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Abstract: Smooth operation of railway stations and yards
is vital for the efficient functioning of the whole railway
system. Being complex systems, their operation is extre-
mely sensitive to various influences, which makes their
management, especially at the operational level, very dif-
ficult. Efficient tools to aid the decision-making process of
dispatchers of such stations are therefore needed. With an
emphasis on increasing the effectiveness of decision sup-
port tools, we propose a simulation-based optimization
algorithm. This algorithm extracts a dataset from a simula-
tion model and then reduces it to a partial dataset to be
able to use specific exact optimization method in opera-
tional management. The partial dataset is limited by
certain time horizon. The applicability of the proposed
algorithm has been verified on two distinct tasks, namely,
personnel assignment and service task assignment in
a maintenance depot, confirming the usability of the pro-
posed approach.
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1 Introduction

Throughout its long history, the railway has continued to
evolve and develop in all its aspects: technical, operational,
human, and organizational. However, the full potential of
this mode of transport has not yet been exploited. As in
other areas of life, here too it is required to provide a
sufficient degree of computerization and automation of
many complex processes. It is important to deal mainly
with the management of railway transportation nodes to
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ensure the fluency of all railway transportation. Individual
railway transportation nodes are service systems. Trains
are the customers and they need to be served using limited
resources (e.g., tracks, locomotives, staff). Planning the
operation of such complex systems can be problematic,
especially because these systems are sensitive to many
small changes (disruptions on the track, train delays, lack
of staff, etc.) Although planning is an important part of
management, it is necessary to deal with operational man-
agement as well. The decision-making process in operative
management has to be effective and has to be executed in
real-time. As decision-making is influenced by a wide
range of factors, ensuring support at the operational level
using standard methods is challenging due to the size and
complexity of the task. For this reason, it is necessary to
consider more effective methods of decision-making sup-
port in managing the operation of railway transportation
nodes.

2 Motivation

Within railway transportation nodes such as marshalling
yards or maintenance depots, it is necessary to ensure
efficient management at the operational level, which is
closely related to the allocation of the limited resources
of the railway service system. To keep it running smoothly,
these limited resources need to be allocated in an efficient
manner. One way to achieve this is using pre-established
schedules and plans. In practice, however, this is often not
possible due to the interdependencies between different
activities within railway node, as well as the impact of
random events, such as delays of incoming trains. These
situations need to be handled by dispatchers in real time.

Dispatcher’s real-time decision-making is a challen-
ging process and would benefit from an adequate deci-
sion-support tools. There are currently some systems
providing such support [1,2] but, the use of optimization
methods is not implemented effectively enough within
these systems in practice. In a previous study [3] we
have proposed a decision support system for dispatchers
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based on a simulation model. One issue that needs to be
addressed to implement such a system is to improve the
modeling of decision making in simulation models. In this
study, we deal with the design of an algorithm that would
use and combine the possibilities of simulation models
and optimization methods (exact methods, heuristics).
To validate the principle of the proposed algorithm, we
decided to demonstrate its use by solving two distinct
tasks: allocating drivers within the maintenance depot
and addressing the job shop problem at the same location.
We hope that the application of the algorithm to two
different tasks will confirm its applicability to different
types of tasks in a rail transportation node.

Operation of a maintenance depot is a complex pro-
cess consisting of many interrelated tasks. Trains usually
arrive at a maintenance depot because some type of main-
tenance needs to be carried out on them (cleaning, repairs,
etc.). To carry out such maintenance, it is necessary to
move the trains between different locations within the
yard (e.g., the shed where the train is being cleaned; the
assembly pit; the siding). The trains are moved on rela-
tively short distances and the movements of individual
trains are carried out by drivers. In our research, we
decided to address the minimization of the time of drivers’
transfers by foot between the trains. Time required to
cover these distances by foot can significantly increase
the maintenance time of all trains. Figure 1 shows a simple
example of a depot with trains that need to be moved by
the drivers between distinct track groups (red rectangles).
The request to move Train 2 is issued a few moments
before the request to move Train 3. Imagine a driver
who just finished moving Train 1 to a service point. After
receiving the request to move Train 2, the driver will be
assigned to this task and will have to walk back to the
waiting track group where Train 2 is located. Then, he/
she will move Train 2 to the service track group and after
which, he/she can be assigned to move Train 3 back to the
waiting track group. The overall time to execute these train
movements (and dependent activities) can be significantly
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reduced by employing better assignment algorithm. In the
example case, the driver can wait for the request to move
Train 3 to be issued, then move Train 3 back to the waiting
track group and first then it would be assigned to Train 2
to move it to the service tracks.

In reality, the dispatcher has the data about the future
plans, so he knows that Train 3 will need to be moved in
near future and can therefore make an appropriate deci-
sion. Unfortunately, simulation models usually do not work
with data on future developments, they often use simple
approaches such as First In First Out (when selecting indi-
vidual resources [e.g., drivers], the first resource in the list is
selected). Integration of sophisticated methods that include
a view into the future would surely improve the quality
of such simulation models.

Another problem that is typically found in a mainte-
nance depot is the determination of the sequence of indi-
vidual maintenance operations to be performed on individual
trains. Different trains require different types of mainte-
nances. Type of maintenance depends on train characteris-
tics, e.g., diesel locomotives need refueling, while electric
locomotives do not. Trains with a high degree of degradation
need more thorough cleaning, replacement of some parts,
and so on. Moreover, type of maintenance could change
based on when the given maintenance activity was last per-
formed, because checks must be performed at regular inter-
vals, e.g., once a month/year. Examples of such activities are
exterior cleaning, interior cleaning, wheel brake inspection,
refueling, and many others. Determining the order in which
maintenance activities should be performed can be proble-
matic, mainly because certain types of operations can only be
performed at certain specific locations within the depot (e.g.,
above a maintenance pit). Trains arriving at the depot may
have different priorities, particularly regarding their sched-
uled departure time. Therefore, it is sometimes more bene-
ficial to postpone the maintenance of Train 1, which arrived a
few minutes earlier, and wait for Train 2, which has its sched-
uled departure time much earlier than Train 1. If we were to
start the maintenance of Train 1 at a specific location, that
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Figure 1: Schema of maintenance depot.
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location will be blocked, and the maintenance of Train 2 can
only be performed after the maintenance of Train 1 has been
completed. This decision can cause undesirable delay of Train
2. In addition, it can happen that the maintenance activity on
a train takes a very long time and during this time, several
other trains could have been maintained at the specific loca-
tion. It is then up to the dispatcher to consider whether
it is more appropriate to delay one or more trains.

In order to propose a suitable approach to support the
decision making process of the railway transportation
node dispatcher, an analysis of existing research was car-
ried out.

3 Related work

Several authors have focused on the development of math-
ematical models and then used exact computational methods
to solve these models [4-10]. However, the application of a
completely exact approach does not seem to be time-efficient
and in many cases proves to be completely infeasible due to
the size and complexity of the problems to be solved, since in
most cases, we are dealing with nondeterministic polynomial-
hard (NP-hard) problems. Therefore, many authors use var-
ious techniques that modify the original problem, such as the
column generation method [11]. Hanczar and Zandi [12]
solved the staffing problem efficiently by generating all
work tasks in advance. These tasks are fixed inputs to the
mathematical model, and this reduces the computational
complexity of a given task. Considering the computational
complexity of exact methods, several authors have used heur-
istics such as genetic algorithms [13-15], tabu search [16-18],
or ant colony optimization [19,20]. In addition to these heur-
istic methods, other authors [21,22] have used the capabilities
of neural networks and reinforcement learning algorithms to
solve rail transportation problems.

Several authors have researched the simulation-based
optimization approach to solve optimization problems in
railway transportation [23,24]. Hogdahl et al. [25] used a
combined simulation and optimization approach to mini-
mize the delay in railway scheduling. First, a mathematical
model was constructed to define the conditions to be
tracked. Then, a simulation model was created in the
Railsys environment, and a solution algorithm was pro-
posed. The proposed algorithm consists of four steps: the
selection of the initialization schedule and the definition of
a constant for the delays; the execution of a fixed number
of simulation runs; the setting of the parameters of the
mathematical model based on the simulation results; and
the solution of the mathematical model. Experiments have
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shown that the proposed solution is able to reduce train
delays by up to 50%. Licciardello et al. [26] combined the
capabilities of microsimulation and optimization algorithms.
The proposed solution was based on the continuous commu-
nication between the simulation model and the optimization
method. In order to find optimal solutions, an optimization
module was created that included a heuristic local search
algorithm that searches the neighborhood by swapping the
order of individual operations assigned to a resource. In the
proposed system, the simulation model and the optimization
module first exchanged static data about the yard and its
resources and then, during simulation run, continuously com-
municated using predefined messages.

Based on the conducted research, it appears that the
combination of computer simulation and optimization algo-
rithms is effective in solving decision-making problems
related to the allocation of limited personnel resources or
setting priorities for individual service tasks in railway
transport.

4 Simulation-based optimization
algorithm

Mathematical models can be used to perform exact calcu-
lations and solve optimization problems found in railway
transportation nodes. However, for real-time decision
support in operations management, exact approaches
are in most cases too time-consuming and therefore
unsuitable.

To overcome this issue, we propose an algorithm that
uses a simulation-based optimization approach. This approach
aims to reduce the state space and thus the computation time
by limiting the number of future tasks to be considered by a
time boundary (called a horizon). To execute the proposed
algorithm, it is necessary to perform an initialization simula-
tion run. This run is completed before the optimization starts
and uses a simple algorithm to allocate each resource. The
algorithm is standard in simulation models of this type and
is usually based on a priority list implementation. During this
simulation run, an initialization dataset is created. Data collec-
tion within the initialization simulation run was performed in
two parallel phases. First phase collects data about the assign-
ment of resources. Whenever a decision is made to allocate a
resource, data about this are written in the output dataset. The
second phase is the collection of data about performed activ-
ities. As soon as an activity is executed in the simulation
model, the data are stored in the dataset. This process is
shown in Figure 2.
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Figure 2: Sequence diagram of simulation-based optimization - initial simulation.

The next step is to launch a simulation run that uses an
optimization method. This run differs from the initialization
simulation run in the way resource requests are handled —
instead of using the priority list method, an optimization
method is used and the dataset is used as a source of the
necessary information. During this procedure, each request
to perform an action, such as allocating a resource (driver)
to a train, will be handled in the following way: First, a “get
resource” message containing the request is sent to the opti-
mization module. When the optimization module receives
this message, it creates a sub-dataset from the initialization
dataset. The size of the sub-dataset is determined by the
selected time horizon. For example, if the time horizon is
3 h, the sub-dataset consists of all service activities that
occur within 3 h of the request. In addition, it only contains
information about drivers who are working during this
period; it does not include drivers who are currently off
duty (due to their work schedule). This significantly reduces
the size of the dataset and the computation time of the
algorithms used. The optimization module then performs
a calculation based on this sub-dataset, determines the
most appropriate resource, and sends a message with this
resource to the simulation. In the simulation model, the
resource is assigned to a request, the request is considered

satisfied, and the simulation run continues until the next
resource request is encountered. This cycle repeats until
the simulation run is complete. Figure 3 shows a sequence
diagram of the request processing in the proposed algorithm.

We have decided to verify the proposed approach on
two different problems in the maintenance depot, in parti-
cular, the personnel assignment problem and the job shop
problem. Based on the analysis of exact approaches
that have been implemented on similar types of problems
in railway, two mathematical models have been proposed
for the description of the problems.

5 Mathematical model of personnel
assignment

The following mathematical model represents the problem
of assigning drivers to individual trains within a mainte-
nance yard as described in Section 2. The mathematical
model is inspired by the well-known model of the vehicle
routing problem [27], which is modified for the purpose of
solving the driver assignment problem addressed in this
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Figure 3: Sequence diagram of simulation-based optimization, using optimization method.

study. In the model description, individual train move-
ments from point A to point B are called transfer activities.

Several sets of variables and constants had to be
defined in this model.

Xjr — binary decision variable deciding whether
transfer activity i will be executed before transfer
activity j by driver r.

Y, —variable, which can take positive values and repre-
sents the realistic start time of transfer activity i.

B(i) — a list of transfer activity that can be performed
before transfer activity i.

F(i) — a list of transfer activity that can follow after
transfer activity i.

tiy — constant that represents the time of arrival of
train into the system, i.e., the earliest possible time to start
transfer activity i.

ti, — constant that represents the duration of the execu-
tion of transfer activity i.

t, — constant defining the start of the working time
of driver r.

tx — constant defining the end of the working time
of driver r.

d;; — constant that represents the distance between the
point where the driver leaves train on which the transfer
activity i is performed and the point where he gets on train
on which the transfer activity j is performed.

M - constant defining very large number, used to
relax the condition.

N - number of transfer activities of trains.
R — number of drivers.

5.1 Objective function

The objective function (1) consists of two parts. The first
part minimizes the distances that drivers must travel
between trains they serve (moving within a railway yard).
The second part minimizes the time at which train transfers
are initiated.

R N N
min) > Y dpg + )y [6))
i=1

r=1i=1 jinF (i)

5.2 Structural conditions

Condition (2) expresses that each transfer will be carried
out by a single driver. The continuity of the sequence of the
individual activities is ensured in condition (3). This con-
dition expresses the fact that some activities (defined
by the set B(i)) will not be executed after the execution
of activity i. Condition (4) expresses the fact that each
driver can only operate one train at a time. Condition (5)
expresses that the start of the activity i cannot be executed
before the train on which this activity is performed arrives
in the system. Condition (6) expresses the fact that if
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service activities i and j follow each other and they are
performed by the same driver, the start of activity j cannot
be before the end of activity i plus the time it takes to move
between trains belonging to activities i and j in the case of
two different trains. If service activities i and j do not
follow each other or they are performed by different dri-
vers (x;- = 0), condition (6) is relaxed, and this is ensured
by the constant N. Conditions (7) and (8) guarantee that
drivers’ working hours are respected.

R

Y Y xp=1 forj=2..N, 2)

r=1 i€B(j)
Y Xip= Y Xje forj=1.N,r=1.R (3

i€B()) KEF())
Z Xy <1 forr=1..R, )

JEFD

t!<y fori=2..N, (5)

(yi_'_tio+dij)5yj +M(1—Xijr) fori=2..N, ©
JEF(), r=1..R,

dy+t7<y + M(1--xy) forj=2..N,r=1..R, (7)

tk+ M(1 - -xy) 2y, fori€B), r=1..R. (8)

5.3 Obligatory conditions

Constraint (9) defines the range of values that the variables
Y, can take, and constraint (10) expresses the binarity of the
decision variables X .

¥ 20 fori=1..N, 9

Xjr €{0,1; fori=1..N,j=1..N,r=1..R. (10)

The following section describes the mathematical model
for the second task selected to demonstrate the applicability
of the proposed approach, namely, the assignment of the
next service task in the maintenance depot.

6 Mathematical model of
assignment of service tasks

The following model describes the task of determining the
order of maintenance tasks in a maintenance facility,
taking its inspiration from the well-known knapsack problem.

Several sets of variables and constants were defined
in this model.
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X;j — binary decision variable deciding if task i is rea-
lized before task j.

; — variable, which can take positive values and repre-
sents the realistic start time of task i.

V; — binary decision variable that controls whether a
task i is to be executed or not. It is needed, because we are
using a time horizon and not every task will be executed.

z; — binary decision variable deciding if task i is rea-
lized in place j.

C(t) — a list of task on train t.

P(p) — a list of tasks, which could be executed on
place p.

d; — constant representing the duration of task i.

a; — arrival time of train ¢, the earliest point in time at
which any task can begin to be performed on train t.

b, — the earliest time for start task on place p.

¢; — coefficient expressing the priority of the task i,
depending on the departure time of the train, on which
task i is performed.

l — current time horizon.

M - constant defining very large number, used to
relax the condition.

P — number of places.

T — number of tasks.

6.1 Objective function

The objective function (11) minimizes the time of start of all
tasks depending on coefficient c. This coefficient expresses
the priority of the tasks. This priority depends on the
departure time of the train.

N
min ) cy;. (11)

i=1

6.2 Structural conditions

Condition (12) expresses that the start of task i cannot be
before the arrival of train ¢ at the depot (if this task is to be
performed on this train). Since this optimization is based
on the partial dataset limited by the time horizon, condi-
tion (13) expresses that the start of task i must be before the
end of the time horizon if task i is to be executed (when
using this horizon, not all tasks from the partial dataset
will be performed during the time interval created by the
time horizon). Conditions (14) and (15) express that the sum
of start time of task i and the duration of task i must be
before start time of task j if both tasks are executed and
task i is performed before task j on the same train and vice
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versa. Conditions (16) and (17) state that if both tasks are
executed at the same location and task i is performed before
task j, then the sum of the start time of task i and its duration
must be before the start time of task j, and vice versa.
Condition (18) expresses that each task must have an assigned
place where it is executed. Condition (19) expresses that if task
iis executed at location p, then the start time of task i must be
greater than the earliest possible start time of using location p
(location p will be free at the earliest possible start time).

y.za fort=1..T, i€ C@), 12)
y<l+MA-v) fort=1..T,i€C(t), 13)
Ytdi<y + MG -vi-v-Xy) 14)
fort=1..T,i € C(t), j € C(¢t),
Y+ di <y, + MQ2 - v - v+ xy) 15
fort=1..T,i € C(t), j € C(t),
Vot d; Syj + MG - -y - Vi~ =X T ~Zip ~ —Z/‘p) 16)
forp=1..P, i€ P(p), j € P(p),
Yyt di <y + M@ - v -Vt X Zip ~ Zp) an
forp=1..P, i€ P(p), j € P(p),
Yzp=1 fori=1..T, t € C(1), (18)
pEP
Yoz2b,-MQ2-2zp-v) fori=1.T,p=1..P. (19

6.3 Obligatory conditions

The obligatory conditions define the range of individual
variables: constraint (20) defines the range of values that
the variables y; can take, and constraints (21)—-(23) express
the binarity of the decision variables X, v;, and z;.

Y20 fori=1..T, (20)
xj€1{0,1} fori=1..T,j=1..T, 21)
v, €{0,1} fori=1..T, (22)
zp€40,1} fori=1..T,p=1..P. 23)

7 Case study and experiments

The usefulness of the proposed approach has been the
subject of several experiments, which were performed with
a simulation model of a maintenance depot created in the
Villon simulation software [28]. Villon simulation software
supports the creation of high-quality microscopic simulation
models (especially in the field of railway transportation) that
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allow detailed evaluation of the modeled system operation.
Villon simulation software also provides a broad range of
post-simulation statistics for the evaluation of obtained
results. This simulation software is based on the agent-
oriented architecture ABAsim [29]. In the Villon simulation
software, the modelled system is treated as a service system
with trains as customers, served by defined stationary (infra-
structure, etc.) and mobile resources (personnel, locomotives,
etc.). The service of trains is described by flow charts con-
sisting of technological steps called activities. The assignment
of each resource to an activity is typically done using a priority
list method.

In order to use the proposed algorithm, especially to
obtain the initialization dataset, it was necessary to make
some extensions to the Villon simulation software. Required
data can be extracted directly from the simulation model
using an API designed for the needs of this research. It was
also necessary to ensure the integration of the optimization
method results into the Villon simulation software. This was
achieved by using specific set of API methods that allow an
intervention in the execution of individual simulation runs,
if required.

The task of personal assignment was addressed using
the simulation model depicted in Figure 4. In the simulation
model, as well as in the real depot system, internal drivers
can be in different states, namely, available, working, delay,
moving, return, and off duty. The state available means that
the driver is on duty but is not currently performing any
activity, i.e., not assigned to a train, not moving between
trains, and not returning to the depot. The working state
means that the driver is currently seated on a train and is
moving that train from one place to another. A driver is in a
delay state when he/she is on a train, but the train is waiting
for a route to be set or is waiting for the right time to move.
In the moving state, the driver is walking to the assigned
location of the served train, and in the returning state, the
driver is walking from the train back to specified home
location.

To obtain data from the simulation model, an initiali-
zation simulation run was performed, in which individual
drivers were assigned to trains using a First fit function
(although the Villon simulation software provides several
algorithms for assigning personnel). The First fit function
was used in this model because the algorithm used in the
real depot was not known when the model was developed.
With this method, the first available driver will always be
selected and assigned to the task. If there is no driver in
available state, the train will wait until one of the drivers
becomes available.

The dataset created during the initialization simula-
tion run is composed of individual service activities (train
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Figure 4: Simulation model 1 in Villon.

movements from point A to point B) and drivers. The indi-
vidual service activities are always bound to a specific
train. For a simulation run of 7 days (7 days of operation
in a maintenance depot), a basic dataset of 207 activities
and 84 drivers has been created. Note that this does not
mean that there are actually 84 drivers, but that there are
84 individual work shifts. It is simpler to describe each
shift as a new driver, even though in reality, a driver
may have more than one shift in a few days.

The optimization calculations based on mathematical
model using this dataset were performed using the stan-
dard IP solver Gurobi [30]. The communication between
the simulation model and the optimization method was
carried out by means of messages in the JSON data format.

The aim of the mathematical model (achieved by mini-
mizing its objective function) is to reduce the duration of
the states moving and return since these are directly
related to the distances that the driver has to travel on
foot between trains. Reducing the duration of these trans-
fers has a direct impact on the duration of train service as
these activities are on the critical path of the train service
flowchart. A secondary effect of the optimization should be
the increase in the duration of the available state and reduc-
tion in the duration of the working and delay states. At the
same time, the computational time, in which decision making
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in depot can be implemented, needs to be maintained. In the
framework of our research, the computation time of 1 h is
considered a threshold value.

Experiments were carried out with various lengths of
time horizon (1, 1.5, 2, 2.5, 3, and 3.5 h) for a 7-day simula-
tion run to investigate the significance of appropriate time
horizon settings. The subdatasets included an average of 14
activities and 10 drivers.

Considering that the proposed algorithm should be
used to support operative management, it is important to
deal with its requirements on computation time. Table 1
shows the computation time for different time horizons.
During the execution of experiments, we also tried to con-
duct an exact calculation on the entire dataset, but the
optimal solution was not reached even in 24 h.

Table 2 shows the values of most important states moving
and return, and other states were changed insignificantly.

Since the simulation model used to perform the experi-
ments is deterministic, the experiments were performed
in a single simulation run. The results obtained using the
First fit function (the method originally used) and the
results obtained using the proposed approach with a given
time horizon were compared by determining by how much
the duration of each state was reduced (increased)
in percentage.
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Table 1: Computation time for different time horizons

Length of the time horizon Calculation time (min)

First fit 0.3
1h 0.8
1.5h 21

2h 3.2

25h 10.5
3h 15.3
35h 31.2

Table 2: Duration of monitored states for use different time horizons

Length of the time horizon Moving (h) Return (h)
First fit 30.1 21.6
1h 28.2 20.6
1.5h 28.8 20.4
2h 28.8 19.7
25h 28.2 19.9
3h 29.7 19.8
35h 29.0 19.3

Figure 5 shows the improvement of the moving state
values when using the proposed simulation-based optimi-
zation algorithm compared to the First fit function at indi-
vidual time horizons.

Figure 6 shows the improvement of the return state
values when using the proposed simulation-based optimi-
zation algorithm compared to the First fit function at indi-
vidual changing time horizons.

As it can be seen, the use of the proposed algorithm
yielded an improvement over the First fit function for both
observed states. It may seem that an improvement of

3h  35h

7%
6%
5%

4%
3%
2%
1%
0%
1h 15h 2h

y 2,5h

Improvement of state moving

Time horizons

Figure 5: Percentage differences of state moving after using the pro-
posed algorithm with different time horizons.

Simulation-based optimization =—— 9

3h 35h

12%
10%
8%
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Improvement of state return

1h 1,5h 2h 2,5h
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Figure 6: Percentage differences of state return after using the proposed
algorithm with different time horizons.

1-6.5% for the moving state and 4-10% for the return state
is not significant enough. At this point, however, it is
important to mention the limitations for optimizing the
given task. The simulation model used is a model of a
real maintenance depot. Although the First fit algorithm
is used in many places, the individual processes in this
model are already partially optimized by the simulation
model designer; therefore, the possibilities for further opti-
mization are limited. The correlation between percentage
changes of return state and the size of the time horizon
was confirmed using Pearson’s correlation coefficient (the
value was 0.9), but no such correlation was found for the
moving state (value of Pearson’s correlation coefficient was
-0.56). It is partially possible to conclude that the results
improve with increasing time horizon, although the correla-
tion was only confirmed for one of the two monitored indi-
cators (return state). To confirm this conclusion, further
experiments with longer time horizons should be carried
out. However, experiments with larger time horizons could
not be performed because the computation time exceeded
the specified threshold. This problem could be eliminated by
using heuristic methods instead of an exact approach in the
future. Due to the improvement of individual values, it is
possible to say that the algorithm improves the results when
solving the personnel scheduling problem.

To verify its general usability, the proposed approach
of limiting the size of dataset in order to lower the com-
plexity of computation has also been verified on different
example model with different optimization problem. This
simulation model of maintenance depot is depicted in
Figure 7.

In this simulation model, different types of mainte-
nance tasks must be performed on arriving trains, namely,
heavy maintenance, light maintenance, interior cleaning,
exterior cleaning, graffiti cleaning, and fueling. Each train
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NS

Figure 7: Simulation model 2 in Villon.

requires a specified subset of these maintenance tasks to
be executed. The tasks can be performed on specific loca-
tions inside the yard - heavy maintenance can be per-
formed on four special tracks; cleaning of interiors, cleaning
of exteriors, and cleaning of graffiti can be executed only at
one place consisting of two tracks; refueling can be per-
formed on a single track only; and light maintenance can
be done everywhere, including parking tracks.

According to the proposed simulation optimization
algorithm, the initialization simulation run was completed
first. In this simulation run, individual tasks were executed
in pre-defined fixed order, given the occupancy of the
tracks allowed it. Otherwise, the order was adapted to
the current occupancy of the tracks, e.g., if all tracks for
heavy maintenance were occupied, the following tasks
were executed first (in given order) and heavy mainte-
nance was then performed as the last task for this train.
Due to the sufficient number of maintenance tasks in one
day, we decided to use a 1-day simulation run for this
experiment. The result of the initialization run was the
complete dataset consisting of 15 trains and 60 service
tasks. Like in the personnel assignment task in previous
example model, the IP solver Gurobi was used in this test.
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The experiments were carried out on partial datasets,
which were created by using different time horizons ran-
ging from 1 to 3.5 h. The partial datasets included in
average 7 trains and 30 tasks. It is important to note that
the exact calculation works with a partial dataset limited
by a specific time horizon; therefore, it is not necessary to
include all service tasks.

The goal of this set of experiments was to confirm that
the proposed algorithm can determine a more appropriate
order of individual service tasks, thereby minimizing train
delays. In Table 3, we can see calculation time in different
time horizons.

The results of the experiments (values of train delays)
are shown in Table 4. The total delay time also includes
delays of trains that failed to depart on the respective day.
The delay of the unfinished train is calculated as the dif-
ference between the scheduled departure time and the
simulation finish time.

The percentage change in the sum of delays between
the use of the original algorithm and the proposed algorithm
with different time horizons is shown in Figure 8.

The positive correlation between the percentage
decrease of overall delays and the size of time horizons
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Table 3: Duration of calculation in use for different time horizons

Length of the time horizon Calculation time (min)

First fit 0.2
1h 0.6
1.5h 1.2
2h 5.2
25h 7.4
3h 20.3
35h 32.3

Table 4: Sum of delays in use for different time horizons

Length of the time Delay (min)  Number of unfinished
horizon trains
First fit 5,234 4
1h 4,755 4
1.5h 4,533 4
2h 4,350 4
25h 4,176 3
3h 3,120 3
35h 3,445 2

45%
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& 40%
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T 35%
g 30%
o 25%
©
- 20%
=]
g 15%
> 10%
o
g. 5%
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Figure 8: Percentage decrease of overall delays for different time
horizons.

was confirmed by calculating the Pearson correlation coef-
ficient, the value of which was 0.78.

8 Conclusion

Designing an effective decision-making method for railway
nodes can be difficult, especially considering the com-
plexity of the entire system. Although the exact approach

Simulation-based optimization = 11

seems to be an appropriate method because it provides an
optimal solution, this is not true. If we want to optimize the
decisions in decision-making process, it is necessary to
consider many factors, and this will cause the task to
become larger, and this is the reason why the exact
approach does not seem to be suitable due to the time
required. To apply the exact approach to larger tasks, we
propose a simulation-based optimization algorithm in this
work. The proposed approach works with an exact compu-
tation that is realized on a partial dataset of the data, which
significantly reduces the time required to perform the com-
putations. Although a lot of research has been done in the
field of process optimization in the railway, a large part of it
does not deal with the possibilities of real-time support and
the proposed solutions are very time consuming. In our
proposed approach, we perform calculations in the optimi-
zation method only on partial datasets. Even though our
research could not confirm sufficient time effectiveness
for real-time support, we consider the proposed approach
valuable because it reduces the computation time require-
ment in comparison to standard methods. In addition, the
related work in the field of railway transport optimization
does not adequately take into account the specific problems
in the stations, especially in the maintenance depots. These
problems are quite different from each other, so methods of
solving them could be useful for management of railway.

To confirm the usefulness of the proposed approach, a
series of experiments have been carried out. These experi-
ments were conducted on two simulation models of a
maintenance depot created in the Villon simulation soft-
ware. These experiments were related to two distinct tasks,
namely, the task of assigning personnel and determining the
sequence of service tasks in the maintenance depot. The
results of the experiments indicate an improvement over
the algorithms originally used for decision making in the
simulation models and they lead to the conclusion that the
proposed approach is suitable for solving different types of
decision-making tasks in a railway transportation node.

We are aware that the proposed approach has only
been verified on two types of railway systems, but it is
relevant to point out that this verification has been carried
out on a complex simulation model containing real data.
Since the algorithm is based on standard optimization and
simulation methods, we assume that it will be applicable to
different types of tasks. For this to be possible, it is of
course necessary to carefully consider the use of a suitable
optimization method (exact calculation or heuristic) and
the availability of a suitable simulation model.

Individual experiments with different time horizons were
conducted to confirm the relationship between increasing
time horizons and the quality of the results obtained. This
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relationship was confirmed for two of the three indicators
monitored. However, the possibility of increasing the time
horizon is considerably limited, since we are trying to provide
real-time support in the given approach, and as the time hor-
izon increases, so do the computational requirements.

Even though the proposed algorithm has brought about
an improvement, its use in practice is still questionable.
Operational management in a railway transportation node
must be ensured in real time, and the proposed algorithm
does not achieve this speed of calculation. To address this
issue, a non-exact (e.g., heuristic) approach could be used
for calculations performed on a partial dataset. Further
research could be conducted on the use of these methods.
Moreover, the applicability in a real node is not yet con-
firmed and may be problematic because the simulation
models used have a considerable degree of abstraction.
This should be the subject of further research.

However, the study confirmed the benefits of the pro-
posed simulation-based optimization algorithm, and we
believe it could be useful in providing support of deci-
sion-making processes for complex railway systems, such
as railway transportation nodes.
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