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Abstract: A network intrusion detection method that inte-
grates improved spatiotemporal residual network and
generative adversarial network (GAN) in a big data envir-
onment is proposed to address the issues of poor feature
extraction and significant impact from data imbalance in
most existing intrusion detection methods. First, GANs are
used for wireless sensor network data resampling to gen-
erate new sample sets, thereby overcoming the impact of
data imbalance. Then, an improved spatiotemporal resi-
dual network model is designed, in which the spatial and
temporal features of the data are extracted and fused
through multi-scale one-dimensional convolution modules
and gated loop unit modules, and identity maps are added
based on the idea of residual networks to avoid network
degradation and other issues. Finally, the resampled sam-
ples are input into the improved spatiotemporal residual
network model to output the intrusion detection results of
the network. Based on the NSL-KDD, UNSW-NB15, and
CICIDS2017 datasets, experimental analysis is conducted
on the proposed method. The results showed that its accu-
racy on the three datasets is 99.62, 83.98, and 99.86%,
respectively, which are superior to other comparative
methods.

Keywords: network intrusion detection, improved spatio-
temporal residual network, data resampling, identity map-
ping, wireless sensor network

1 Introduction

With the increasing amount of data transmitted by network
devices and communication protocols, attack methods tar-
geting the Internet have become more complex and diverse,
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and network security issues have become increasingly severe.
The current computer network is facing security threats such
as denial of service (DoS), viruses, and network sniffing.
Intrusion detection systems (IDS) have become a research
hotspot in network security protection technology [1-3].

Network intrusion detection (NID) is to determine
whether a system has abnormal behavior based on net-
work traffic data, and intrusion detection can also be
abstracted as a classification problem. Early IDS mostly
used manual extraction or machine learning (ML) algo-
rithms for data feature extraction. With the advent of the
big data era, network data is growing rapidly, and data
features often have complex, high-dimensional, nonlinear,
and other characteristics. Faced with complex data, detec-
tion engines that use traditional data feature extraction
methods are no longer able to complete the data feature
extraction task well, and there is a problem of poor data
feature extraction ability [4,5]. In addition, when encoun-
tering network data with imbalanced data distribution,
most traditional classification algorithms have higher accu-
racy in detecting normal samples that make up a large pro-
portion of the overall sample size but lower accuracy in
detecting abnormal samples with a small number, resulting
in false positives and missed detections.

Deep learning (DL) algorithms are more efficient in
model construction and feature extraction and have higher
accuracy in processing large-scale data. Their powerful
properties such as adaptive feature learning, nonlinear
modeling ability, hierarchical abstract representation, and
large-scale parallel computing make them an effective tool
for intrusion detection [6,7]. Therefore, based on the
application research of DL algorithms, an NID method is
proposed that integrates improved spatiotemporal residual
networks and generative adversarial networks (GANs) in a
big data environment. Compared with most existing methods,
the innovation of the proposed method lies in
(1) The proposed method utilizes GAN for data resampling

to address the issue of imprecise detection caused by

limited data samples for network attack types to over-
come the impact of data imbalance.

(2) Due to the fact that most existing detection methods
rarely consider the spatiotemporal characteristics of
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traffic, the detection performance in complex environ-
ments is poor. Therefore, in the feature extraction
stage, the proposed method uses a one-dimensional
(1D) multi-scale convolutional layer to extract the spa-
tial features of samples, uses gated recurrent units
(GRU) to extract the temporal features of samples,
and fuses them to improve the model’s representation
ability.

(3) To prevent network degradation, the proposed method
adds identity mapping to the spatiotemporal residual
network, allowing deep networks to integrate features
from shallow, middle, and high-level networks, further
improving detection reliability.

2 Related work

At present, NID models are studied based on data statistical
mining, ML, and DL [8]. The NID model based on data
statistical mining captures a large amount of data feature
information from network traffic and extracts information
and knowledge beneficial to NID through data mining
models, such as association analysis, clustering analysis,
etc. As proposed by Salah [9], a real-time hardware IDS
implemented on FPGA and an algorithm for classifying
features from network traffic. Babu et al. [10] proposed
an intrusion detection method using clustering algorithms
to improve the performance of routing. Jianwu et al. [11]
proposed an IDS based on fuzzy theory and an improved
apriori algorithm. The fuzzy set technology is used to
solve the problem of large boundaries in continuous data
segmentation. The above methods are mostly based on
statistical methods, and the detection concept is relatively
traditional, making it difficult to adapt to complex network
environments.

In the context of increasingly complex data, in the late
twentieth century, ML algorithms began to be applied in
the field of intrusion detection, including Bayesian net-
works, etc. [12]. Huang et al. [13] proposed an IDS HiDE-
IDS based on hierarchical differential evolution to identify
unknown network attacks, in which a hierarchical differ-
ential evolution algorithm and a new filtering mechanism
are designed to identify known and unknown network
attacks. Xu et al. [14] proposed an IDS based on XGBoost
and Bayesian networks, in which binary grey wolf optimi-
zation algorithm and recursive feature elimination are
used as target variables to select the most relevant feature
subset, XGBoost is used for data classification, and a Baye-
sian optimized tree structure Parzen estimator is used to
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optimize model hyperparameters. Jin et al. [15] proposed a
new IDS framework based on federated learning, dee-
pening the memory of the overall old class and using
knowledge distillation methods to enhance the local model
memory of each specific class. Sadhwani et al. [16] pro-
posed a compact and lightweight IDS that combines Extra-
TreeClassifier with a new data preprocessing method to
achieve network anomaly detection. The above methods
make it difficult to handle the characteristics of complex,
high-dimensional, and nonlinear data well, resulting in low
detection accuracy and being greatly affected by factors
such as noise.

With the rapid improvement of computer computing
power, DL has achieved many results and has also been
applied in the field of NID. According to Sravanthi and
Kumar [17], a deep belief network (DBN)-based IDS method
is proposed, which combines the cuckoo search algorithm
and lion algorithm to optimize the DBN weights to ensure
detection reliability. Kumar and Sharma [18] proposed a
hybrid intelligent system and a hierarchical network clas-
sifier based on an inverted hourglass. In addition, a hybrid
optimization feature selection technique only selects fea-
tures that can improve detection accuracy. Finally, a hier-
archical network model based on an inverted hourglass is
used for classification, which upsamples the data as the
number of layers increases. Odeh and Taleb [19] utilized
an integrated DL framework for NID, which includes con-
volutional neural networks (CNNs), long short-term memory
(LSTM) networks, and GRUs. Voting strategies are integrated
into the framework to facilitate hierarchical computation
and learning. Gu et al. [20] used a deep denoising autoen-
coder to extract feature representations, and a network was
used to achieve multi-type detection of balanced data after
dimensionality reduction. Sreekanth et al. [21] proposed an
IDS based on federated deep reinforcement learning, where
multiple agents are deployed in a distributed manner on the
network, and each agent runs a deep Q-network logic. The
above methods have achieved good detection results using
DL algorithms but lack comprehensive analysis of the spa-
tiotemporal characteristics of data, and the detection effect
needs further improvement.

Based on the above analysis, most existing intrusion
detection methods have problems such as poor feature
extraction and significant impact from data imbalance.
Therefore, the proposed method utilizes GAN for data
resampling to overcome the impact of data imbalance.
Use 1D multi-scale convolutional layers to extract spatial
features of data samples and GRU to extract temporal fea-
tures of data samples and fuse them while adding identity
maps to improve the model’s representation ability.
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3 System model

IDS is an active defense security tool that combines hardware
and software. It ensures security by disrupting attackers’
access to information or preventing them from further acces-
sing network systems and can effectively resist network
attacks. An intrusion data intelligent detection system is pro-
posed for complex network states in the big data environ-
ment, and its overall architecture is shown in Figure 1.
Among them, the system obtains real-time operational
data of complex networks and inputs it into the logic layer
and database. The logic layer is mainly responsible for
preprocessing and feature extraction of data, as well as
storing the processed data, while connecting to the data-
base. The management is mainly responsible for detecting
intrusion data and displaying detection results through
front-end pages to respond with defensive measures.

4 Wireless sensor network data
preprocessing and resampling

4.1 Data preprocessing

First, use One-Hot encoding to convert the string type fea-
tures in the dataset into numerical types. One-Hot encoding
uses an N-bit state register to expand the encoding of N
states, each with its own separate register bit. One-Hot
encoding represents binary vectors as classification vari-
ables and maps classification values to integer values [22].
The value of discrete features can be extended to Euclidean
space.

After numerical processing, check for any empty values.
If there are no empty values, perform standard normalization
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Figure 1: Overall framework of the IDS.
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on the data. The proposed method adopts the Z-score normal-
ization method. The standard deviation o of Z-score is calcu-

lated as follows:
1 N
= |= — )2 o)
g Nizzl(xl .u) 3

where x is the input value, N is the total amount of data,
and y is the mean value.
The Z-score standardization conversion is as follows:
X—u
pa

@

4.2 Data resampling based on GAN

Due to the large amount of data traffic in NID, and most of it
being non-attack-type data, training models using existing
data are not only time-consuming, but also due to data
imbalance, there may be overfitting or underfitting problems
in the model, which affects the effectiveness of traffic detec-
tion. GAN can be used to generate minority class samples,
reducing the problem of low detection efficiency caused by
data imbalance [23]. GAN consists of two models: a generator
and a discriminator. The generator learns the distribution of
actual data, and the discriminator determines whether the
input results come from actual data or the generator. The two
are further improved during the actual training process, and
their generation and discrimination abilities are respectively
cultivated. The main inspiration for this network comes from
the Nash equilibrium of game theory, and the model is
trained to achieve the Nash equilibrium state. The data
resampling process based on GAN is shown in Figure 2.

For generator module G, LSTM can overcome the pro-
blem of gradient vanishing. Therefore, a three-layer LSTM
network is chosen as the generator module. Meanwhile, a
multi-layer perceptron with two hidden layers is used as
discriminator D. The discriminator updates the parameters
of the model by reducing the cross entropy between the

Generator G

Random noise P, (Z)

Disturbance l
Conversion
module

Traffic adversarial
samples

Discriminator D

———

Real data

Adversarial sample

Figure 2: Data resampling process based on GAN.



4 — Jing Yang

correct classification of sample x and the estimated distri-
bution Byoge(¥]X).

In the data resampling process based on GAN, gen-
erator G is used to generate samples similar to the original
samples, discriminator D is used to distinguish between the
generated samples and the original samples, and generator
G and discriminator D continuously optimize their own
parameters through game confrontation to generate adver-
sarial samples that can be close enough to the true sample
distribution. During this process, the generator module G
and discriminator module D are alternately optimized. The
judgment results of discriminator D can guide the para-
meter adjustment of generator G. Therefore, in a single
round of network training, after the completion of discrimi-
nator D training, the parameters of generator G are opti-
mized by freezing the parameters of discriminator D to
generate samples. After multiple rounds of training are com-
pleted, generator G can generate network traffic adversarial
samples that can be distorted as real.

5 Intrusion detection method
based on improved
spatiotemporal residual network

5.1 Improved spatiotemporal residual
network

To learn the spatiotemporal characteristics of network
traffic, the proposed method proposes an improved spatio-
temporal residual network, which utilizes multi-scale 1D
convolutional layers to increase network width and extract
spatial features, extracting temporal features between data
through GRU and fusing spatial and temporal features to
enhance model representation and generalization capabilities
[24,25]; by stacking multiple spatiotemporal residual modules
to increase network depth, adding identity maps, and fusing
shallow, middle, and high-level features of the network, the
information hierarchy is enriched, avoiding problems such as
vanishing gradients, exploding gradients, and network degra-
dation in deep networks. The structure of the improved spa-
tiotemporal residual network is shown in Figure 3.

5.1.1 Multi-scale 1D convolutional layer

The detection of network traffic cannot rely solely on dis-
crete local features but should extract traffic features of
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Figure 3: Structure of improved spatiotemporal residual network.

different sizes through multiple convolution kernels of dif-
ferent scales and fuse them to obtain multiple sets of local
features. The proposed method achieves spatial feature extrac-
tion of multi-scale network traffic data through multi-scale 1D
convolutional layers, using convolutional filters with lengths
of 3, 5, and 7, respectively. Multi-scale spatial feature fusion is
achieved by adding them item by item, increasing the infor-
mation content of individual elements while keeping the fea-
ture dimension unchanged, reducing subsequent computa-
tional costs. Using BN layers for batch normalization, the
data follows or approximates a standard normal distribution,
accelerating the convergence speed of neural networks and
preventing gradient explosion, vanishing gradients, and over-
fitting phenomena. Choosing ReLU as the activation function
amplifies the differences between features, increases network
sparsity, and makes the final extracted multi-scale spatial
fusion features more representative, improving the network’s
generalization ability.

5.1.2 GRU

The proposed method uses GRU to extract the dependency
relationships between network traffic data, preventing the
problems of exploding gradients. GRU has fewer para-
meters. Divide the data into a window size of W, which
includes W consecutive network traffic sample data U,
which can be represented as

U = [Xe-w+1, Xe-w+25 -oor Xt 3

Inputting U into GRU will generate a vectorized repre-
sentation of the hidden state h, for each time step data. The
output of GRU is as follows:

hl, hz, vy hn = GRU(Xl, X2, ...,Xn). 4)
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5.1.3 Residual learning

The proposed method achieves residual fitting by con-
structing a skip connection method of “direct/identity map-
ping.” The improved spatiotemporal residual mapping is as
follows:

Xout = X + F(X) = X + Xzouts (5)

where x and X, are the inputs and outputs for improving
spatiotemporal residual learning, respectively; Xzo is the
spatiotemporal fusion feature extracted by the network;
and F(x) represents residual mapping.

Similarly, batch normalization is performed using BN,
and ReLU is selected as the activation function to optimize
the data distribution and obtain the final output of the
improved spatiotemporal residual network. After adding
identity mapping, as the network deepens, the network
performance does not decrease, and the deep network per-
forms better than the shallow network, solving the pro-
blem of network degradation.

5.2 NID process

The overall process of intrusion detection using the pro-

posed method is shown in Figure 4.

(1) Data preprocessing: Perform data processing such as
One-Hot encoding and data normalization on the ori-
ginal dataset. After numerical processing, the feature
dimension of the NSL-KDD dataset increased to 122
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Figure 4: NID process based on improved spatiotemporal residual net-
work and GAN.
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dimensions; the feature dimension of the UNSW-NB15
dataset has been increased to 196 dimensions; the CIC-
IDS2017 dataset does not require conversion and remains
at 78 dimensions. Finally, each processed network packet
contains 122-dimensional, 196-dimensional, and 78-dimen-
sional feature attributes, as well as 1-dimensional type
labels.

(2) Dataresampling: Using a GAN network to generate new
attack samples of a specified type based on the category
labels of the attack samples, the newly obtained attack
data is fused with the original training set to obtain a
new balanced training set.

(3) Model detection: Using multi-scale 1D convolutional
layers to extract spatial features, and using GRU to
extract temporal features between data, and fusing
spatial and temporal features. By stacking multiple spa-
tiotemporal residual modules to increase network depth,
identity mapping is added to fuse shallow, middle, and
high-level features of the network. Afterwards, a softmax
classifier is used for classification, and the abnormal
traffic detection results are obtained by training the cross
entropy loss function.

6 Experiment and analysis

6.1 Experimental environment

The experimental environment is the Winl0 operating
system, with a 4-core 8-thread Intel (R) Core (TM) i7-
10510U CPU @ 1.80 GHz processor, 12 GB of memory, and
Python 3.6 as programming language. Tensorflow GPU-
1.15.0 is used in the experiment to build the model. To
ensure the training efficiency of the model, the time step
is set to 4.

6.2 Experimental dataset

Three datasets are selected for evaluation in the experiment,
namely the NSL-KDD, UNSW-NB15, and CIC-ISDS2017 data-
sets. The features and attack identifiers of NSL-KDD and
KDD99 are the same, but NSL-KDD has cleared and orga-
nized some duplicate records in KDD99, containing a total of
over 100,000 pieces of data. The data distribution is shown
in Table 1.

UNSW-NB15 is a dataset collected in 2015 by the Canberra
Network Range Laboratory, where the traffic data is more in
line with current real network activity and contemporary
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Table 1: Sample distribution of the NSL-KDD dataset
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Table 3: Sample distribution of the CICIDS2017 dataset

Attack type Data volume Attack type Data volume
Normal 77,054 BE-NIGN 80,000
DoS 53,471 DoS 10,787
Probe 14,077 Portscan 8,000
R2L 3,749 DDoS 6,267
U2R 252 Patator 13,835
Total 148,517 Bot 1,966
Web attack 2,180
Infiltration 36
Heartbleed 19
Table 2: Sample distribution of the UNSW-NB15 dataset Total 123,090
Attack type Data volume
TP
Normal 93,000 Pre = ———, (7
) TP + FP
Generic 58,871
Explmts 44,525 Rec = TP ’ ®)
uzzers 24,246 TP + FN
DoS 16,353
Reconnaissance 13,987 Fl= M 9)
Analysis 2,677 Pre + Rec
Ej;:ﬁ::;e 213521? where TP is the true example, TN is the true negative
Worms 174 example, FP is the false positive example, and FN is the
Total 257,673 false negative example.

attack behavior. This dataset contains 9 types of attacks, 49
features, and 1 labeled feature. Table 2 shows the data dis-
tribution after dividing the dataset into training and testing
sets in a 3:2 ratio.

The CIC-IDS2017 dataset is sourced from the Canadian
Institute of Cybersecurity’s collection of network data from
July 3 to 7, 2017, which includes benign and the latest
common attacks, filling the gap in the UNSW-NB15 dataset
where there is no network-based attack. There are a total of
15 types in the CIC-IDS2017 dataset, and the ones with similar
abnormal attack properties are merged. For example, the
three types of network attacks in the dataset are merged
into network attack types. The final dataset has a total of
nine traffic types. The data distribution of the CICIDS2017
dataset is shown in Table 3.

6.3 Evaluating indicator

The evaluation indicators used in the experiment include
accuracy (Acc), precision (Pre), recall (Rec), and F1 score,
which are calculated as follows:

TP + TN

_ 6
AC= TP T IN + P + N’ ©)

At the same time, algorithm complexity is included in
the evaluation criteria, which includes time complexity
and space complexity. Time complexity refers to the time
consumed by algorithm execution, while space complexity
refers to the memory space required by the algorithm.

6.4 Model training

6.4.1 Analysis of the impact of different
hyperparameters

The loss value of the proposed method varies depending on
the number of iterations. Taking the NSL-KDD dataset as an
example, its correlation curve is shown in Figure 5.

As shown in Figure 5, as the number of iterations
increases, the number of updates to the weights of the
improved spatiotemporal residual network also increases.
The network gradually enters an optimized fitting state
from underfitting, and during this process, the loss value
of the validation set shows a spiral downward trend. When
the number of iterations is 11, the loss value is minimized,
and the network training reaches the optimal state. When
the number of iterations exceeds 11, overfitting occurs, the
model loss value begins to increase, the detection perfor-
mance decreases, and the training time also increases.
Therefore, set the number of iterations to 11.
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Figure 5: Influence curve of iterations on loss values.

6.4.2 Analysis of the impact of different learning rates

The Adam optimizer can adjust the learning rate on its
own, but the initial learning rate still needs to be set
through experiments. In the experiment, three learning
rates of 0.01, 0.001, and 0.0001 were used for testing.
Taking the UNSW-NB15 dataset as an example, the detec-
tion loss values are shown in Figure 6.

As shown in Figure 6, when the learning rate is 0.01, the
fitting effect of the model is poor, and the loss value fluc-
tuates significantly with high values. When the learning rate
is 0.0001, the model loss value stabilizes at around 0.27,
indicating poor performance. When the learning rate is
0.001, the model achieves ideal detection performance,
with a steady decrease in loss rate and finally stabilizing
at around 0.11. Therefore, the initial learning rate is set
to 0.001.
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Figure 6: Changes in loss values under different learning rates.
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Table 4: Different flow ratios before and after resampling

Comparison Attack type Number of attacks Ratio (%)

Before resampling  BE-NIGN 60,000 69.74
DoS 8,035 9.34
Portscan 6,000 6.97
Patator 12,000 13.95

After resampling BE-NIGN 60,000 48.40
DoS 17,656 14.24
Portscan 22,061 17.80
Patator 24,247 19.56

6.5 Comparison of data resampling effects

The proportion of attack traffic in the data file is too small,
resulting in an imbalance in the proportion. Therefore,
taking the CICIDS2017 dataset as an example, four types
of traffic with a large amount of data (BE NIGN, Patator,
Portscan, and DoS) are selected as the experimental sub-
jects in the experiment. Use GAN to resample the original
imbalanced data and obtain a new dataset. The different
traffic proportions before and after resampling are shown
in Table 4.

According to Table 4, after data resampling by GAN,
the proportion of data is uniform, with Patator, Portscan,
and DosS attack types all accounting for about 15%, signifi-
cantly reducing the difference in proportion compared to
BE-NIGN. Meanwhile, in order to verify the impact of data
resampling on detection performance, tests were conducted
on three datasets, and the intrusion detection results before
and after resampling are shown in Table 5.

According to Table 5, the performance of the detection
method using GAN for resampling has been greatly improved.
The detection accuracy of the NSL-KDD, UNSW-NB15, and CIC-
ISDS2017 datasets all reached 99.62, 83.98, and 99.86%, which
are 544, 453, and 523% higher than before resampling,
respectively. This is because after resampling, the dataset

Table 5: Comparison of detection results before and after resampling

Comparison Index NSL-KDD UNSW- CIC-
NB15 IDS2017
Before Acc (%) 94.18 79.45 94.63
resampling Pre (%) 93.75 79.08 94.37
Rec (%) 94.32 79.61 94.99
F1 (%) 94.03 79.34 94.68
After resampling Acc (%) 99.62 83.98 99.86
Pre (%) 99.43 83.62 99.57
Rec (%) 99.94 84.15 99.91
F1 (%) 99.68 83.88 99.74
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data is more balanced, and the detection model will not have
overfitting problems, ensuring detection reliability.

6.6 Comparison and analysis with other
methods

To demonstrate the detection performance of the proposed
method, it is compared with the methods in the literature
[14,17, 19], where the comparison methods are abbreviated
as BXGB, IDBN, and CNN-LSTM-GRU.

6.6.1 Comparison of NSL-KDD dataset results

The detection accuracy of four methods on various attack
types in the NSL-KDD dataset is shown in Figure 7.

As shown in Figure 7, the proposed method has good
detection results for various types of attacks in the NSL-
KDD dataset, with an accuracy rate of over 95%. This is
because the proposed method uses an improved GAN for
data augmentation and utilizes an improved spatiotemporal
residual network to deeply analyze the spatiotemporal char-
acteristics of the data. The CNN-LSTM-GRU model integrates
CNN, LSTM, and GRU networks for intrusion detection and has
good detection performance. However, it does not consider
the impact of data imbalance, so the detection performance

-Proposedmethod |:| IDBN

[cNN-LSTM-GRU [l BXGB
T T T T

Attack Type
=
g

=
3]
=

U2R

| |
75 80 85 90 95 100
Accuracy/%

Figure 7: Detection results of the NSL-KDD dataset.
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for R2L and U2R is poor, with an accuracy of less than 95%.
The detection performance of IDBN and BXGB is similar, but
due to the relatively simple detection model, it is difficult
to accurately process network data in big data environ-
ments, resulting in relatively low detection accuracy.

After multiple experiments, the detection results of the
four methods on the NSL-KDD dataset are shown in Table 6.

According to Table 6, the detection results of the pro-
posed method are superior to other methods, with accu-
racy, precision, recall, and F1 values of 99.62, 99.43, 99.94,
and 99.68%, respectively. CNN-LSTM-GRU has achieved
accurate intrusion detection but lacks consideration for
imbalanced data, resulting in a 3.54% decrease in detection
accuracy compared to the proposed method. Additionally,
the model is complex, resulting in a longer detection time,
reaching 14.72 s. The improved DBN model in IDBN is easy
to train, so the detection time is the shortest, only 8.59 s, but
the detection effect is slightly reduced. BXGB combines
XGBoost and Bayesian networks for intrusion detection.
The training time of the fusion model is 1.68 s longer
than that of IDBN, and the model makes it difficult to
extract high-dimensional data features, which affects the
detection results. Its accuracy is only 92.82%.

6.6.2 Comparison of UNSW-NB15 results

The detection accuracy of four methods on various attack
types in the UNSW-NB15 is shown in Figure 8.

From Figure 8, the proposed method has higher detec-
tion accuracy for various types of attacks in the UNSW-
NB15 than other comparison methods, especially for attack
types such as Analysis and Schellcode with fewer samples,
and its detection advantage is more obvious. Due to the fact
that the UNSW-NB15 records the real network environ-
ment, with more types of attacks and more complex fea-
tures, the detection efficiency of all four methods has

Table 6: Comparison of results between different methods on the NSL-
KDD dataset

Method BXGB IDBN CNN- Proposed
LSTM-GRU method
Accuracy (%) 93.37 94.14 96.08 99.62
Precision (%) 92.82 93.61 95.56 99.43
Recall (%) 93.48 94.35 96.11 99.94
F1 (%) 93.15 93.98 95.83 99.68
Detection time (s) 10.27 8.59 14.72 10.13
Occupied 321 196 215 304
memory (M)
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Figure 8: Detection results of the UNSW-NB15.

decreased. After multiple experiments, the detection results
of the four methods on the UNSW-NB15 are shown in
Table 7.

As shown in Table 6, compared to the NSL-KDD, the
proposed method showed a significant decrease in detec-
tion performance on the UNSW-NB15 dataset, but still out-
performs other comparison methods. Its Acc, Pre, Rec, and
F1 values are 83.89, 83.62, 84.15, and 83.88%, respectively,

Table 7: Comparison of results between different methods on the
UNSW-NB15

Method BXGB IDBN CNN- Proposed
LSTM-GRU method
Accuracy (%) 75.34 76.29 80.72 83.98
Precision (%) 74.98 75.81 80.45 83.62
Recall (%) 75.77 76.63 80.91 84.15
F1 (%) 75.37 76.22 80.68 83.88
Detection time (s) 17.43 14.69 20.84 16.71
Occupied 601 327 792 563
memory (M)
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and the detection time is 16.71s. Due to the insufficient
learning depth of the detection models, BXGB and IDBN
have limited network analysis capabilities in big data
environments, resulting in a significant decrease in detec-
tion performance, with all indicators below 80%. CNN-
LSTM-GRU adopts an integrated DL model for intrusion
detection, which can ensure detection reliability. However,
due to data imbalance, its F1 value decreases by 3.20%
compared to the proposed method, and the detection effi-
ciency is also low.

6.6.3 Comparison of CIC-IDS2017 results

The detection accuracy of four methods on various types of
attacks in the CIC-IDS2017 is shown in Figure 9.

From Figure 9, due to the merging of anomalies with
similar attack properties in the CIC-IDS2017 dataset, the
detection performance of the detection method has been
significantly improved compared to the UNSW-NB15 dataset.
The proposed method has a detection accuracy of nearly
100% for most attack types, and the effect is ideal. For Infil-
tration and Heartbleed small sample data, the detection

- Proposed method IDBN
cNN-LsT™M-GRU [l BXGB
T

Attack Type

75 80 85 90
Accuracy/%

95 100

Figure 9: Detection results of the CIC-IDS2017.
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Table 8: Comparison of results between different methods on the CIC-
IDS2017

Method BXGB IDBN CNN- Proposed
LSTM-GRU method
Accuracy (%) 93.79 94.51 96.43 99.86
Precision (%) 93.36 94.22 96.18 99.57
Recall (%) 94.18 95.06 96.95 99.91
F1 (%) 93.77 95.14 96.56 99.74
Detection time (s) 12.91 10.37 16.19 12.45
Occupied 426 251 524 391
memory (M)

accuracy of the other three comparison methods is less than
90%. After multiple experiments, the detection results of the
four methods on the CIC-IDS2017 are shown in Table 8.

As shown in Table 8, the four methods achieved the
best detection performance on the CIC-ISDS2017, because
the dataset was close to the real situation and the attack
type was set reasonably. The Acc, Pre, Rec, F1 value, and
detection time of the proposed method are 99.86%, 99.57%,
99.91%, 99.74%, and 12.45s, respectively. The proposed
method fully considers the spatiotemporal characteristics
of network data and utilizes the GAN model to solve the
problem of data imbalance. Therefore, the detection effect
is the most ideal. Taking the F1 value as an example, it
improves by 5.97, 4.60, and 3.18% compared to BXGB, IDBN,
and CNN-LSTM-GRU, respectively. However, due to the com-
plexity of the proposed model, it occupies a large memory
space, reaching 391 M. Overall, the proposed method is effec-
tive for intrusion detection in complex networks in hig data
environments.

6.7 Ablation experiment

Evaluate the contribution of each module of the proposed
method through ablation experiments. Taking the UNSW-
NB15 dataset as an example, the results of the ablation
experiments are shown in Figure 10.

According to Table 9, the introduction of multi-scale 1D
convolution and GRU for spatiotemporal feature extraction
in the residual network has greatly improved the detection
accuracy by 3.73%. At the same time, by adding identity
mapping to improve the spatiotemporal residual network,
the problem of network degradation is solved, with a detection
accuracy of 79.45%. The fusion of GAN effectively solves the
problem of data imbalance, so the detection accuracy of the
proposed method reached 83.98%. The proposed method deeply
combines the spatiotemporal characteristics of network traffic

DE GRUYTER
90 T I I ;
80 T e ]
e IR s
-~ :(/.— ........ —
c\\o /’//. . L em =
§ or ,// o 1
= , A
8 4
7 , .
Q / K .
< ; s
o i’ / Proposed method
/ - ——- Improved spatiotemporal residual network
50 ,' /.-" """"" Spatiotemporal residual network
i / — - - - Residual network
I/
40 i 1 1 1 1
0 50 100 150 200 250

Epoch

Figure 10: Results of ablation experiment.

and greatly reduces the impact of data imbalance, making the
NID performance ideal

6.8 Analysis of application results in
different scenarios

To demonstrate the scalability of the proposed method,
three scenarios of power supply companies, hospitals,
and Internet companies were selected for testing, and the
network data of three sites for 1 week were selected as test
sets, respectively. The intrusion detection accuracy of the
four methods is shown in Table 9.

According to Table 9, the proposed method can main-
tain the best intrusion detection accuracy in different sce-
narios. Due to the use of a dedicated power grid by power
companies, which has a certain ability to resist network
attacks, the detection accuracy of the proposed method is
as high as 99.54%. Internet companies are vulnerable to
network attacks from all walks of life, and the environ-
ment is complex, so the detection accuracy rate has

Table 9: Intrusion detection results in different scenarios

Scenarios Accuracy (%)

Power supply Hospital Internet

company company
BXGB 91.17 88.75 80.92
IDBN 94.09 91.91 84.87
CNN-LSTM-GRU 97.65 94.38 88.15
Proposed 99.54 96.82 92.39
method
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declined. The detection accuracy rate of the BXGB model is
only 80.92%.

7 Conclusion

At present, artificial intelligence technologies such as DL

have shown good performance in intrusion detection.

However, due to the imbalanced categories and high noise

content in traffic data, the accuracy of intrusion detection

methods is seriously affected. Therefore, an NID method
that integrates improved spatiotemporal residual networks
and GANs in a big data environment is proposed. Among
them, in the big data environment, GAN is used for data
resampling to generate a balanced sample set, which is input
into an improved spatiotemporal residual network model for
analysis, thereby obtaining the intrusion detection results of
the network. The experimental results based on the NSL-KDD,

UNSW-NB15, and CICIDS2017 datasets show that

(1) The GAN model has alleviated the problem of data
imbalance, and the detection performance has been
improved after data resampling. The detection accu-
racy of the three datasets has all reached 99.62, 83.98,
and 99.86%, which are 5.44, 4.53, and 5.23% higher than
before resampling, respectively.

(2) The improved spatiotemporal residual network further
improves detection performance by fully extracting the
spatiotemporal characteristics of the data and adding
identity maps. Taking the CIC-ISDS2017 dataset as an
example, the proposed method has an Acc, Pre, Rec, Fl
value, and detection time of 99.86%, 99.57%, 99.91%,
99.74%, and 12.45s, respectively. Overall performance
is superior to other comparative methods.

Due to the high computational complexity and long
detection time of the proposed method, in the subsequent
work, the model structure will be further optimized to
reduce complexity, and the proposed method will be applied
to other datasets for testing to enhance its scalability. In
addition, the algorithm can also be applied to specific indus-
tries or fields, such as finance, to predict network attacks on
systems in these fields, reduce the incidence of network
attacks, and thus reduce economic losses in these fields.
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