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Abstract: The high development of sensors and wireless
network technology has led to the widespread application
of wireless sensor networks in the field of environmental
monitoring. How to establish efficient, fast, and stable data
collection algorithms has become a hot research field.
Given this, a dynamic clustering and multi-hop data collec-
tion algorithm is proposed based on the neighbor clus-
tering propagation algorithm, low-power adaptive layered
routing protocol, and multi-hop priority strategy. The final
experimental results indicated that the dynamic data col-
lection algorithm only entered a significant decay period
after 2,000 rounds of data collection, indicating that under
the same conditions, the dynamic data collection algorithm
had better data transmission performance. In Scenario 1,
the survival rate of the dynamic data collection algorithm
was still close to 80% at 300 rounds. The dynamic data
collection algorithm in Scenario 2 was still close to 75%
at 1,500 rounds. In Scenario 3, the remaining algorithms
decreased to below 50% after 100 rounds, while the dynamic
data collection algorithm remained close to 90% after 300
rounds. The remaining algorithms in Scenario 4 dropped
below 50% by 500 rounds, while the dynamic data collection
algorithm was still close to 70% by 1,500 rounds. The experi-
ment fully demonstrates that the dynamic data collection
algorithm has strong comprehensive performance, the
best stability, and the highest energy utilization efficiency.
Therefore, the dynamic algorithm proposed in the study has
strong survivability and performance advantages in various
scenarios.

Keywords: sensors, wireless network, environmental mon-
itoring, data collection algorithm, nearest neighbor clus-
tering propagation algorithm

1 Introduction

With the rapid development of wireless sensor network
(WSN) technology, more and more application scenarios
require the use of WSNs to collect data. WSNs are networks
consisting of a large number of small, low-power, distrib-
uted sensor nodes that can be connected to each other
through wireless communication [1]. WSNs are widely
used in the fields of environmental monitoring, healthcare,
smart home, agriculture, transportation, etc. However, due
to the distributed nature of WSNs and node resource lim-
itations, traditional data collection algorithms are difficult
to meet the demand for efficient, energy-saving, and reli-
able data collection [2]. Therefore, the study of intelligent
data collection algorithms for WSNs has important theore-
tical and practical significance. A large number of WSNs
are linked within a mutually recognizable range to become
a wireless network with a set scale, and each node within
the network can multi-hop to the base station through
nearby nodes to realize the over-distance propagation of
data [3,4]. However, WSN nodes have extremely limited
power, so how to efficiently collect and disseminate data
and how to efficiently replenish the energy of sensor units
is a key issue. In this context, the study proposes a dynamic
cluster-multi-hop data collection algorithm based on an
improved nearest-neighbor clustering propagation algo-
rithm, as well as a low-power adaptive hierarchical routing
protocol and multi-hop prioritization strategy for cluster-
based hierarchical data collection, which can efficiently
enhance the data collection efficiency in WSNs. The con-
tribution of the study is that the algorithm improves the
data transmission performance of the overall network by
combining sensor spacing and residual energy to select appro-
priate cluster heads. The algorithm has significant advantages
in terms of energy utilization, network lifetime, data transmis-
sion quality, and real-time performance, which provides
strong support for the research and practice of smart data
collection algorithms.

The goal of the research is to design and implement an
intelligent data collection algorithm by combining the nearest
neighbor cluster propagation algorithm, low-power adaptive
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hierarchical routing protocols, and multi-hop priority strategy
to improve the efficiency of data collection and transmission,
and to reduce the energy consumption and communication
load of the network, as well as to ensure the privacy of the
data and the security of the network. The research conducts
technical exploration and analysis from four aspects. The first
part discusses and summarizes the current data collection
algorithms for WSNs. The second part mainly studies
cluster-based data collection algorithms and mobile
unit-based dynamic data collection algorithms and also
includes the construction of dynamic clustering multi-
hop data collection algorithms. The third part mainly con-
ducts experimental verification and data analysis on the
dynamic clustering multi-hop data collection algorithm.
The fourth part provides a comprehensive overview of
the entire article, reflecting on and summarizing the
shortcomings.

2 Related works

The rapid development of sensor technology and the wide-
spread popularity of wireless networks have led to the
widespread use of wireless sensors, deepening people’s
exploration of data collection in WSNs. Building stable
and efficient wireless sensor environment monitoring net-
works has become an important research field for some
scholars. Liu [5] proposed a magnetic induction monitoring
network based on wireless underground sensor networks
and magnetic induction technology for remote monitoring
and control of underground environments, thereby improving
the stability of WSNs in underground environments. Abdul-
sahib and Khalaf [6] proposed dynamic data collection opti-
mization algorithms using wireless networks and embedded
sensors, combined with mobile devices, to address the energy-
saving issues of wireless sensors, thereby improving the eco-
nomic efficiency of WSNs. Fu et al. [7] proposed a drone
collection assistance algorithm using drone systems for the
application of drones in WSNs, thereby improving the
data collection efficiency of WSNs. Wang et al. [8] proposed
a joint optimization strategy for unmanned aerial vehicle
(UAV) data collection based on UAVs and trajectory design
methods to address the issue of data collection efficiency,
thereby improving the flexibility of data collection in WSNs.
Feng et al. [9] proposed a distributed data collection algo-
rithm for UAVs based on UAV systems and beamforming
methods to address the issue of data delay in data collection,
thereby improving the efficiency of data collection. Li et al. [10]
proposed a drone blockchain data aggregation algorithm
based on drone systems and spatiotemporal aggregation

technology for blockchain technology application in WSNs,
thereby increasing the lifecycle of WSNs.

In addition, Liu et al. [11] proposed a radio frequency
wireless power transmission data collection algorithm
based on UAVs and an average information age minimiza-
tion reinforcement learning scheme for data collection in
wireless power supply networks, thereby improving the
reliability of wireless data transmission. Mendoza-Cano
et al. [12] proposed an Internet of Things (IoT) wireless
sensor data collection method based on WSNs and IoT tech-
nology to address the issue of urban flood monitoring,
thereby improving the accuracy of urban flood monitoring.
Dawson [13] proposed a lifecycle management method for
robot WSNs based on big data-driven technology combined
with physical information real-time monitoring systems
to address the issue of wireless sensor lifecycle manage-
ment, thereby improving the lifecycle of robot WSNs.
Wang et al. [14] proposed a distributed IoT drone trajec-
tory planning data collection method based on drones
and trajectory planning technology for the application
of drones in WSNs, thereby improving the security of
drones in wireless sensor data collection. Ghdiri et al.
[15] proposed an offline drone data collection algorithm
based on drone systems and cellular network technology
to address the issue of data collection in offline states,
thereby improving the stability of data collection in
WSNs. Zhu et al. [16] proposed a dynamic cluster data
collection algorithm based on UAV systems and deep
learning trajectory planning technology to address the
WSNs’ energy consumption issue, thereby reducing the
energy consumption of WSNs. Li et al. [17] proposed a
trajectory planning data collection algorithm based on
UAV systems and orthogonal frequency division multiple
access technology to address the problem of limited energy
UAV data collection, thereby improving the data collection
performance of UAVs.

Although WSNs have made significant progress in data
collection in recent years, there are still some challenges,
including latency, energy consumption, and stability issues
in data collection, as well as efficiency issues in data collec-
tion. Although some optimization algorithms have been
proposed to address these issues, there is still room for
improvement. Therefore, based on the improved nearest
neighbor clustering propagation algorithm and the low-
power adaptive layered routing protocol based on cluster
hierarchical data collection, a dynamic clustering multi-
hop data collection algorithm was proposed in the study.
The innovation of this method lies in its ability to adap-
tively adjust data collection strategies to achieve higher
data collection efficiency and stability in complex environ-
ments while reducing energy consumption.
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3 Design and implementation
of intelligent data collection
algorithm for WSNs

Unlike traditional data collection algorithms, the dynamic
clustering and multi-hop data collection algorithm that com-
bines the nearest neighbor clustering propagation algo-
rithm, low-power adaptive layered routing protocol, and
multi-hop priority strategy have certain innovations. To
enable the algorithm model to be applied in real scenarios,
its design, implementation, and validation are particularly
important. Therefore, this section mainly analyzes the prin-
ciples of the model and the construction of the system.

3.1 Cluster-based data collection algorithms
research

WSNs refer to monitoring and communication networks
that include a certain number of low-cost small-scale sen-
sors with sensing, data processing, and limited computing
power. WSNs achieve three major functions (data collec-
tion, processing, and transmission), and are an important
pillar of information technology [18]. The deployment simu-
lation of WSNs is shown in Figure 1.

From Figure 1, it can be seen that a large number of
miniaturized wireless environmental monitoring sensors
with simple communication capabilities are distributed
and deployed in the selected monitoring area. A sensor

network can be formed between each sensor node to
detect, collect, save, and transmit environmental data to
synchronously complete environmental awareness moni-
toring and warning tasks as a whole. Intelligent data
collection algorithms balance high data quality and com-
petitive priority in WSNs by optimizing data selection and
transmission strategies. It reduces redundant data trans-
mission by selecting the most valuable data for transmis-
sion, thereby reducing network energy consumption and
communication load. When it comes to WSNs, intelligent
data collection algorithms need to address issues related to
data privacy and security. To ensure the security of sensi-
tive data during transmission, it is necessary to encrypt
and authenticate the data. Access control and authorization
mechanisms should also be adopted to prevent unauthor-
ized access and data leakage. Furthermore, proper proces-
sing and aggregation of the collected data can reduce the
risk of data privacy breaches. Through these measures,
intelligent data collection algorithms can ensure data
privacy and security in WSNs, providing reliable data
support for various application fields. The study aims to
improve the low energy adaptive clustering hierarchy
(LEACH) protocol using cluster hierarchical data collec-
tion. The algorithm flow is shown in Figure 2 [19,20].

In Figure 2, this algorithm comprehensively selects
cluster heads by calculating parameters such as critical
distance, node residual energy, and threshold. After each
round is completed, the next round of cluster head election
will be conducted until all nodes are classified. The math-
ematical expression of the node list near a certain node
is shown in equation (1).
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Figure 1: Simulation diagram of wireless sensor deployment.
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( ) { ∣ ( ) }= ∈ ≤S v v v V v v R, dist , .i j j i jnb c
(1)

In equation (1), S
nb

represents the list of nearby nodes,
vi and vj represent sensor nodes, V represents the set of
base stations and sensor nodes, ()dist represents the dis-
tance between nodes, and R

c
represents the coverage range

of nodes. Since the position of the base station determines
the flow direction of node data, the direction of the data
is added to the formula as shown in equation (2).

( ) { ∣ ( ) ( ) ( )}= ∈ ≤S v v v S v v v v v, dist , dist , .i j j i j ifb nb 0 0
(2)

In equation (2), S
fb

represents the forward nearby
node list, and v

0
represents the base station. The data

flow to the base station is the upstream direction, and
the data flow to the node is the downstream direction.
The number of node sets near a certain node is node
degree, and the critical distance of nearby nodes is calcu-
lated as shown in equation (3).

=d ε ε/ .
0 fs mp

(3)

In equation (3), d
0
represents the critical distance of

nodes near the node, ε
fs
represents the power consumption

of the signal amplifier in the free space channel model, and
ε

mp
represents the power consumption of the signal ampli-

fier in the multipath attenuation channel model. Calculate
energy consumption through distance as shown in equa-
tion (4).
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In equation (4), k counts the bits in information trans-
mission, d represents the distance between nearby nodes,
E

amp
represents the energy used to transmit data con-

taining a certain amount of information for a certain dis-
tance, and E

elec
represents the energy loss per unit bit of

data during transmission or reception. The mathematical
expression of energy loss during wireless signal transmis-
sion or reception can be obtained through the above cal-
culation as shown in equation (5).
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In equation (5), ETx represents the energy consumption
during the transmission process, and ERx represents that
during the reception process. The power consumption of
the signal amplifier depends on the nodes’ distance. If the
distance is less than the critical value, the spatial free
transmission mode is adopted, and otherwise, the shortest
path channel mode is calculated. The model calculates the
threshold for a single node to be elected as a new cluster
head based on its remaining energy and the number of
nodes within a specific range, as shown in equation (6).
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In equation (6), ()T represents the threshold, n counts
the nodes, P represents the proportion of cluster head
nodes, a counts cluster head nodes, El represents residual
energy, E

0
represents initial energy, r counts the election

rounds, ()mod represents the number of nodes that have
been selected as cluster heads in the loop, and G represents
nodes set that were not selected as cluster heads in the
previous election round. The base station consolidates and
organizes the data of each cluster head and the nearest node
of the base station and sends it to the gateway node for
satellite public network transmission. The client canmanage
and control the real-time status of the entire network. The
runtime model for data collection is shown in Figure 3.

From Figure 3, it can be seen that each round of data
transmission involves a cluster head election and data
fusion transmission. The data fusion is shown in equation
(7).
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In equation (7), the information content of a single
data packet is assumed to be equal. ()Len represents the
total information content after data fusion, σ represents
the data fusion rate, and ς counts nodes in the cluster. By
reducing the probability of duplicate data transmission
through data fusion, data transmission efficiency can be
optimized, sensor energy can be saved, and the maximum
lifecycle of the network can be extended.

3.2 Dynamic data collection algorithm
research based on mobile units

At present, cluster-based data collection algorithms have
problems such as irregular distribution of node energy con-
sumption and fast energy consumption caused by cluster
head elections in each round. Research has proposed
a dynamic clustering multi-hop data collection algorithm
(DCMD) using affinity propagation (AP) and an enhanced
multi-hop priority strategy [21]. The mathematical expres-
sion of the distance between two random nodes in the AP
algorithm is shown in equation (8).

( ) ( ) ( ) ( )= − − + − ≠i j x x y y i jdist , .i j i j

2 2 (8)

In equation (8), both i and j represent nodes, x represents
the horizontal distance between nodes and base stations,
and y represents the vertical distance. The AP algorithm
widely propagates between sample points based on the
responsibility and practicality of each node and ultimately
identifies cluster points with the maximum sum of simila-
rities near each type of sample point. Its mathematical
expression is shown in equation (9).
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In equation (9), S represents the sum of similarity, c

represents the sample points at the cluster center, and ()δ

represents the exclusion criteria for the clustering results.
The value of combining the responsibility and practicality
of data unit nodes can be used as a quantitative criterion
for clustering judgment, and the iterative calculation of
their responsibility and practicality is shown in equations
(10) and (11).
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In equation (10), ()z represents responsibility, ()r repre-
sents potential cluster head practicality of nodes, ′i repre-
sents random nodes, and ϕ represents a set of sensor nodes.
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In equation (11), ′j represents a random node. The
responsibility between each node can be sequentially trans-
ferred and accumulated according to the flow direction of
the data flow to become the relevant basis for a certain point
to become the cluster center. The update rules in iterative
calculation are shown in equation (12).
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In equation (12), λ represents the damping factor. The
study introduced a virtual grid boundary partitioningmethod
based on the signal coverage range of sensor units to improve
the efficiency of various cluster elections and reduce energy
consumption levels. The mathematical expression of its work
node election is shown in equation (13).

( ) ( ) ( )( )= + − −C g h α E E α d R, / 1 1 / .
i j v m
,

res max (13)

In equation (13), C represents the competitive power of
the sensor node, g

i j,
represents the identification informa-

tion of the virtual grid, h represents the serial number of
the coverage unit, α represents the weight coefficient
adjusted based on the proportion of energy, E

res
represents

the remaining sensor energy, E
max

represents the initial
sensor energy, dv represents the distance from the sensor
to the center point of the virtual grid, and Rm represents
the diagonal value of the virtual grid. The work node
selects the virtual grid head based on the total and average
energy of the virtual grid sleep sensors, and its mathema-
tical expression is shown in equation (14).
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In equation (14), C
prob

represents the probability of the
virtual grid being elected as the grid head, β represents the
disturbance factor, ( )E h represents the total sleep energy
of the coverage unit, ( )E g

i j,
represents the total sleep

energy of the virtual grid, and E
sub

represents the average
energy. The timing of its data collection work is shown
in Figure 4.

From Figure 4, it can be seen that during the entire
data transmission process, only one virtual grid head elec-
tion is conducted, and the two steps of data submission
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within the grid and data scheduling between grids are
executed repeatedly. If the base station is a mobile base
station, it will cause changes in the network structure and
reduce system stability [22,23]. Therefore, the study
further introduces the mobile element optimization
strategy (MES). MES can change the communication dis-
tribution of the entire network based on its flexibility
characteristics, thereby enhancing network robustness
while further reducing overall energy consumption and
breaking through performance limitations. The technical
route is shown in Figure 5.

From Figure 5, it can be seen that the mobile element
includes related devices such as mobile base stations,
mobile repeaters, and mobile energy replenishment vehi-
cles. Its assistance in collecting monitoring data for the
overall network is divided into three stages: mobile element
discovery, routing construction, and scheduling methods.
The mule scheduling method schedules the movement of
data, and its priority mathematical expression is shown in
equation (15).
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In equation (15), ′P represents the priority of the data
unit, δ represents the level of the virtual point, and E

res

represents the lowest energy of the competitive priority.
Charging schemes are designed for each node and gener-
ally divided into periodic fixed-time charging and dynamic
adjustment charging schemes as needed. The fixed char-
ging scheme cannot adapt to dynamically adjusted sensor
networks, so the research adopts an on-demand dynamic
adjustment charging scheme. The optimal charging posi-
tion is calculated as shown in equation (16).

( ( ) ( )) [ ( )] ( )= =−H i r r j r G i r i p m, , max , , 1, 2, ... , .p p1
(16)

In equation (16), H represents the optimal charging
location, G represents charging efficiency, p represents
path nodes, and m counts the nodes included in the path.
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By determining the optimal charging location, real-time
energy replenishment can be carried out for the sensors
that need to be charged. Coupled with dynamic adjustment
data collection algorithms with sleep mechanisms, the
overall network reliability and survivability can be main-
tained at maximum data collection efficiency.

In summary, intelligent data collection methods have a
significant impact on the lifespan, data accuracy, and real-
time performance of WSNs. By optimizing data selection and
transmission strategies, intelligent data collection methods
can reduce redundant data transmission and lower network
energy consumption and communication load, thereby
extending the lifespan of WSNs. Meanwhile, intelligent
data collection methods can select the most valuable
data for transmission, improving data accuracy. In addition,
through dynamic clustering and multi-hop data transmission,
intelligent data collection methods can achieve real-time data
collection and transmission, improving the real-time perfor-
mance of the network.

4 Simulation results and
performance analysis

In the performance measurement and evaluation of intel-
ligent data collection algorithms, a comprehensive evalua-
tion is usually conducted from aspects such as energy
consumption, data quality, network lifespan, and real-
time response. Energy consumption is an important indicator
for measuring algorithm energy efficiency. By comparing the
cumulative energy consumption of different algorithms, the
performance of the algorithm can be feedback. Data quality
involves the stability and accuracy of data transmission. By
comparing indicators such as the stability of data collection,
single-round energy consumption level, and energy con-
sumption of the smallest unit of data collection, the energy
utilization efficiency of algorithms can be evaluated. The
network lifespan reflects the persistence of the algorithm.

By simulating a long-term data collection process and obser-
ving the survival rate of sensor nodes, the survival ability of
the algorithm can be evaluated. Real-time response involves
the real-time performance and response speed of algo-
rithms, which is particularly important for some application
scenarios that require high real-time performance. Experimental
comparison was conducted on the clustering process of the
algorithm, and cluster classification simulations were con-
ducted on 20 sensor nodes with fixed base station positions.
The DCMD algorithm was compared with the AP algorithm,
and the position information and remaining energy of all
sensor nodes were first generated in the case, as shown
in Table 1.

From Table 1, the 20 sensor nodes had an average
distribution according to the relevant parameter require-
ments, with a residual energy range of 2–8. The clustering
results in the table using the AP algorithm and DCMD algo-
rithm are shown in Figure 6.

In Figure 6, the traditional AP clustering algorithm
only considered sensor spacing to select cluster heads of
(39,77), (56,50), and (74,65), while the DCMD algorithm, which
combined sensor spacing and residual energy, selected
cluster heads of (35,70), (50,37), and (74,65), respectively.
The DCMD algorithm selected more suitable sensor nodes
as cluster heads than traditional AP algorithms, which can
improve the overall network’s data transmission perfor-
mance. In a long-term data collection state, the inventory
nodes in the network decreased over time until they
reached 0. The percentage numerical description of the
overall sensor data is statistically tested to show that the
sensor node data conforms to the normal distribution,
and the normal distribution of the sample data is shown
in Figure 7.

In Figure 7, after analysis and testing, it was found that
P is 0.2613, which is greater than 0.05, indicating that there
is no significant difference in the sample, and it can be
considered that the two distributions belong to the same
population. Subsequently, a classification model was used
to train the clustering results and subdivide the three main

Table 1: Sensor location and residual energy information table

Coordinate Rest energy Coordinate Rest energy Coordinate Rest energy

(82,67) 6 (49,75) 5 (67,38) 3
(46,47) 2 (56,50) 4 (50,37) 6
(34,85) 5 (74,65) 8 (49,54) 7
(66,56) 7 (55,24) 5 (56,83) 5
(62,69) 8 (35,70) 7 (44,70) 6
(39,77) 4 (72,58) 6 (75,83) 2
(65,74) 3 (65,54) 5
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sample categories. To verify the overall energy consump-
tion performance of DCMD, it was compared with the
LEACH algorithm, spatial heterogeneity and data collection
algorithm, minimum transmission energy algorithm, max-
imum gain first algorithm, distributed energy balanced
unequal clustering (DEBUC) algorithm, and user-centric
routing (UCR) algorithm, as shown in Figure 8.

From Figure 8, the clustering data collection algorithm
based on the Analytic Hierarchy Process entered a decay
period on average at 1,800 rounds, and finally reached the
lowest survival rate at around 2,000 to 2,500 rounds; The
traditional flat data collection algorithm entered a decay
period on average at 500 rounds, and the overall trend
showed a linear decrease. The average number of rounds
reached around 3,000, with the lowest survival rate. The
DCMD algorithm proposed in the study only entered a sig-
nificant decay period after 2,000 rounds, indicating that
under the same conditions, the DCMD algorithm had better
data transmission performance. The study further sets four
scenarios as shown below.

From Table 2, the experiment comprehensively tested
the model algorithm by combining three parameters: node
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number, scene edge length, and initial energy value. The
results are shown in Figure 9.

From Figure 9, in Scenario 1, the number of sensors for
algorithms such as DEBUC, LEACH, and UCR rapidly decreased
to less than 50% after 200 rounds, while in contrast, the sur-
vival rate of the DCMD algorithm remained close to 80% after
300 rounds. Entering Scenario 2, after 700 rounds, the number
of sensors in other algorithms rapidly decreased to below 50%,
while the DCMD algorithm showed unusual durability, main-
taining a survival rate of nearly 75% even after 1,500 rounds.
In Scenario 3, after 100 rounds, the number of sensors in other
algorithms sharply decreased to below 50%, while the DCMD
algorithm still maintained a survival rate of nearly 90% after
300 rounds. Finally, in Scenario 4, after 500 rounds, the

number of sensors in other algorithms also decreased to
below 50%, while the DCMD algorithm showed persistence,
and its survival rate remained close to 70% after 1,500 rounds.
From this, it can be seen that the relevant algorithms proposed
in the study had significant survivability and performance
advantages in various scenarios. The study further verified
the stability of generating cluster heads in relevant environ-
ments, as shown in Figure 10.

In Figure 10, the number of cluster heads in LEACH
from 1 to 11 may produce an average stable probability of
about 17%, indicating that it was the most unstable. The
probability of 3 and 4 cluster heads in DEBUC from 1 to 6
was close to 60%, which was relatively stable. The prob-
ability of 4 cluster heads in UCR from 2 to 5 was close to
90%, which was relatively more stable. DCMD had an
average probability of only 8 and 9, which was close to
80%. Overall, it was the most stable. The study further
compared the energy efficiency of the algorithm, as shown
in Figure 11.

The vertical axis in Figure 11 (a) shows that the system
cumulative energy consumption can reflect the energy
consumption level of a single round of data collection,
that is, the average energy consumption can provide feed-
back on the performance of the algorithm. Among them,

Table 2: Simulation parameters

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

Number
of nodes

200 200 400 400

Scene side
length

150 150 200 200

Initial energy
value

0.1 0.5 0.1 0.5
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the system energy accumulation speed of DCMD was the
fastest, while the system energy accumulation speed of
DEBUC was the slowest, indicating that the algorithm per-
formance of DCMD was the best. The vertical axis in Figure
11 (b) represents the number of clusters generated by the
algorithm, which can provide feedback on the stability of
data collection in each round of the algorithm. The DCMD
algorithm was stable at around 8, while the other algo-
rithms had significant fluctuations, indicating that DCMD
was the most stable. The vertical axis in Figure 11 (c) shows
the energy consumption level of a single round, indicating
that all algorithms were relatively stable. The vertical axis
in Figure 11 (d) shows the energy consumption of the smal-
lest unit for data collection, which can provide feedback on
the efficiency of the algorithm’s energy consumption. The
energy consumption fluctuation value of the DCMD algo-
rithm was about 0.2, the LEACH energy consumption fluc-
tuation value was about 0.4, the UCR energy consumption
fluctuation value was about 0.4, and the DEBUC energy
consumption fluctuation value as about 0.6, indicating
that the DCMD algorithm had the highest stability and
energy utilization efficiency. The final comprehensive per-
formance scores of each algorithm are shown in Figure 12.

From the vertical axis in Figure 12, the comprehensive
evaluation score includes three parts: life cycle, number of
data packets, and monitoring quality. Among them, the
DEBUC algorithm in the life cycle score had the highest
score of about 13 points. The lifecycle score of the DCMD
algorithm was about 8 points, the packet score was about 9
points, and the monitoring quality score was about 15
points. The highest comprehensive score of the DCMD algo-
rithmwas close to 35, indicating that the proposed dynamic
clustering multi-hop data collection algorithm had strong
comprehensive performance and data forwarding propa-
gation stability.

5 Conclusion

To address the issue of data collection in WSNs, a DCMD
algorithm is proposed based on clustering based data col-
lection algorithms and mobile unit based data collection
algorithms. The experiment analyzed the data collection
performance, propagation stability, and sensor survival
rate of the algorithm. Results indicated that DCMD only
entered a significant attenuation period after 2,000 rounds,
indicating that under the same conditions, the DCMD algo-
rithm had better data transmission performance. In Scenario
1, the survival rate of the DCMD algorithm was still close to
80% at 300 rounds. In Scenario 2, the DCMD algorithm was
still close to 75% at 1,500 rounds. In Scenario 3, the remaining
algorithms decreased to below 50% after 100 rounds, while
the DCMD algorithm remained close to 90% after 300 rounds.
The remaining algorithms in Scenario 4 dropped below 50%
by 500 rounds, while DCMD as still close to 70% by 1,500
rounds. From this, it can be seen that the relevant algorithms
proposed in the study had significant survivability and per-
formance advantages in various scenarios. The system energy
accumulation speed of DCMD was about 50% faster on
average than other algorithms, indicating that the algorithm
performance of DCMD was the best. The DCMD algorithm
was stable at around 8 clusters, indicating its highest stability.
The energy consumption fluctuation value of the DCMD
algorithm was about 0.2, the LEACH energy consumption
fluctuation value was about 0.4, the UCR energy con-
sumption fluctuation value was about 0.4, and the DEBUC
energy consumption fluctuation value was about 0.6,
indicating that the DCMD algorithm had the highest sta-
bility and energy utilization efficiency. The highest com-
prehensive score of the DCMD algorithm was close to 35,
indicating its strong comprehensive performance. The
research fully demonstrates that the DCMD algorithm,
which integrates cluster-based data collection algorithms
and mobile unit-based data collection algorithms, has signif-
icant advantages in terms of comprehensive propagation
efficiency. However, the dynamic algorithm proposed in
the study has a high energy consumption in large-scale sce-
narios and a short lifecycle under moving elements, which
requires further exploration and optimization. Future
research directions will focus on optimizing dynamic
and clustered multi-hop data collection algorithms to
reduce low energy consumption and extend the life cycle
of mobile elements in large-scale scenarios. Future work
will also explore new data collection algorithms, combining
the advantages of cluster-based and mobile unit-based data
collection algorithms to improve the integrated propagation
efficiency and further improve the performance and relia-
bility of the system.
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