP
gave performance of 82.6% using Bayes classification on
the EmoDB database [16], while GMM and KNN gave
accuracies of between 79.52 and 75.61%, respectively. The
zero-crossing rate, spectral values, MFCC, and chroma
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coefficients were used by Sundarprasad et al. [39]. The
implementation and results of those works will be pre-
sented in Section 5.

4 Methodology

In this section, we briefly describe the features extracted
from the speech signals, and the classification algorithms,
database, and tools used in the experiments. PRAAT and
WEKA software packages were used in our experiments,
with classifiers such as MLP, KNN, logistic, simple logistic
(SL), SMO, random forest (RF), random tree (RT), J45 tree,
Bayesian network (BN), and Naive Bayes (NB).

4.1 Database

The signals considered in our experiments were obtained
from the TESS database [41], which was recorded at Tor-
onto University with two speakers (actresses aged 26 and
64 years). The dataset represents seven emotions: anger,
disgust, fear, happiness, pleasant surprise, sadness, and
neutrality. Both actresses were selected from the Toronto
area and were university-educated with musical training.
They both recorded the same number of samples, giving
a total of 2,800 signals in the set. The database is balanced,
and the class distribution is shown in Table 1.

4.2 Speech signal processing software

In this study, the LTAS was extracted from speech signals
using PRAAT software version 6.0.39. The classifiers cited

Table 1: Class distribution in the TESS dataset

Class Number of instances
Disgust 400
Neutral 400
Pleasure 400
Sad 400
Angry 400
Fear 400
Happy 400
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earlier, implemented using the Waikato Environment for
Knowledge Analysis version 3.7.9, were used for emotion
recognition.

4.3 Classification algorithms

The algorithms with the best performance in our experi-
ments, i.e. MLP, KNN, RF, SL, and SMO, will be briefly
described in this section.

4.3.1 MLP

MLP is an architecture inspired by a biological neural net-
work using two or more neurons called perceptron, which
is organised in the form of layers [42], where each percep-
tron in a layer is connected to a perceptron in another
layer.

Feedforward connections are used between the per-
ceptron layers; the signal flows in only one direction,
from the input layer to the output layer, passing through
the hidden layers. Each perceptron is fully connected to
each perceptron in the next layer, where connections
have individual adjustable weights that simulate synapses
(Figure 4).

A perceptron function could be defined by (6):

n
f=2 WrXt+ Wo=WT- X, (6)
i=1

The MLP is trained using the backpropagation algo-
rithm, where the error is propagated from the output to
inner nodes, and the weights are then adjusted using a
descending gradient, in order to minimise the output error.

Hidden
Layer

Input
Layer

Output
Layer

1 N
2
N —

Figure 4: Structure of the MLP.
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The error e in the jth neuron, where d is the desired value
and y is the output value, is determined by

ej(n) = d;(n) +y(n). )

A variety of neural nets have been used for emotion
recognition with successful results [13,14,43]. MLP has been
used in this area; many works in the literature survey their
structure [15] and have highlighted their relatively high
performance. The principal characteristics of MLP are (i)
the use of an activation function for each neuron, (ii) a
minimum of three layers (input, hidden, and output), and
(iii) the learning process.

4.3.2 KNN

The KNN proposed by Cover and Hart [44] and is a non-
parametric method based on similarity measures in which a
distance function is applied and the input vector (unclassi-
fied instance) is assigned the class label of its nearest neigh-
bour. The input vector is compared against each instance of
the training set TS, using a measure as Euclidean distance, to
search for the N nearest instances to the input vector, which
label it as the majority class of the N instances. The most
typically used distance measure is defined as follows:

N
dogx) = D - (= x)2, )
i=1

where x’ is the input vector, and x is each instance in the
TS previously labelled with a class, both with the same N
dimensionality. The set of the K minimal distances from x
to x’, as expressed in (9), takes into account the size of the
training set (TS):

Kninfd(x, X} V(X)(x) € TS ()]

The KNN classifier is a simple and older classifier that
is widely used in pattern recognition. It was used in our
experiments with significant results, as detailed in the
experimental section.

4.3.3 Random forests

Leo Breiman was the first to provide a text-based definition
of a RF [45] on his inital idea [46], as follows:

Definition: A random forest is a classifier consisting of a collec-
tion of tree structured classifiers h(x, 0y), k = 1,... where the 0y
are independent identically distributed random vectors and each
tree casts a unit vote for the most popular class at input x.

Each tree grows using a random vector ©x and the
training set, building a classifier h(x, 0y). O is generated
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independently from previous random vectors ©y,..., O — 1
with the same distribution for all the trees, giving a set of
tree classifiers. The final response is determined based on
an evaluation of the individual responses of all the trees.
The effectiveness of each tree depends on the strength
of the trees in the forest and the correlations between
them. The first step in creating the trees is a random selec-
tion, with replacement of features from the samples in the
training set, where a different subset of data is used to
develop each decision tree model. In the second step, fea-
tures are randomly selected to split each node [47].

Tin Kam Ho applied an extended version of a random
subspaces method [48,49], created by Breiman et al. [50].
C4.5 algorithm of Ross Quinlan [51], a version based on ID3
algorithm, was developed by himself. J48 was implemented
in Weka based in C4.5.

434 SL

SL is a classifier based on the LogitBoost algorithm, where
the features are selected by applying simple regression
functions to LogitBoost. The J-class LogitBoost algorithm
uses quasi-Newtonian steps for fitting and an additive sym-
metric logistic model based on the maximum likelihood
[52], where the probability is expressed as follows:

P %00 (10)
o= F
Z£=1 : elf(x)
The simple logistic model is given as:
logit(:7) = In|—> ] = o+ XB 1)
& 1-7 '

This approach allows for the creation of simple models
while preventing over-fitting of the training data [53].
The algorithm works as follows. LogitBoost initially builds
a model for the root node. The iterations of the algorithm
are determined by a five cross-fold validation. The algo-
rithm is run on the training set with a maximum of 200
iterations and is used to build logistic regression models
[54]. The data are divided based on C4.5 splitting criteria,
and LogitBoost is used to build logistic regression models at
the child nodes.

4.3.5 SMO

The SMO algorithm is an improved version of the support
vector machine (SVM) algorithm for large quantities of
data. The algorithm replaces all missing values, transforms
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nominal attributes into binary format, and normalises all
attributes by default.

Overview: first, run all samples, then find a Lagrange
multiplier that violates the Karush—-Kuhn-Tucker (KKT)
conditions (linear equality constraint), which is eligible
for optimisation. Next, it chooses a second multiplier, ran-
domly finds the value (a) from another sample, optimises
the value (a), solves for the two multipliers, and updates
the new optimal values in SVM. Finally, these steps are
repeated until the KKT conditions are fulfilled, i.e., if the
iteration is greater than M (of Vapnik), it ends, otherwise, it
is repeated to all samples again. SMO is an analytical
method of optimisation that solves the SVM quadratic pro-
gramming (QP) problem by decomposing it into QP sub-
problems.

4.4 Classifier settings

The optimal settings of the principal parameters of the
classifiers used in our experiments are detailed here.

The KNN was set based on the Euclidean distance, with
no distance weighting, with one and three neighbours,
denoted here as KNN and KNN3, respectively. The para-
meters for the MLP were set to 0.3 for the learning rate,
0.2 for the momentum, and 500 epochs. A single hidden
layer was used in the experiments. A criterion of (classes +
input size)/2 was used to determine the number of neurons
in the hidden layer; for instance, using seven classes and 70
Hz for LTAS extraction gave 175 features and seven classes,
where the number of neurons in the hidden layer was 91.

The SMO used multinomial logistic regression where
the complexity parameter was set to one, and an epsilon
value of 1.0 x 107 was used for the round-off error. The
main parameters used for the RF classifier were as follows:
bagPercentSize (percentage of the training set size) was set
to 100, batchSize (number of instances to be processed) was
set to 100, numlterations (number of trees in the forest)
was set to 100, numExecutionSlots (number of threads
used) was set to one, numFeatures (number of features
chosen randomly to build the trees) was set to zero, which
apply equation (12) to obtain the number of features (attri-
butes). In experiments TotalAttributes is 175, and then
eight features were used. The parameter maxDepth, which
denotes the depth of the trees, was set to zero (for unlim-
ited depth).

For the SL classifier, the batchsize was set to 100, and
the parameter heuristicStop was set to 50 as the number of
iterations if no new minimal error was found. The



8 =—— Luis David Huerta-Hernandez et al.

parameter maxBoostinglterations was set to 500, and its
value was directly proportional to the dataset size. The
parameter weightTrim was set to zero, meaning that no
trim beta was used. The NB and BN classifiers did not
require parameter settings for these experiments.

numFeatures = log,(TotalAttributes) + 1. (12)

4.5 Framework

The speech emotion signals were read using PRAAT soft-
ware, and the LTAS Praat function was applied, which
required the parameter of the bandwidth (BW). We used
BW values of 70, 100, 200, and 300 Hz, respectively (see
experiments for details), which was done using a PRAAT
script. In order to start the LTAS extraction, the speech
signal was split into frames and windowed, where the
last was used to minimise spectral leakage. A FFT was
then applied to each window. The entire signal was split
using a bin width or a frequency step in order to obtain the
logarithmic power spectral density from the frequencies,
expressed as dB/Hz: 2 x 1075 Pa? [25]. A set of LTAS values
were returned for each speech signal, and the LTAS vector
was then built, with labels for the emotions specified in the
database. A database with LTAS values was built with a
cardinality equal to the number of emotional speech sig-
nals in the TESS database; this value was 2799, as one file in
the “Fear” class could not be read correctly and was ignored.
The LTAS database was then processed in WEKA, using
different classifiers with their default parameters. A 10-
fold cross validation process was used for the classification.
The entire speech emotion recognition framework is illu-
strated in Figure 5.

A brief description of the algorithm used in the frame-
work is provided in the following:
(1) Begin
(2) For each file in Data Set:

(@) Load the audio file and resample to 44 kHz.

Speech
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(b) Perform frame blocking:
(i) Divide the audio signal into overlapping frames,
reducing spectral distortion.
(i) Set frame_size = 20 ms and frame_overlap-
ping =10 ms.
(c) Apply a Hamming window to each frame to reduce
spectral leakage.
(d) Compute the Short-Time Fourier Transform (STFT)
to obtain a matrix of spectral values:
(i) STFTLk, n] = FFT(Frame[n]), where k is the
frequency bin and n is the frame index.
(ii) Compute the magnitude spectrogram STFT[k, n].
(e) Calculate the LTAS:

(i) LTASLk] = %ZnNﬂlSTFT[k,n]L across all frames.

() Generate the LTAS vector (feature vector).

(3) End For each

(4) With the LTAS[k] vector of each file, train the classifier
using ten-fold cross-validation.

(5) Predict the emotion of the input audio file using the
trained classifier.

(6) End

On the other hand, the complexity of the method will be
defined by abstracting the previous algorithm as follows:
(1) Load N files and resampling, with complexity O(N x L),

where:

(@) N is the size of the data set (number of files).

(b) L is the average frame length of the audio.

(2) Compute the STFT:

(a) Blocking: Divide the signal into frames without
overlap, with complexity O(N x L).

(b) Windowing: Apply a window to each segment
(frame), with complexity O(N x L).

(c) STFT computation: Perform the STFT with com-
plexity O(N x L log(frame_size)), where:
—frame_size is the length of the frame in milliseconds.

(3) Calculate LTAS: Averaging the spectral data of each divi-
L
frame_size

(@) B is the bin width of frequency.

sion (frame), with complexity O(B x ), where:

Frame Blocking
and Windowing

Emotion

Emotion Recognition

Frame
Fast Fourier
Transform
Spectrum
LTAS Vector
LTAS Processing

Figure 5: Proposed speech emotion recognition framework.
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(b) The complexity of N files is O(N x B x frame size ).

(4) Generate the LTAS vector for N files using B bins, with
complexity O(N x B).

(5) Perform tenfold cross-validation: assuming C as the
complexity of training the classifier, the overall com-
plexity is O(10 x C) = O(C).

(6) Predict emotion: the complexity depends on the classi-
fier used.

Summarising the computational complexity analysis
in the process:
(1) SFFT computing: The computational complexity is given by

O(N x Llog(frame_size)),

where
— N is the number of files,
— L is the average frame length of the audio,
— frame_size is the length of each frame.
(2) LTAS averaging: The computational complexity is as
follows:

L

O|N x Bx ———|,
frame_size

where
— B is the bin width of the frequency,
— N is the number of files,
— L is the average frame length of the audio,
— frame_size is the length of each frame.

The representative complexity of the method is, using N
files, as follows:

L

N - (L - log(fi i B ——)]|.
O|N - (L - log(frame_size) + ( framesize))

The method takes advantage of the low computational
load of LTAS processing, unlike other schemes such as
MEFCC, which require additional steps, such as applying
the Mel filter bank, logarithmic transformation, and dis-
crete cosine transformation.

5 Results and discussion

LTAS processing gives a reduced abstract of the frequency
spectrum, where the number of values per second is sig-
nificantly lowered. In the last module, a classifier is applied
for classification, which in our case involves determining
which of the seven emotions fits the speech signal. Typically,
in schemes reported in the literature, the audio signals are
passed through a pre-processing phase, where a pre-emphasis

Speech emotion recognition using long-term average spectrum = 9

filter and noise reduction are typically applied. In a data
mining approach, many filters could be applied to the data,
such as normalisation, attribute selection and resampling fil-
ters. In this work, neither audio signal filters nor data mining
filters were applied to the samples from the TESS database.

5.1 Feature extraction

The feature vectors were created by extracting the LTAS
from the audio signals. LTAS extraction requires a BW fre-
quency, as this defines the number of values (descriptors)
used to characterise the audio signal. BW values of 70, 100,
200, and 300 Hz were used in this case, giving 175, 122, 62, and
40 LTAS values, respectively. In our experiments, the larger
the value used for the LTAS, the better the performance.

5.2 Comparative analysis

Algorithms based on trees, functions, SVM, logistic regres-
sion, Bayes, KNN, and NNs were tested, and a tenfold cross-
validation method was applied. Table 2 presents the per-
formance of each classifier, using a defined number of
descriptors (values) as indicated in the header. In these
experiments, the MLP gave the highest performance for
each BW frequency in the sampling process. Increasing
the LTAS values improved the performance of the SMO
and SL classifiers, particularly at BW values of 70 and
100 Hz, where SMO performed just slightly below MLP.
The KNN classifier was robust over different attribute
sizes (first row), giving similar performance. The RF among
the set of trees algorithms, is outstanding with an accuracy
of between 94 and 98%. The Bayesian algorithms gave the
lowest performance on emotion classifications using LTAS.
Although a set of other algorithms were tested, only the
best performing of each type are presented here. For each
classifier, the average accuracy for the different BWs was
computed to determine the overall performance across the
range of BWSs. The last column in Table 2 contains the
average accuracy, and it can be seen that MLP was the
best classifier for emotion recognition using the TESS data-
base, followed by KNN (with a difference of approximately
2%), and then the RF, SMO, and SL classifiers of Figure 6.
The classifiers based on Bayes gave the lowest perfor-
mance. In the discussion section, we describe state-of-the-
art works where relevant results were obtained using var-
iants of NN, SVM, and KNN. The following works involved
experiments with the TESS database, where a subset of
features as MFCC, filter bank energies (FBEs), energies,
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Table 2: Performance of algorithms using four bandwidths for LTAS
extraction
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Table 3: Performance comparison with state-of-the-art works

Classifier Main Feats Values Classes Classif (%)
175 122 62 40 Avg. speech used
CIf. 70 Hz 100 Hz 200 Hz 300 Hz Acc. codif.
MLP 99.24 99.03 98.03 96.28 98.14 SVM [55] MFCC, 9 140 7 64.20
KNN 96.99 96.64 96.17 95.31 96.27 LPC,
RF 97.89 94.03 96.17 95.14 95.80 Fo,
SMO 98.42 97.46 94.67 91.89 95.61 Intensity,
SL 98.35 97.53 93.92 91.03 95.20 Tempo,
Logistic 92.56 91.74 92.10 90.06 91.61 SVM [56] MFCC 1 12* 4 97.00
48 90.49 87.92 86.88 84.03 87.33 GRU [13]  FBE 1 26* 5 95.82
RT 81.56 81.27 81.63 79.81 81.06 KNN [19]  MFCC
BN 75.63 7414 73.24 71.84 73.7 and FBE 13 637+ 6 95.00
NB 52.69 48.41 46.12 44.69 47.97 KNN [39] MFCC 1 13* 7 84.00
SVM [39] MFCC
Source: Authors. and
Chroma 1 25* 7 90.00
DNN [13] FBE 1 26* 89.96
zero-crossing rates, and chroma coefficients were used. ;p LTAS 1 175+ 7 99.24
A comparison of performance between these works and mLP LTAS 1 122+ 7 99.03
our framework is presented in Table 3. SMO LTAS 1 175+ 7 98.42
Experimental results with a subset (1,369 samples) of St LTAS 1 175+ 7 98.35
the TESS database were reported by Praseetha and Sagil 'r\{AFLP gﬁz 1 $725++ ; 23'23
[13], who used 26 FBE coefficients per frame. The total KNN LTAS 1 175+ 7 96'.99

number of values used per signal was not specified, but
long frames are typically 20 ms (overlapped by 10 ms), with
2,600 values per second. The best performance was 95.82%,
achieved using a GRU, an improved version of an RNN. In
our experiments, the best performance was obtained using
a common kind of NN called an MLP.

Experiments were also reported by Ugu Bastug [19],
who used coefficients such as delta values, acceleration,
mean, standard deviation, maximum and minimum of
MFCC, and the median, standard deviation, and acceleration

Notes: *Values used for each frame, where each frame long commonly
is 20 ms. +Values used for entire signal.
Source: Authors.

of the FBEs. In total, a matrix of values with 49 rows and 13
columns was used, although it was not specified whether
this matrix represented the complete audio signal or a
frame. Assuming that the matrix represents the complete
signal (2 s long), this would give 637 values. In summary,

Average accuracy

98.14 9627

95.8 9561 952

91.61

87.33

MLP KNN RF SMO SL

148 RT BN NB

Logistic

Figure 6: Averaged accuracy for each classifier over values of 175, 122, 62, and 40 for the LTAS per signal.
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signal processing for the numeric characterisation was
based on MFCC and FBE codification, in addition to the
statistical measures cited earlier. The KNN classifier was
used in these experiments similarly to our experiments,
and one of the best results, reported in Table 3, was obtained
using KNN.

Experiments with the TESS database, SVM classifier,
and MFCC as speech features for speech emotion recogni-
tion were carried out by Zafar Igbal and Farooq Siddiqui
[56]. A subset of TESS samples containing four emotions
(anger, happiness, disgust, and pleasant surprise) were used
for prediction purpose, and 50 and 6 samples were used for
each emotion, respectively, for training and testing. These
authors argued that with a subset, it was possible to predict
the behaviour of the entire database. The MFCC extraction
process used rectangular segments of 10 ms (100 per second),
and the number of coefficients was 12, giving an estimate of
1,200 values of MFCC per second.

This work was used as a comparison with the results of
our method, as the same database was tested (TESS) with
different features (our method uses LTAS). When used for
emotion recognition, MFCC and LTAS features have the
following differences: (i) a method based on LTAS uses 62
to 175 values per signal, as shown in Table 3 (the number of
values varies as a function of the BW frequency in LTAS
extraction process), whereas the method based on MFCC
uses 1,200 values per s; (ii) the accuracy of correct emotion
classification in our method ranges from 98.05% using 62
values per signal to 99.24% using 175 values per signal,
when the MLP classifier is used, compared with an accu-
racy of 97% with the method of Zafar Igbal and Farooq
Siddiqui method, which is based on SVM. Our method
achieves an accuracy of 98.42% using SMO, a kind of SVM.

Sundarprasad [39] experimented with the entire TESS
database, where 34 values of the speech signal were extracted
after the application of audio analysis. Some of the features
used were MFCC, energy, measures of spectral coefficients,
zero crossing rate, and chroma coefficients, with a total of 11
features. Principal components analysis (PCA) was applied to
reduce the dimensionality from 34 to 25. The classifier used
was SVM, and in a similar way to our experiments, the third
best performance was obtained using SMO, an improvement
on the SVM classifier, which achieved an accuracy of 98.42%
correct classification, using only 175 values for the entire
signal.

The work presented in [55] involved the Spanish data-
bases EmoSpanishDB and EmoMatchSpanishDB. MFCCs
were extracted from the audio files, with 13 per frame
(with frames 20 ms long). The mean, first and second deri-
vative, spectral centroid, and spectral contrast were com-
puted from the MFCC values, and lineal spectral coding
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(LPC) values, intensity, and fundamental frequency (FO0)
were used in this method. The best results were obtained
from SVM, with an accuracy of 56.04% for recognising the
emotions of disgust, happiness, fear, sadness, surprise,
anger, and neutrality.

Features are generally high dimensionality, as can be
observed from Table 3. There have been research studies in
this area [1], where architectures based on DNNs were
developed in order to extract, reduce, and homogenise fea-
tures. Features such as 1S10, MFCC, and eGemspd were used
and tested using the KNN, logistic regression, RF and SVM
classifiers. In our experiments, we also found that these
algorithms were the best for the task of emotion recognition.
The main difference lay in the order of their performance,
as Jiang [1] reported that the SVM achieved the best perfor-
mance, whereas the MLP was superior in our experiments.

In summary, the experiments carried out in this work
yielded similarities with the classifiers applied in state-of-
the-art schemes on the TESS database was used. We consid-
ered the classifiers NN (GRU), SVM, and KNN. We also com-
pared different speech codifications (MFCC, FBE, chroma, and
LTAS) using the TESS database. In Table 3, which shows the
results for our method based on LTAS, the number of values
extracted for the entire signal is denoted with a + sign, and
the number of values used for the other methods for each
frame of 20 ms is denoted by a * sign. For the entire signal, the
number of values used for emotion recognition, in the state-
of-art methods, is higher.

6 Conclusions

A new framework based on LTAS was tested for speech
emotion recognition using the TESS database, and was
found to give similar or higher performance than
methods/frameworks based on traditional coding schemes
(MFCC, LPC, FBE). Our results show that the use of LTAS
allows us to significantly reduce the number of values and
features per signal, thereby achieving a low computational
load and fast response time. We also conducted comparative
experiments among classifiers such as NN, KNN, logistic,
Bayesian trees, and SVM. Experiments performed with LTAS
as a speech coding scheme and MLP as a classifier showed a
high level of effectiveness, with an accuracy of 99.32% in terms
of correct emotion recognition. SMO and SL achieved an accu-
racy of 98%, in the best case and with 175 coefficients, while
KNN and RF achieved accuracies of 96.99 and 97.85%, respec-
tively, using 175 values of LTAS. The performance of our
model was higher than those reported as the state-of-art.
Classifiers for speech emotion recognition such as KNN, NN,
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and SVM in this work were the same classifiers reported in
the state-of-art works, and provided high speech emotion
recognition accuracy.

The method was tested on short spoken sentences
recorded in a controlled environment without noise. It
must be improved for robustness to perform in noisy or
real-world environments. This study tested whether LTAS is
useful for emotion recognition, as this task does not require
highly detailed spectral information. However, for other
tasks, such as speech recognition, LTAS may not be suitable,
and other schemes such as MFCC are more efficient.
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