
Research Article

Pavle Dakić*

Software compliance in various industries using
CI/CD, dynamic microservices, and containers

https://doi.org/10.1515/comp-2024-0013
received December 28, 2023; accepted May 24, 2024

Abstract: The microservices architecture is widely used in
modern businesses due to its ability to offer speed, effi-
ciency, adaptability, autonomy, and usability. On the other
hand, this architectural paradigm demands a well-designed
infrastructure for optimal container and cluster utilization.
Establishing version control and a solid continuous integra-
tion/continuous deployment (CI/CD) infrastructure becomes
critical for accelerating software delivery to production and
ensuring code alignment with best practices. This scientific
investigation investigates the development of customized,
specialized CI/CD procedures for software compliance,
expanding its scope beyond traditional software delivery
to include the complexities of design, testing, and server
deployment. By integrating real-world examples from
industry and reviewing crucial tools, the goal is to provide
organizations with empirical information to navigate the
difficulties of modern software development. The upcoming
research seamlessly fits into the larger discussion, providing
a deep understanding of sophisticated structures and their
design. This interdisciplinary research combines the scien-
tific principles governing microservices with the practical
specifics of CI/CD methodologies, giving businesses a thor-
ough understanding and practical insight into the tools
needed to navigate the diverse landscape of modern soft-
ware engineering. Among the main findings of this research
is a suggestion for a new approach known as General repo-
sitory compliance operations.

Keywords: software compliance, dynamic microservices,
CI/CD and YAML, pipeline scripts, containers using IoC

1 Introduction

The rise of microservice architecture in modern organiza-
tional frameworks demonstrates its profound impact on
structural dynamics. This architectural paradigm offers
significant benefits, such as increased speed, efficiency, adapt-
ability, autonomy, and usability, making it essential for navi-
gating the ever-changing corporate landscape. Achieving high
performance requires skillful engineering that takes advan-
tage of recent technology developments, particularly con-
tainers, and clusters in computer science [1,2].

Microservices essentially represent small, independently
deployable services embeddedwithin applications that improve
modularity, scalability, and flexibility in software development.
However, accessing these services and native cloud computing
presents significant hurdles for everyone due to cost limits and
complexity. This article studies the complex orchestration and
control of microservices within infrastructure frameworks,
with a focus on their possible integration into the automotive
industry. Standardization is especially important in operations
such as collecting and processing data for vehicle parking iden-
tification, as it ensures precision and compliance with specific
rules [3].

Diverse technologies and container distribution approaches
are thoroughly investigated to determine the best deployment
tactics [4–6]. Throughout the development lifecycle, a variety of
challenges combine to impede collaboration, including task dis-
tribution issues, organizational process ambiguities, specification
uncertainties, communication breakdowns, cultural differences,
and standard adherence complications. Overcoming these diffi-
culties requires excellent management processes for software
compliance and information exchange throughout the car pro-
duction process. Rapid testing emerges as a vital component in
ensuring compliance with industry standards and expediting
software deployment into production systems.

This initiative aims to provide businesses with the
empirical insights needed for informed decision-making
in modern software development and deployment para-
digms by a thorough evaluation of real-world case studies
and critical explanations of key technologies. Our core goal
remains to enable a standardized procedure to create,



* Corresponding author: Pavle Dakić, Faculty of Informatics and
Computing, Singidunum University, Faculty of Informatics and
Information Technologies, Slovak University of Technology in Bratislava,
Bratislava, Slovakia, e-mail: pavle.dakic@stuba.sk

Open Computer Science 2024; 14: 20240013

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/comp-2024-0013
mailto:pavle.dakic@stuba.sk

deploy, and administer applications within Kubernetes
clusters while adhering to common compliance criteria
in the industry. Clusters promote immersive experiential
learning by providing hands-on experience with key
components such as CI/CD pipelines, Helm charts, and
namespace management. The use of new ideas that the
incorporation of CI/CD and their connections enables
the integration of static and dynamic components within
the CI/CD pipelines [7,8].

The specific issue is the difficulty in managing micro-
services within infrastructure frameworks. This specifically
refers to communication hurdles, organizational uncertainty,
and ambiguity in the requirements and planning to be
managed. These constraints restrict effective coordina-
tion throughout the development lifecycle, highlighting
the critical role of software compliance management and
knowledge sharing in automotive software development.
Our examination focuses on the effective application of
new ways to describe requirements and navigate compli-
ance issues. This analytical pursuit ends in a complete expo-
sition, methodically analyzing the complexities inherent in
the creation of advanced systems and providing essential
information on the prudent deployment of the necessary
instruments [9,10]. Applicability of our discourse includes
key aspects such as implementation challenges, technology
modalities, productivity impact assessments, and instruc-
tional learning from experiential projects. Furthermore,
enhancing the scalability and adaptability of deployed sys-
tems is critical to ensure seamless alignment with changing
business imperatives and demands.

This study is organized as follows: Section 1 is intro-
duction, Section 2 is contributions and novelty, Section 3 is
literature review, Section 4 is materials and methods, Sec-
tion 5 is microservices and different software architecture
designs, Section 6 is containerizations, Section 7 is analysis
of continuous integration (CI) in agile deployment, Section
8 is results, Section 9 is limitations of the study, Section 10
is discussion, and Section 11 is conclusions. According to
the stated research questions defined Section 4, an appro-
priate organization was performed within the sections that
follow.

2 Contributions and novelty

The research’s contributions and innovation stem from
its complete examination and integration of numerous
aspects of cloud computing, real-world applications, micro-
service architecture, CI/continuous deployment (CD), and
so on. Noteworthy contributions and novelty include the
following:

(1) Empirical knowledge for future decision making: The
goal of this article is to provide companies with the
empirical knowledge they need to make informed
decisions in the dynamic terrain of current software
development and deployment to understand the con-
struction of microservices. This helps professionals
and students manage the complexities of microser-
vices and native cloud computing by breaking down
real-world scenarios and assessing technology.

(2) Accessibility for students and professionals: Recognizing
the challenges that students face while accessing micro-
services and native cloud computing environments, the
text addresses this topic with insights and practical
examples. Our primary focus was on providing hands-
on learning while also developing and managing local
clusters that can increase accessibility and skill develop-
ment in a short amount of time.

(3) Unique CI/CD approaches to software compliance: This
article advances the field by investigating and pre-
senting novel CI/CD approaches built exclusively for
software compliance. We experimented with this novel
way to address the issues of design, testing, and server
deployment processes, pushing beyond the normal dis-
tribution and development of software.

(4) Kubernetes cluster administration: By providing actual
tasks linked to standard compliance, the investigation
aids in gaining a better understanding of Kubernetes
cluster administration. Hands-on experience with CI/
CD pipelines, Helm charts, microservices, and name-
space management in a cluster is required.

(5) Comprehensive case study and practical insights: A
detailed case study that provides significant value by
providing practical information and a review of key
literature on this topic. This hands-on test demonstrates
the complexity of designing advanced microservice
architectures, bridging the gap between theoretical
principles and real application, and improving com-
prehension and applicability.

(6) Application in the industry: The investigation adds to
previous contributions by demonstrating a practical
implementation of microservices in CI/CD with the crea-
tion of a new method and acronym General Repository
Compliance Operations (GRCopOps). The fundamental
aim behind this term is to achieve synergy and accel-
erate the process of software standardization. With the
use of microservices to connect several technologies, we
can tackle specific challenges, including parking and
container distribution.

In summary, the research stands out for its compre-
hensive approach, which combines theoretical principles

2  Pavle Dakić

with practical applications, making it a valuable resource
for both academics and industry practitioners seeking a
deeper understanding of CI/CD, microservices, and their
real-world implications. Understanding the complexities
of service-oriented architecture (SOA) is critical to max-
imizing its benefits. Similarly, the distinction between
standard virtual machines (VMs) and containerization is
critical. This insight guides strategic decisions about system
architecture, scalability, resource optimization, and deploy-
ment efficiency. In today’s rapidly changing technology scene,
such understanding promotes adaptation and assures align-
ment with industry best practices, eventually increasing com-
petitiveness and innovation. Our study seeks to address and
resolve difficulties such as scalability, fault tolerance, modu-
larity, container orchestration, application programming
interface (API) administration, service communication,
regulatory compliance, and efficient management of dis-
tributed transactions in computing infrastructure.

3 Materials and methods

The foundation for the research approach will be the appli-
cation of the research questions. These research questions
should address the educational component of microservices
and cloud computing environments, with a focus on enhan-
cing accessibility in the future. To explore applications of
microservices approaches to enable hands-on learning while
taking into account the problems that students and profes-
sionals confront, and emphasizing the practical aspects of
cluster administration and standard compliance.

3.1 Research questions

The research within this study will be organized and imple-
mented based on the following research questions:
(1) How can unique CI/CD methodologies be developed to

ensure software compliance within the context of a
microservices architecture?

(2) What insights and practical lessons can be derived
from a comprehensive case study of designing, testing,
and deploying intricate microservices architectures,
considering real-world examples and industry applica-
tions, particularly in the automotive sector?

(3) How can accessibility and hands-on learning be enhanced
for students and professionals in the domain of microser-
vices, native cloud computing, and Kubernetes cluster
administration, particularly regarding standard compli-
ance and practical applications in diverse industries?

3.2 Keywords

The process of finding relevant literature was carried out
using some of the following combinations:
(1) Software compliance case study and microservices

architecture.
(2) Real-world examples CI/CD and microservices architec-

ture in the automotive industry.
(3) CI/CD compliance in Kubernetes cluster and microser-

vices architecture.
(4) Dynamic landscape of software development and

Kubernetes cluster administration.

4 Literature review

The widespread adoption of microservices in cloud-based
applications is evident, both internally within enterprises
and externally in diverse environments. While microser-
vice architecture improves scalability, it poses perfor-
mance difficulties that must be carefully considered while
designing performance models and scheduling jobs. Despite
their prevalence, these difficulties remain largely unex-
plored. Microservices provide granular control over cloud
applications, resulting in widespread use across sectors [11].

Using the collected literature and the findings of a
thorough investigation, we can examine the factors that
influence the performance of microservices provided by
this type of serverless computing. In addition, we can see
that the model driven engineering (MDE) paradigm is uti-
lized to construct agnostic languages that automatically
subsequently change into infrastructure as a service –

infrastructure as code – in the majority of scenarios [12,13].

4.1 Microservice capacity (MSC)

Jindal et al. [14] addressed the issue of identifying the MSC
for each microservice individually. Each microservice imple-
ments its functionality and communicates with the others via
a language and a platform-independent API. Jindal et al.
showed that their resource consumption varies according to
the functionality implemented and the workload. Continu-
ously increasing load or a sudden load spike may result in
a service level objective violation. Podolskiy et al. [15] covered
the concept of MSC as the maximum rate of requests. Their
research examines the possibilities of successful functioning
without violating the SLA. Based on this, in their study,
defining their behavior in the application of a microservice
that is appropriate for the user.

Software compliance in various industries using CI/CD, dynamic microservices, and containers  3

As a result, the construction and usage of automated
computer flows can be simplified when the later connected
interchange of different tools is implicitly derived from the
need to properly harmonize with each other by having the
needed file format, which we could see within these men-
tioned papers [16,17]. As in this case, after adopting a stan-
dardized YaML format, while looking for examples of direct
application, we found articles and some of our research in
this field that cover some of these challenges [18–20].

4.2 Web application microservices

The current investigation examined the impact of search
engine optimization andmanual ad set optimization (Google
dynamic ads) vs the usage of microservices and YaML con-
figuration files. Reading most of the papers obtained, one
can discern the goal of building a knowledge model through
a microservice measurement architecture with an explicit
structure of mutual relations within the WINNER research
project [21]. They were developing acceptable suggestions
for continuous data transmission, dealing with dynamic
container provisioning, and scaling appropriate microser-
vices inside the cloud computing environment in data cen-
ters in this manner.

Subsequently, allocation profiles could be created for
the demands of various web application microservices,
which together with containers could be geographically
dispersed to cloud data centers. Another example is the
presentation of a software package for investigating the
rate of movement/detection of the earth’s surface in areas
of extensive coal mining, as well as the usage of various
computational demands for computer hardware resources.
Saboor et al. [22] provided an overview of a green cloud
computing environment and conducted a literature review
focusing on the importance of different Docker files. They
analyzed previous studies that included the largest collec-
tion of Docker files from 2013 to 2020, comprising 9.4 million
files extracted from the World of Code infrastructure [22,23].

4.3 Error prediction and fault localization for
microservice applications

Identifying failures and faults in microservice systems for
prediction and localization in production remains difficult,
due to the dispersed and dynamic nature of the design of
microservices. Although highly desirable, the intricate inter-
dependencies and different runtime environments that char-
acterize microservice ecosystems make it difficult to handle
these challenges efficiently. Zhou et al. [24] proposed MEPFL,

a technique for latent error prediction and fault localization
for microservice applications based on system trace logs.
Thus, the predictionmodels may be utilized in the production
environment to forecast latent faults, malfunctioning micro-
services, and fault kinds for runtime trace instances. This has
allowed data center operators to approach hosting microser-
vices in a very different way from traditional infrastructures.

Kannan et al. [25] presented GrandSLAm, a framework
for efficiently running microservices in data centers. They
show that implementing a microservice design dramati-
cally reduces the work required for server adoption and
maintenance. Furthermore, providing a catalog of functions
as services might serve as a basis for developing applica-
tions in this ecosystem. This paradigm change enables data
center operators to manage data centers and host microser-
vices in ways that are not possible with traditional architec-
tures. As a result, it requires a reconsideration of resource
management strategies in various execution scenarios.

4.4 Monolithic systems

The rapid development of mobile edge computing (MEC) in
recent years has provided an efficient execution platform at
the edge for Internet of Things (IoT) applications. However,
MEC delivers ideal resources to various microservices; yet the
underlying network conditions and infrastructures intrinsi-
cally alter the execution process in MEC. As a result, in the
presence of fluctuating network conditions, it is required to
optimize end-user task execution while maximizing energy
efficiency on the edge platform, as well as to ensure equitable
quality-of-service.

Monolithic systems come into play, offering standard
development environments that are simple, efficient, and
straightforward to deploy. Their key strengths are scaling
and operating expenses, which are manageable despite a
lack of flexibility and maintainability as applications grow.
The decision between monolithic and modular architec-
tures is influenced by application size, complexity, and
team expertise. Although monolithic systems have various
advantages, they may have drawbacks such as indepen-
dence and debugging time [26].

4.5 Biometric three-tier microservice
architecture

The three-tier, biometric-based microservice architecture
is designed to decrease fraudulent activity by employing

4  Pavle Dakić

advanced authentication technologies and assuring secure
user verification. Although monolithic systems offer sev-
eral advantages, they also present limitations, such as
reduced independence and prolonged debugging periods
[27]. Consequently, there has been a paradigm shift towards
adopting microservice architecture for application develop-
ment. A promising solution involves the integration of Pass-
port (passport.js), a Node.js (nodeAuth-passport) module
renowned for its simplistic yet robust authentication proce-
dures. Using Passport as a middleware within the Node.js
application and integrating it with streamlined authentica-
tion processes allows simple integration. In particular,
Passport boasts compatibility with various authentication
schemes, including OAuth 1.0 and OAuth 2.0, and integrates
seamlessly with popular providers such as Twitter, Facebook,
and LinkedIn. Moreover, Passport’s flexibility allows for cus-
tomization, enabling adaptation to unique requirements, a
crucial feature given the nuanced specifications inherent in
the OAuth 2.0’s intricate authentication framework [27,28].

In response to the challenge of duplication of passport
(passport.js) packages, an innovative biometric-based mono-
lithic authentication architecture is gaining traction. This
approach circumvents the need to scrutinize all tokens
and their functionalities within Node and the passport.js
library. Alternatively, another strategy involves Service A
and Service B interfacing with an authentication service
to validate authorization tokens, albeit at the expense of
increased interservice traffic due to the validation of each
HTTP request containing a token. However, to mitigate net-
work latency and cost, dynamic scheduling of microservices
becomes imperative. Unlike standard techniques, a best-
practice proposal is presented for a dynamic microservice
scheduling strategy for MEC, aimed at optimizing resource
allocation and improving overall system efficiency [29].

4.6 MicroCause framework

An increasing number of Internet applications are applying
microservice architecture due to its flexibility and clear
logic. Meng et al. [30] proposed a framework, MicroCause,
to accurately locate root cause monitoring indicators in a
microservice. MicroCause combines a simple yet effective
path condition time series algorithm that accurately cap-
tures the sequential relationship of time series data and a
novel temporal cause-oriented random walk (TCORW)
method that integrates causal relationship, temporal order,
and priority information of the monitoring data. We could
see that Meng et al. [30] evaluated MicroCause based on 86
real-world failure tickets collected from a top-tier global

online shopping service. Their experiments show that the
top five accuracy (AC@5) of MicroCause for intra-microser-
vice failure root cause localization is 98.7%, which is greatly
higher (by 33.4%) than the best baseline method.

4.7 Complexity and dynamism of
microservice systems

The complicated and unpredictable structure of these sys-
tems presents unique problems for a variety of software
engineering activities, particularly failure diagnosis and
debugging. Despite their extensive use and importance in
industry, little research has been done on failure analysis
and debugging processes. Given their frequency and impor-
tance in current software development, there is a significant
need for research to address the analysis and debugging
problems associated with microservice designs.

To fill this gap, Zhou et al. [31] performed an industrial
survey to learn about common microservice system pro-
blems, existing debugging practices, and the challenges
experienced by developers in practice. The study’s findings
demonstrate that existing industrial debugging processes
can be improved by using proper tracing and visualization
techniques and methodologies. The findings by Zhou et al.
also indicate that there is a considerable need for more
intelligent trace analysis and visualization, such as inte-
grating trace visualization and enhanced fault localization,
as well as using data-driven and learning-based recom-
mendations for guided trace exploration and comparison.

4.8 MEC

With MEC, microservices can be dynamically deployed on
edge clouds, quickly launched, and easily transferred between
edge clouds, providing better services to users near them who
use a wireless connection [32,33]. User mobility can result in a
frequent switch to nearby edge clouds, increasing the service
delay when users move away from their edge clouds. To over-
come this issue, Wang et al. [34] investigated the coordination
ofmicroservices between edge clouds to provide real-time and
seamless responses to requests for mobile user service. Their
study introduces a novel service architecture that facilitates
the fragmentation of a monolithic web service into a series of
lightweight, independent services through microservices.

MEC allows microservices to be dynamically deployed
in edge clouds, launched quickly, and easily transferred
between edge clouds, resulting in improved services for
nearby users. However, user mobility can result in fre-
quent switching of neighboring edge clouds, increasing

Software compliance in various industries using CI/CD, dynamic microservices, and containers  5

service latency as users move away from their serving
edge clouds. Loosely coupled, lightweight microservices
running in containers are gradually replacing monolithic
applications.

Luo et al. [35] provided a solid analysis of large-scale
microservice deployments in Alibaba clusters [36]. They do
a thorough study to distinguish the differences between
microservice call graphs and traditional data-parallel
directed acyclic graphs. Their analysis uncovers distinguishing
features of microservice call graphs, such as heavy-tailed
distribution, tree-like topology, and frequent hotspots
between microservices. In their research, they identified
three important call dependencies that are critical for opti-
mizing microservice designs. Furthermore, their research
shows that microservices are significantly more vulnerable
to CPU interference than memory interference, based on an
assessment of microservice runtime performance.

5 Microservices and different
software architecture designs

Microservices, a modern paradigm of software architec-
ture, decomposes programs into independently deployable
services, revolutionizing the previous monolithic method.
Each microservice is self-contained, allowing for greater
flexibility, scalability, and autonomy in development and
deployment. Microservices, as opposed to monolithic struc-
tures, allow teams to focus on individual functionality,
facilitating parallel development and faster iterations.
Service-oriented architectures contain functional, auton-
omous, and reusable components that can be accessed
remotely via a local or external Internet WAN network.
They facilitate polyglot programming (microservices do
not need to share the same technologies, frameworks,
and libraries) and can be created in multiple program-
ming languages. They allow developers to create indepen-
dent services without disrupting the flow of other services
and make development organization much easier by
allowing microservices to develop autonomously. They
can be deployed independently and updated separately,
eliminating the need to reinstall the entire program [37].

Various software architecture designs coexist, each
catering to a different set of requirements. In contrast tomicro-
services, monolithic designs combine components into a single
unit, simplifying development, but potentially restricting scal-
ability. In contrast, serverless architectures abstract infrastruc-
ture administration, allowing developers to focus exclusively
on code. Asynchronous communication is used in event-driven
systems to improve responsiveness and scalability [38].

The decision between these designs is influenced by
project needs, scalability objectives, and the dynamics of
the development team. They are renowned for their ability
to adapt to complex, dynamic contexts, promoting a para-
digm shift in software development that stresses agility,
resilience, and resource efficiency. The interaction with
other architectural designs continues to influence the land-
scape as technology progresses, giving developers a varied
toolkit to meet diverse difficulties in the ever-changing
world of software engineering.

5.1 Monolithic design shortcomings

Monolithic architecture has various flaws that become
apparent as the applications become more complicated.
Scalability is a significant challenge because scaling requires
replicating the entire monolithic application, which may
result in resource inefficiencies. A monolith’s lack of mod-
ularity and independence limits development flexibility and
agility, making it difficult to update or modify individual
components without redeploying the entire system.
Technology stack restrictions stifle innovation even further,
because monoliths frequently rely on a single technology
stack, limiting the use of varied tools and frameworks.
Monolithic architectures’ high coupling and complexity
make them difficult to understand, maintain, and trouble-
shoot. The necessity to relaunch the complete application
raises the risks of deployment, which can generate errors
and disruptions [39,40].

Inefficiencies in resource usage, resistance to adopting
new technology, and development bottlenecks in large
teams are all disadvantages of monolithic architecture.
Although such limitations are suitable for simpler applica-
tions, they highlight the need for more scalable, modular,
and adaptive architectural paradigms, such as microser-
vices, to meet the changing needs of modern and sophisti-
cated software systems [38].

5.2 SOA

SOA introduces distinct security considerations that are
critical for securing distributed systems. In SOA, where
services communicate across networks, data integrity, con-
fidentiality, and authentication become critical. One of the
inherent security challenges is the potential exposure of
sensitive information during service interactions. Securing
SOA involves implementing strong authentication systems

6  Pavle Dakić

to authenticate the identities of service providers and cli-
ents. Credential management, secure token exchange, and
the adoption of standards such as Security Assertion
Markup Language all contribute to a safe authentication
architecture [41].

For protecting communication channels between ser-
vices, encryption techniques such as secure sockets layer
or transport layer security are used to maintain data integ-
rity. Additionally, digital signatures can be used to validate
the integrity and validity of sent messages. Authorization
techniques are critical to managing access to services, since
they ensure that only authenticated and authorized enti-
ties can use certain features. To secure SOA, fine-grained
access control and role-based authorization frameworks
are often used [42].

Additionally, the inclusion of security gateways and
firewalls helps to monitor and filter incoming and outgoing
traffic, fortifying the overall security posture of a service-
oriented ecosystem. Regular audits, threat assessments,
and adherence to best-in-security practices contribute to
a comprehensive security strategy, fostering trust and
reliability in SOA implementations. SOA is a style con-
sisting of discrete services rather than a monolithic design.
Breaking down a monolithic design into a system of services
interacting via messages via REST APIs allows businesses to
have as minimal production downtime as possible (improve
availability), isolate issues, and expand applications [43].
This implies the persistence of a different structure that
divides an application into smaller services that communi-
cate with each other. The goal is to bring together multiple
services without relying on each other.

5.3 Stateless/stateful microservices

Our current research on this subject aims to improve the
scalability of both models by striking a balance between
efficiency and reliability, ultimately increasing overall per-
formance and user experience in a wide range of organi-
zations. This endeavor requires weighing the advantages
and disadvantages of each strategy, as well as recognizing
the trade-offs between scalability and data persistence for
optimal system design in certain applications [43,44].

5.3.1 Stateless microservices

As the name stateless indicates, this type of microservice
does not preserve any actual state. Instead, they receive a
request, process it, and return a response to the caller

without storing any information, relying on databases to
provide the necessary information if needed.

5.3.2 Stateful microservices

Stateful microservices, on the other hand, keep informa-
tion in some form. Many users want to be able to resume
where they left off, and stateful microservices make that
possible [44].

5.4 Scalability

To obtain optimal system performance, we need to rigor-
ously evaluate stateless and stateful microservices for scal-
ability. The importance of stateless microservices stems
from their ability to handle requests independently without
keeping session data, which promotes scalability and fault
tolerance. However, stateful microservices are used to
retain session data and ensure consistency. However, data
management complexities and interconnections can compli-
cate scalability and result in a loss of failure tolerance. Here
we must be very discriminating in picking among them
based on application requirements and trade-offs while
using them.

As mentioned, stateless microservices have a high
degree of scalability, allowing seamless horizontal expan-
sion to meet increasing demand while maintaining excel-
lent responsiveness in dynamic resource settings. Stateful
microservices, on the other hand, although providing per-
sistent data benefits, require careful scaling considerations
due to the complexity of maintaining a synchronized state
across instances where these attempts were addressed in
our earlier research [2,8,45–47].

5.5 Serverless architecture

Serverless computing transforms computing by abstracting
server management from developers. In this architecture,
code execution is event-driven and scales automatically
based on demand. This paradigm is facilitated by services
such as AWS Lambda and Azure Functions, which charge
only for real code execution time. Developers are freed from
infrastructure issues by focusing only on writing code.

We improve agility, decrease operational overhead,
and ensure cost effectiveness by utilizing serverless archi-
tecture. Event triggers, such as HTTP requests or file
uploads, start functions invisibly. Serverless computing,
despite its name, is based on the underlying servers, but

Software compliance in various industries using CI/CD, dynamic microservices, and containers  7

abstracts their management, easing the creation and deploy-
ment of scalable and cost-effective applications [48].

5.5.1 Serverless microservices

Serverless microservices are usually cloud-based services
that perform a highly specific task within the application.
Tasks vary depending on the application. Tasks are exe-
cuted in response to HTTP requests, database updates, at a
certain period (such as batch jobs), or at any other event
that could trigger a service.

5.5.2 Serverless architecture

Serverless architecture is a technology that allows devel-
opers to build and run applications without having to
worry about the upkeep of the infrastructure or the admin-
istration of the cluster server. Cloud providers manage the
servers that run their applications and databases in server-
less architectures. Teams that lack the time, experience, or
resources to administer servers can outsource the task to
cloud providers such as AWS, Google, and Azure [48].

5.6 Communication

As one of the most important aspects of microservice
design, communication between microservices must be
quick and efficient. Effective communication across micro-
services is crucial for complex systems to run smoothly. A
well-planned communication strategy promotes coherence
and responsiveness, allowing microservices to communi-
cate data effortlessly and coordinate activities.

The communication protocols used, such as RESTful
APIs or message queues, have a significant impact on
system performance. Real-time updates and efficient data
flow among microservices promote agility, scalability, and
dependability. However, issues such as latency and poten-
tial service outages require sophisticated error handling
and monitoring techniques. Adroit microservices commu-
nication is critical to orchestrating coherent and high-per-
formance distributed systems at the intersection of relia-
bility and efficiency.

5.6.1 Synchronous architecture (Service-to-service)

In the service-to-service paradigm, the interaction between
microservices is largely composed of HTTP requests such

as GET, POST, and PUT. If one microservice requires some-
thing from another, it sends a GET request to that micro-
service, which returns with the appropriate response, as
shown in Figure 1.

5.6.2 Asynchronous architecture

Microservices with an asynchronous design do not com-
municate with each other but instead with the Composer
API [49]. In Figure 2, this can be seen in greater detail how
the communication itself is realized.

5.6.3 Service mesh

Service mesh is a method to integrate the communication
of a large number of autonomous services into a working
application. Requests in the service mesh are typically routed
through proxies, which capture all aspects of service-to-ser-
vice interactions within the infrastructure (Figure 3). The
figure depicts the procedure before and after the installation
of service mesh, with the left side showing the cluster and the
environment itself, where traffic balancing and exposing only

Figure 1: Example or synchronous service-to-service communication.
Source: the study of Gordesli and Varol [49].

Figure 2: Example of Asynchronous architecture. Source: the study of
Gordesli and Varol [49].

8  Pavle Dakić

public ports are enabled. While the internal ports within the
cluster are protected, the user does not have direct access to
all services.

A “sidecar” is a proxy that operates alongside rather
than within each microservice. The sidecar is in charge of
all communication and security measures. Without a ser-
vice mesh, it is impossible to isolate faults or bottlenecks in
a large and intricate infrastructure [50].

6 Containerizations

A container is a code contained exclusively by the oper-
ating system, libraries, and dependencies required for the
program to run. The containerization code results in an
executable file that we can run on any machine. Containers
are similar to VMs. Specific differences can be seen in
Figure 4 where we see a comparative presentation of their

Figure 3: Example of service mesh – before and after deployment within the cluster using proxy sidecar. Source: author’s contribution.

Figure 4: Side by side view of VMs vs containers. Source: Adopted to improve the quality [53].

Software compliance in various industries using CI/CD, dynamic microservices, and containers  9

differences in the architecture they use during implementa-
tion. However, they use fewer resources and are faster.
Previously, moving code to other computers was signifi-
cantly more difficult. Containers have solved this difficulty
(“written once, run anywhere”) [51]. Docker is the leading
containerization platform, widely recognized and used across
sectors. Its value lies in accelerating application deployment,
providing consistent environments across several systems,
and facilitating scaling. Understanding Docker’s popularity
is critical for businesses looking for efficient software devel-
opment, deployment, and management solutions in today’s
fast-paced digital environment [52].

6.1 Docker image

A Docker image is a package that contains all the code,
libraries, dependencies, and other components used to
run an application. A file called DockerFile is used to con-
struct a base image, since it provides all of the relevant
information about the image that will be built.

Because images are immutable and easy to share, once
you produce one, you can share it with others, who will
receive the identical program when they execute it. Docker
images are, in some ways, templates for running apps or
adding extra image layers. Docker images can be pulled
and submitted to the Docker hub, which serves as a public
image repository [54].

7 Analysis of CI in agile deployment

CI/CD offers value to Agile development approaches by
automating building, testing, and deployment. Although
all of these phases can be performed manually, the pri-
mary benefit of this strategy is automation, which reduces
delivery time [47,55,56]. Now, we can obtain error isolation
much more easily by using this solution. The basic purpose
is to increase productivity and discover problems before
they are deployed to production.

7.1 Pipeline

The pipeline displays a succession of specified actions
before releasing the code. Depending on the repository
platform utilized, the format in which the pipeline is
written may differ. The most well-known platforms that

provide CI/CD pipelines are GitLab, Github, and Jenkins.
The pipelines are built in YAML, a human-readable data
serialization language [57].

7.1.1 Jobs

Jobs are an essential component of the pipeline because
they describe tasks that consist of a series of commands
that the pipeline must execute, such as compiling or testing
code. If all tasks are completed in a stage, the pipeline
moves on to the next stage.

7.1.2 Stages

The stage consists of a set of tasks. Stages are pipeline steps
that can be defined by the developer, such as build, lint,
test, and deploy. To streamline development and deployment,
the pipeline steps follow a defined sequence throughout var-
ious stages. The first step is to define the project’s goals and
requirements. Task allocation and resource coordination are
included in planning. Coding entails the creation of software,
which is then tested to find and correct faults. Individual code
components are consolidated into a unified system through
integration.

The program is deployed for user access, while moni-
toring incorporates real-time performance and issue detec-
tion. Feedback loops help shape future advancements. Because
each stage is interconnected, a methodical evolution from con-
ception to execution is ensured, supporting agile development
and optimizing the efficiency and reliability of pipeline steps in
the software development lifecycle. An example of a devel-
opment of CI/CD pipeline is shown in Figure 5, where the
sequence of steps that is realized depending on the calling of
a certain scene (build, test, deploy, and production) can
be seen.

7.2 Container orchestration

Managing hundreds of containers and communication
between them is rather difficult without a Container
orchestration tool. “Container orchestration automates
the deployment, management, scaling, and networking
of containers.” Container orchestration gives the user
greater control over individual containers, resources,
configurations, and life cycles. The most well-known con-
tainers orchestration tools are Kubernetes, Openshift, and
Docker Compose [58].

10  Pavle Dakić

7.3 Kubernetes

Kubernetes, an open-source container orchestrationmechanism,
includes the ability to deploy, manage, and scale multiple con-
tainers. The key advantages of Kubernetes automation include
dependability, autonomous deployment, load balancing, and
storage orchestration. Pods emerge as critical components
of Kubernetes orchestration, encapsulating containers, and
enabling efficient deployment and scalability. This declara-
tive approach offers seamless configuration management,
allowing large systems to be orchestrated with services
and labels. This also allows for dynamic load balancing
and simple identification of connected components.

Data durability is ensured by persistent storage, which
is accomplished through volumes. The self-healing capabil-
ities of Kubernetes immediately replace broken containers,
ensuring high availability. CRDs improve Kubernetes cap-
ability by allowing the introduction of bespoke resources
where this broad ecosystem places Kubernetes as the cor-
nerstone in modern containerized application deployment,
facilitating scalability, resilience, and maintenance [59].

7.4 Kubernetes cluster

A Kubernetes cluster combines computing resources by
coordinating numerous nodes to run containerized appli-
cations efficiently. In a distributed architecture, the master
node directs the orchestration, while the worker nodes
execute tasks, ensuring scalability, fault tolerance, and
optimal performance, providing the backbone of resilient
environments built for cloud infrastructures. The cluster is
made up of Worker Nodes, Master Nodes, and a Control
plane, which has six major components: Kubelet, Kube-
proxy, control-manager, etcd, API Server, and scheduler.

7.5 Namespace

Kubernetes provides a namespace, which is a place to sepa-
rate a group of resources within a cluster. The Namespaces

are intended for use with a large number of clients via a
cluster. They also serve as a mechanism to split cluster
resources among various users, with four predefined name-
spaces in a cluster: default, Kube-system, Kube-public, and
Kube-node-lease.

For items with no defined namespace, the default name-
space is used. The Kube-system is used for Kubernetes-cre-
ated objects. The Kube-public class represents things that are
accessible to all users. Kube-node-lease is used to lease things.

7.6 Worker node

The worker node itself can be defined as a node that has
containers that have been built and are currently operating.
Every worker node has its own Kube proxy, container runtime
engine, and Kubelet. Kubelet serves as a communication agent
for the Kubernetes API Server. Kube-proxy facilitates commu-
nication between containers created on separate working
nodes, as well as the provision of an IP address for the con-
tainer and load balancing. The container runtime engine is
responsible for the initialization of deployed containers.

7.7 Master node

A Kubernetes cluster is managed by a master node, which is
made up of several components: etcd, Kube-controller-man-
ager, Kube-API Server, and Kube-scheduler. Kubernetes sup-
ports several master nodes, ensuring load balancing, and
when one dies, another takes its place.

Containers are scheduled using Kube-scheduler, while
nodes and replicas are managed via Kube-controller-man-
ager. Etcd maintains and monitors information about other
nodes. The Kube-API Server authenticates the clients and
allows them to communicate with the Kubernetes cluster.

7.8 Helm charts

Helm is a Kubernetes package management that comprises
preconfigured Kubernetes resources such as Secrets,

Figure 5: Example of simple GitLab CI/CD pipeline. Source: the study of Malviya and Dwivedi [58].

Software compliance in various industries using CI/CD, dynamic microservices, and containers  11

Services, Configmaps, and so on, as well as a package
description (Chart.yaml). It enables repeatable build of
Kubernetes applications and simplifies installation and
administration of Kubernetes applications via Helm charts.
Helm charts, a key component of Kubernetes package man-
agement, enable smooth deployment rollbacks. Helm’s ver-
sioned releases enable easy reversal to previous states,
ensuring robustness in the event of problems.

When problems develop after deployment, Helm’s roll-
back command can be used to quickly return the applica-
tion to the last known stable version, lowering risks and
minimizing downtime. This versioning system, together
with Helm’s easy management, enables users to navigate
and correct deployment difficulties with agility, offering a
critical safety net in the changing Kubernetes application
deployment landscape [60].

Users have more confidence in managing applications,
since the rollback feature provides a robust mechanism for
quickly resolving errors, boosting resilience and efficiency
in the volatile landscape of containerized environments.
The final result is a more secure, adaptive, and user-
friendly experience to coordinate Kubernetes installations
with Helm charts.

8 Results

Due to the end product and the capability of direct applica-
tion, it is necessary to use appropriate hardware resources,
which are at the heart of computer systems. To deploy Helm
charts, perform CI/CD, and manage Kubernetes successfully,
we must prioritize appropriate hardware resources. Helm
charts, CI/CD artifacts, and Kubernetes deployments all
require adequate storage, whether HDD or SSD, as well as a
robust network and a consistent power source to ensure
continuous communication and operation. In the case of gra-
phics processing unit (GPU) resources, we may boost our
performance for GPU-accelerated tasks in AI training and
standard compliance when they are available. Multicore sys-
tems and effective cooling should further enhance processing
efficiency. To build a highly performant and resilient devel-
opment and deployment environment, we must align these
resources with the deployment scale.

8.1 Prerequisites

To ensure a smooth sailing experience, certain prerequi-
sites must be met before launching Helm chart-based
deployment and rollback in Kubernetes. This requires the
use of a fully operational Kubernetes cluster with Kubectl

installed for command-line interactions. Additionally, Helm,
the package management, must be properly installed and
initialized within the cluster. Understanding the application’s
Helm chart structure and keeping version control on chart
releases are critical. Access to the required application chart
repository and knowledge of the relevant chart values help
ensure successful deployments. Furthermore, familiarity with
Helm commands, particularly helm installation and helm
rollback, is necessary for effective chart management in
Kubernetes deployments.

For our prerequisites, we investigated the use of the
Windows OS environment as part of the criteria for the
execution and testing of our laboratory environment. Where
Windows container orchestration requires specific conditions
for a seamless deployment, including appropriate modern
CPU resources for speedy container operation and adequate
RAM for properly managing concurrent workloads. Storage
capacity is required to store container images and associated
data, whether on an HDD or on an SSD. Strong network
design facilitates communication between containers and
orchestrators.

Compatibility with Windows Server versions that sup-
port containerization is required, as well as Docker Engine for
Windows. Depending on desire and workload, Kubernetes or
Docker Swarm can be used as orchestrators. These require-
ments must be addressed to ensure a smooth and effective
orchestration process for Windows containers in a variety of
computing environments.

According to our knowledge and the latest available
information, there are the following requirements for
Windows container orchestration that can be divided into
the following categories:
(1) Operating system requirements
(2) Virtualized container hosts
(3) Memory requirements

As a result, we must meet the following basic
requirements:
(1) To have a CPU processor that supports AMD or intel

virtualization (x86/x64).
(2) A host computer with at least one CPU and two pro-

cessor cores is required for the use of VMs.
(3) 4 GB of RAM on the host machine for container virtua-

lization (Windows Server 2022 or Windows 10/11).

8.2 Implementation

We have decided to use a Minikube to deploy and test
Kubernetes locally to test microservices. The goal is to

12  Pavle Dakić

have a Kubernetes cluster running locally and to allow
users to automatically deploy and manage their applica-
tions within our local cluster.

8.3 Web App

The web application will run as a pod inside the Minikube
cluster, where other users will add the SSH key, as well as
all the necessary parameters, configurations, and secrets,
to the Git repository. The repository must include the appli-
cation’s source code and a DockerFile.

8.4 Microservice for handling login

Because namespaces can include sensitive information
that must be kept hidden. Users who want to deploy their
application or control specific namespaces must be logged
in. The log-in microservice interfaces with a database to
verify that no unauthorized user can install, inspect, or
manage unassigned namespaces and pods within. Every
user will be able to claim three namespaces.

8.5 Microservice for building image from Git
repository

Microservice obtains the source code and DockerFile from
a Git repository, builds it, performs any tests, and gives the
Docker image to the Microservice, which talks to minikube.
An example of a DockerFile that can be downloaded from
the link: https://bit.ly/3eZoEBl

FROM node:14-alpine
WORKDIR /usr/src/app
COPY ["package.json",
"package-lock.json", "./"]
RUN npm install
COPY . .EXPOSE 3001
RUN chown -R node /usr/src/app
USER node
CMD ["npm", "start"]

8.6 Microservice for communicating with
Minikube

Following the acquisition of a Docker image, the microser-
vice interacts with kubectl to create a new namespace
within a minikube cluster and constructs a node that

runs the container generated by the Docker image in the
newly created namespace.

8.7 Microservice for generating pipeline and
helm charts

Once the deployed pod is operational, the microservice
generates a pipeline on the Git repository (customers can
select between GitLab and Github) and helm charts for
them to download. The downloaded files will be saved to
the user’s Git repository for automatic deployment the next
time a branch is merged into “main.” The user can con-
tinue to edit the files provided for application reasons.

8.8 Databases

Databases in containerized environments work within orche-
strated systems such as Kubernetes. Containerized databases
contain application components, making themmore portable.
Data durability is ensured by persistent storage solutions
such as Kubernetes persistent volumes. Orchestration solu-
tions easily manage database setup, scaling, and connection.

Container orchestration solutions, such as Kubernetes,
can be used by stateful applications, such as databases, to
provide consistent storage and network configurations.
Operators and Helm charts facilitate database deployment,
while containerization concepts increase scalability and resource
utilization. Database containers interact within clusters to pro-
mote dynamic, robust, and scalable datamanagement inmodern
cloud-based applications. In Figure 6, the database contains each
user’s login credentials and namespace names. The database
may be local or distributed across numerous containers,
depending on the requirements.

8.9 Compliance operations and new
GRCopOps method

Implementing a conventional CI/CD pipeline for code com-
pliance involves a series of procedures to ensure that the
code adheres to defined standards, passes tests, and can be
delivered reliably. Investors should bear in mind that
developing a code compliance pipeline is a complicated
process that must include safety, dependability, and com-
pliance criteria. It is vital to work closely with domain
experts, follow industry best practices, and tailor the pipe-
line to the needs of your specific project.

Software compliance in various industries using CI/CD, dynamic microservices, and containers  13

https://bit.ly/3eZoEBl

Every business needs to conduct a thorough review of
where it is now in its IT modernization journey, as well as
where it intends to go. Companies in the automotive industry
can then build a roadmap with a timeline. Those in charge of
implementationmust keep strong and flexible thinking as the
final aim as well as the continuing mentality. To stay current
with world changes, every modernization strategy should
evolve as time goes on. In the future, we believe that reposi-
tory compliance operations that incorporate collaboration
are the best attitude for this.

One of the results of this research was the develop-
ment of a way to achieve compliance with standardized
software with certain standards through the design of a
new approach and acronym. The latest proposal (Figure 7)
includes new proposals that are part of the new GRCopOps
method. In the figure, we can see the division into static and
dynamic parts of the implementation. Depending on the
action that was launched from the repository, an alternative
option would be for the user to create a workflow-specific file
within the user repository. Then, the client repository would
contain yml (YAML) code as well as limited Python code
execution capabilities.

Figures 7 and 8 contain a proposal for processing
dynamic and static requests within the process itself,
which could be completed within different cluster environ-
ments. Therefore, it relies on the previously created infra-
structure. GRCopOps is a new approach and acronym. In
GRCopOps, a set of steps represents the direction of

Figure 6: Visual representation of the implementation. Source: the study
of Larrucea et al. [37].

Figure 7: Dynamic part – GRCopOps. Source: author’s contribution.

14  Pavle Dakić

movement based on the source and execution stage. The
number of dots indicated in the figures represents the rea-
lization processes that begin with a certain beginning
point.

The initial conceptual characteristics of GRCopOps are
as follows:
• Design of the general repository’s conceptual architecture
andmethod of software team communication related to the
knowledge management life cycle.

• Connecting the client to the general repository pre-
viously defined by the automotive company.

• Conceptual scaling of resources depending on the need
for testing different standards, with the possibility of
dynamic creation of microservices and other artifacts
for these needs.

In both cases, the steps for the static and dynamic part
(Figures 7 and 8) can generally be described and shown as
follows:
• The reading process occurs from left to right, with the
first step on the left being a repository that launches a
specific activity (1 Client Repo). The launch process is
described in the basic workflow for the client repository
and the YAML file, which can launch a user-defined scene
or activity. The file’s content is determined by its content and
the method of execution (Helm or YAML packages, package-
s.yaml). The document definition should adhere to the

official specifications stated in the official public package
settings documentation, spack.readthedocs.io. This approach
enables certain possibilities of scaling and starting the pro-
cess of early code compliance.

• Step 1 executes and invokes the prerequisites required
by certain activities (1.1 Run pipeline creation). Through
this approach, the car brand can repeat the defined
testing procedure. In addition, this compliance process
can be defined by the regulatory body or by the com-
pany’s software engineer.

• Step 2 involves implementing the tasks and determining
what may be waiting for the next task, after which it is
implemented. This phase allows for either Dynamic or
Static execution mode, depending on the action initiated
within the CI/CD pipeline.

• Step 3 involves implementing traditional tests and tasks
in three phases: test, build, and deployed or special
stages established by the developer and manufacturer
of a specific brand of automobile. The results can be
extended and linked to certain dashboards used in the
automotive sector.

The fundamental aim behind this term is to achieve
synergy and accelerate the process of software standardization.
However, employing its maximum capacity should be the best
manner for the organization’s strength and profitability, not
because many standards organizations need it. Despite the

Figure 8: Static part – GRCopOps. Source: author’s contribution.

Software compliance in various industries using CI/CD, dynamic microservices, and containers  15

lack of confidence, this seems puzzling today. The core notion,
on the other hand, represents the future of software compliance
and can transform how technology evolves to adapt to new
missions, goals, and end-user needs. As with other broad orga-
nizational enhancements, future software factory adoption
should begin with an assessment.

To accelerate software code standardization, addi-
tional research and detailed information from various
companies is required. Depending on the software project
or component, integration testing, and deployment to auton-
omous vehicle platforms could require additional steps in the
workflow. The artifact generation workflow in this example
is not covered. The reason is that each project has different
requirements and needs certain testing methods during
dynamic implementation. The starting idea is that the devel-
oper has the first basic idea of how to start with under-
standing the ecosystem in which he should work for the
automotive industry.

We may need to package the code into deployable
artifacts for a specific platform with performance moni-
toring, again depending on the project. In this case, we
will need to integrate with the relevant tools and platforms
for autonomous vehicle deployment and monitoring in a
hybrid cloud/edge environment. This may require the defi-
nition of additional workflow stages. The idea is that the
developer’s code cannot integrate new features unless it
passes the workflow criteria in our GRCopOps. This will
require adaptation of our example to the requirements
of the multiple autonomous vehicle project over time.

For our client or developer to implement GRCopOps
(Figures 7 and 8), he would need to have this example in his
Git repository with the following steps:
(1) Create the .git/workflows/ directory if it does not exist.
(2) Create in .git/workflows/ a new file named <Write_type_

of_workflow>_workflow.yml in that directory.
(3) Copy and paste our example YAML configuration into

.git/workflows/general_workflow.yml.
(4) Commit and push the changes to the local or enterprise

Git repository.
(5) The defined workflow will automatically trigger (start)

on every push to the main branch, where the developer
can adjust the trigger conditions as needed.

(6) The user should always refer to the latest GRCopOps
documentation and adapt the pipeline to his project’s
requirements and tools.

In the context of autonomous vehicles, creating a con-
ventional CI/CD pipeline for code compliance involves a
series of steps to ensure that the code meets defined stan-
dards, passes tests, and can be supplied reliably. For this
reason, the solution architect and the regulatory body

specified the process as a template to be used in the future
inside of GRCopOps.

9 Limitations of the study

Each research has limitations, in the case of our research
they can be presented as scope limitations, resource con-
straints, educational access, etc. To obtain broadly relevant
findings, we keep the following constraints in mind:
(1) Scope limitation: Research may be constrained by the

specified scope, which focuses on microservices archi-
tectures, CI/CD approaches, and specialized applica-
tions such as the automotive industry. This constraint
may limit the generalizability of the findings to other
industries or upcoming technologies that have not
been formally examined.

(2) Temporal constraints: Given the rapidly evolving nature
of technology, there could be temporal constraints in
which research findings may become outdated or less
relevant over time. The pace of technological advance-
ments may outstrip the research’s ability to encompass
the latest developments in microservices, CI/CD, and
related fields covering mainframe architecture.

(3) Resource constraints: Constraints may arise due to a
lack of resources, both financially and in terms of
access to specific technologies or platforms. A shortage
of resources may impede comprehensive real-world
implementations and large-scale investigations, com-
promising the depth and breadth of the research.
One of our key constraints is the lack of a funding
grant, which would allow us to do more thorough
testing and application development within the edge
cloud environment.

(4) Generalizability challenges: It can be challenging to
apply the findings to a broader context or to different
cultural and organizational situations. Because organi-
zational culture, geographical regulations, and tech-
nical infrastructures differ greatly, the generalizability
of certain solutions is limited because our research
considered perspectives from the perspective of stu-
dents, as well as the environment/country in which
the research was conducted.

(5) Educational access: Depending on the area, the prac-
tical applicability of the research for students may be
limited by the availability of appropriate educational
resources, tools, and technologies. It is possible that not
all students or educational institutions have the same
access to the settings required for hands-on learning in
microservices, Kubernetes, and comparable technologies.

16  Pavle Dakić

As a result, our research may be difficult to use in some
circumstances, but it can be solved if appropriate
research grants are obtained.

(6) External environmental factors: External factors such
as economic, legal, political, or global events can have
an impact on the industry under study, potentially
affecting the contextual validity of the research. These
factors are beyond our control as researchers, but may
have an impact on the practical usefulness of the find-
ings. One of these issues could be the establishment of
new regulations about the deployment of Western intel-
ligence or the limitation of particular technology or com-
puter chips.

Understanding and embracing these limits is crucial
for maintaining the research’s integrity and providing a
realistic framework for understanding and applying its
findings in an ever-changing technical and business world.
We anticipate that by gradually removing these constraints,
we will be able to conduct even more robust research and get
better results according to particular measures in the future.

10 Discussion

Within the dynamic arena of software development, the
planned sequence of pipeline phases orchestrates a debate
and an interesting dance of innovation and correctness.
This is often referred to as choreography because it begins
with the definition of the goal and proceeds through plan-
ning, coding, and testing, weaving intricate patterns of
teamwork. Integration, like a symphony integrating instru-
ments, harmonizes dissimilar components.

Monitoring functions as a diligent conductor, assuring
precise execution, while deployment reveals great perfor-
mance. This choreographed ballet captures the essence of
agile development, in which each step is critical, promising
a fascinating show of efficiency and innovation on the vast
stage of software evolution.

As a result, depending on the study questions pre-
viously stated, we were able to arrive at specific answers
and conclusions. So, the findings based on the above are as
follows:
(1) The research aimed to develop groundbreaking methodol-

ogies that guarantee software compliance. We found that
building such procedures within a microservices architec-
ture and GRCopOps requires a thorough and rigorous
approach. The first step is to know how to examine regu-
latory requirements and industry standards. Subsequently,
modular compliance tests and automated testing must be
introduced in microservices. Containerization with Docker

and Kubernetes must be embraced for a streamlined
deployment process. Continuous compliance monitoring
and making changes based on feedback are fundamental.
By integrating these elements, software compliance can be
achieved effectively and efficiently.

(2) We learned from this question that it dives into the
practical ramifications of the research, attempting to
extract significant insights from a detailed case study.
Its goal is to bridge the gap between academic princi-
ples and real-world applications, with a particular
emphasis on industry.

(3) This study topic was successful in addressing the edu-
cational side, with a focus on improving access to
microservices and cloud computing environments.
We discovered how we can investigate techniques
for facilitating hands-on learning, taking into account
the problems faced by students and experts, and
focusing on the practical aspects of cluster adminis-
tration and standard compliance incorporated into
our approach (GRCopOps).

10.1 Open questions

Open conversations and questions in software develop-
ment should cover a wide range of topics. Improving team-
work during the planning phase leads to more innovative
results. Optimization solutions for bug resolution during
testing are key factors in the continuation and expansion
of existing and future research. The integration dance
seeks to achieve a seamless blending of diverse compo-
nents in a code symphony. The deployment strategies for
a user-friendly reveal remain a priority.

During the observation stage, we tried to develop infor-
mative approaches for future real-time performance evalua-
tion. This introspection within feedback loops should lead to
the evolution of methodology and collaboration, and these
open questions should drive the industry forward. This future
topic should explore the synergies between microservices
and cutting-edge technologies, highlighting the importance
of ethical integration research and the potential benefits of
technologies such as edge computing and artificial intelli-
gence. These open questions will lead future research efforts
that will focus on the adaptability of CI/CD methodologies, the
sector-agnostic difficulties of microservice adoption, and the
ethical integration of new technologies.

Due to their distributed nature, microservices systems
require the highest level of security. Each microservice is a
potential entry point for security vulnerabilities that require
effective safeguards across several layers. Authentication and
authorization mechanisms are crucial to managing access to

Software compliance in various industries using CI/CD, dynamic microservices, and containers  17

sensitive resources. Implementing sophisticated protocols such
as OAuth and JWT, along with fine-grained access control tech-
niques, enhances security. However, they can also be a source
of failure, necessitating regular monitoring and supervision.

Future container security measures will include image
scanning and runtime protection to ensure the integrity
and security of containerized microservices. Overall, a com-
prehensive security solution will be required to protect
microservice architectures from attacks and vulnerabilities.

Accordingly, we can pose the following open questions
that can be addressed in further research:
(1) How can CI/CD strategies respond to changing software

compliance standards while staying in step with chan-
ging industry rules and technological advancements?

(2) What are the lasting consequences and industry-agnostic
problems of widespread adoption of microservices and
how can these challenges be efficiently addressed for
long-term success?

(3) How can emerging technologies such as edge com-
puting and artificial intelligence be easily integrated
with microservices designs to improve system perfor-
mance, scalability, and ethical issues in a variety of
applications?

Addressing these concerns will help ensure that micro-
service architectures continue to evolve, ensuring their
relevance, compliance, and ethical considerations in an
ever-changing technological context. These challenges should
help future efforts to solve the challenge of developing adap-
tive CI/CD strategies that are compatible with changing reg-
ulatory landscapes and technological advances while also
supporting resilience and agility in software distribution.
The purpose of this research was to uncover universal diffi-
culties and successful strategies for long-term deployment
and success in several sectors.

11 Conclusion

To our knowledge, we investigated and discussed the most
crucial features of cloud computing in our study. We
decided to use this study as a playground to help new
aspiring DevOps engineers or Software Developers gain a
better understanding of how the mentioned technologies
work and how to implement them in their projects, assuming
that we were not the only ones who struggled to understand
microservices and their management. Wewere able to demon-
strate that research of architectures, CI/CD methodologies, and
their integration with evolving technologies provide useful
insights for a wide range of audiences, including young profes-
sionals and students entering the dynamicworld of technology.

As this industry develops, the highlighted challenges
and adaptive strategies serve as a guide for experts in
navigating challenging terrain. Furthermore, the emphasis
on hands-on learning, particularly in Kubernetes cluster
administration and compliance-related practices, matches
the educational goals of students who want to work in the
industry. One of the unique elements is the need for young
employees to keep up with evolving software compliance
standards and embrace CI/CD methodologies to remain
flexible in their development operations.

Real-world applications and case studies, particularly in
the industry, provide realistic examples that are appealing to
both students and professionals, bridging the gap between
academic principles and actual realities. One of the con-
clusions and verifications is the successful adoption of
microservice architectures with CI/CD techniques, which
is particularly obvious in real-world automotive applica-
tions. This underscores the relevance of our findings and
the practical benefits of using these strategies in a variety
of corporate settings. Because one of the major features
must be a focus on hands-on learning, particularly in
Kubernetes cluster administration and compliance-related
practices, students will enter the dynamic workforce. Young
professionals, as torchbearers of innovation, are well-posi-
tioned to effect positive change by embracing and devel-
oping the suggested strategies.

In a nutshell, this research lays a foundation for future
research, showing the practical application of microser-
vices and CI/CD approaches, and expects exciting participa-
tion from the younger generation in influencing the future
trajectory of technology and software development. The
journey continues as we develop our collective under-
standing and application of these important components
in the ever-changing technology context.

As we look ahead, our research promotes a collaborative
approach in which students and professionals can engage in
continuous learning, adapt to technological advances, and
contribute to the continued refinement of best practices.
We enable the next generation of technology enthusiasts
not only to understand the complexity of platforms and CI/
CD, but also to actively shape the future of software devel-
opment and deployment by building a learning environ-
ment that combines theoretical knowledge with hands-on
experience.

In essence, this research serves as a guide for everyone
interested in the IT industry as they navigate the ever-
changing terrain of technology with awareness, adapt-
ability, and innovation. Future research should focus on
solutions that enable continued compliance with changing
industry legislation and technology improvements, building
on the foundations laid out in this study. We may be able to

18  Pavle Dakić

inspire new experiments on adaptive CI/CD solutions that
address the growing diversity of software compliance stan-
dards in future research.

Acknowledgement: The present investigation is an expan-
sion and continuation of a previously published confer-
ence article [45] that was published as part of the 2022
IEEE 16th International Scientific Conference on Infor-
matics (Informatics) https://informatics.kpi.fei.tuke.sk/.

Funding information: The work reported here was sup-
ported by the Slovak national project Increasing Slovakia’s
Resilience Against Hybrid Threats by Strengthening Public
Administration Capacities (Zvýšenie odolnosti Slovenska
voči hybridným hrozbám pomocou posilnenia kapacít
verejnej správy) (ITMS code: 314011CDW7), and the
Operational Programme Integrated Infrastructure for
the project: Support of Research Activities of Excellence
Laboratories STU in Bratislava (ITMS code: 313021BXZ1), co-
funded by the European Regional Development Fund (ERDF),
the Operational Programme Integrated Infrastructure for the
project: Research in the SANET network, and possibilities of
its further use and development (ITMS code: 313011W988),
Advancing University Capacity and Competence in Research,
Development, and Innovation (ACCORD) (ITMS code 313021X329),
co-funded by the ERDF, rurALLURE project – European Union’s
Horizon 2020Researchand Innovationprogramunder grant agree-
ment number: 101004887 H2020-SC6-TRANSFORMATIONS-2018-
2019-2020/H2020-SC6-TRANSFORMATIONS-2020, the Slovak
Research and Development Agency under the contract No.
APVV-15-0508, the Erasmus+ ICM 2023 program under the
grant agreement 2023 No. 2023-1-SK01-KA171-HED-000148295,
Model-based explication support for personalized education
(Podpora personalizovanÃľho vzdelávania explikovaná mod-
elom) – KEGA (014STU-4/2024), and the Operational Program
Integrated Infrastructure for the project: National infrastruc-
ture for supporting technology transfer in Slovakia II – NITT
SK II, co-financed by the European Regional Development
Fund.

Author contributions: Conceptualization, investigation,
methodology, proofreading, project administration, visualiza-
tion, and writing – original draft and editing: P.D.; The
author has read and agreed to the published version of the
manuscript.

Conflict of interest: The author declares that there is no
conflict(s) of interest.

Data availability statement: Not applicable.

References

[1] S. Siddique, M. Naveed, A. Ali, I. Keshta, M. I. Satti, A. Irshad, et al.,
“An effective framework to improve the managerial activities in
global software development,” Nonlinear Engineering, vol. 12, no. 1,
p. 4. Jan. 2023.

[2] T. Golis, P. Dakić, and V. Vranić, “Automatic deployment to kuber-
netes cluster by applying a new learning tool and learning pro-
cesses,” in: SQAMIA 2023 Software Quality Analysis, Monitoring,
Improvement, and Applications, vol. 1613, 2023, p. 0073. https://ceur-
ws.org/Vol-3588/p16.pdf.

[3] P. Dakić and V. Todorovć, “Isplativost i energetska efikasnost
autonomnih vozila u eu,” FBIM Transactions, vol. 9 no. 2, p. 10, 2021.
https://www.meste.org/ojs/index.php/fbim/article/view/1198.

[4] M. Kročka, P. Dakić, and V. Vranić, “Extending parking occupancy
detection model for night lighting and snowy weather conditions,”
in: 2022 IEEE Zooming Innovation in Consumer Technologies
Conference (ZINC), 2022, pp. 203–208.

[5] R. Szarka, P. Dakić, and V. Vranić, “Cost-effective real-time parking
space occupancy detection system,” in: 2022 12th International
Conference on Advanced Computer Information Technologies (ACIT),
IEEE, Sep 2022.

[6] M. Kročka, P. Dakić, and V. Vranić, “Automatic license plate
recognition using OpenCV,” in: 2022 12th International Conference on
Advanced Computer Information Technologies (ACIT), IEEE, Sep 2022.

[7] P. Dakić, V. Todorović, and V. Vranić, “Financial justification for
using CI/CD and code analysis for software quality improvement in
the automotive industry,” in: 2022 IEEE Zooming Innovation in
Consumer Technologies Conference (ZINC), 2022, pp. 149–154.

[8] A. Petričko, P. Dakić, and V. Vranić, “Comparison of visual occu-
pancy detection approaches for parking lots and dedicated con-
tainerized REST-API server application,” in: Proceedings of the Ninth
Workshop on Software Quality Analysis, Monitoring, Improvement, and
Applications, Novi Sad, Serbia, September 11–14, 2022, ser. CEUR
Workshop Proceedings, Z. Budimac, Ed., vol. 3237, CEUR-WS.org,
2022, http://ceur-ws.org/Vol-3237/paper-pet.pdf.

[9] A. M. G. Esperón, F. M. Pérez, J. V. B. Martínez, M. D. D. Dapena, and
I. L. Fonseca, “Specifying requirements for modern software
development: A test-oriented methodology,” International Journal
of Software Engineering and Knowledge Engineering, vol. 34, no. 01,
pp. 27–48, Sep. 2023.

[10] P. Dakić, V. Todorović, and P. Biljana, “Investment reasons for using
standards compliance in autonomous vehicles,” ESD Conference,
Belgrade 75th International Scientific Conference on Economic and
Social Development, ESD Conference Belgrade, 02–03 December, 2021
MB University, Teodora Drajzera 27, 11000 Belgrade, Serbia, 2021,
https://www.shorturl.at/diMRS.

[11] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance modeling
and workflow scheduling of microservice-based applications in
clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 9, pp. 2114–2129, Sep. 2019.

[12] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing
microservice performance,” in: 2018 IEEE International Conference on
Cloud Engineering (IC2E), IEEE, Apr 2018.

[13] M. Artac, T. Borovsak, E. D. Nitto, M. Guerriero, D. Perez-Palacin,
and D. A. Tamburri, “Infrastructure-as-code for data-intensive
architectures: A model-driven development approach,” in: 2018

Software compliance in various industries using CI/CD, dynamic microservices, and containers  19

https://informatics.kpi.fei.tuke.sk/
https://ceur-ws.org/Vol-3588/p16.pdf
https://ceur-ws.org/Vol-3588/p16.pdf
https://www.meste.org/ojs/index.php/fbim/article/view/1198
http://ceur-ws.org/Vol-3237/paper-pet.pdf
https://www.shorturl.at/diMRS

IEEE International Conference on Software Architecture (ICSA), IEEE,
Apr 2018.

[14] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” in: Proceedings of the 2019 ACM/
SPEC International Conference on Performance Engineering, ser. ICPE
’19, ACM, Apr. 2019.

[15] V. Podolskiy, M. Mayo, A. Koay, M. Gerndt, and P. Patros,
“Maintaining SLOs of cloud-native applications via self-adaptive
resource sharing,” in: 2019 IEEE 13th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO), IEEE, Jun. 2019.

[16] J. Liu, E. Braun, C. Düpmeier, P. Kuckertz, D. Ryberg, M. Robinius,
et al., “Architectural concept and evaluation of a framework for the
efficient automation of computational scientific workflows: An
energy systems analysis example,” Applied Sciences, vol. 9, no. 4,
p. 728, Feb 2019.

[17] S. Apel, F. Hertrampf, and S. Späthe, “Toward a knowledge model
focusing on microservices and cloud computing,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 13, Jun 2019.

[18] P. Dakić, A. Todosijević, and M. Pavlović, “The importance of busi-
ness intelligence for business in marketing agency,” International
Scientific Conference ERAZ 2016 Knowledge Based Sustainable, 2016,
značaj poslovne inteligencije za poslovanje marketinške agencije.

[19] M. Popović, M. Milosavljević, and P. Dakić, “Twitter data analytics in
education using IBM infosphere biginsights,” in: Sinteza 2016 -
International Scientific Conference on ICT and E-Business Related
Research, Singidunum University, 2016, pp. 74–80.

[20] T. Semerádová and P. Weinlich, “Reaching your customers using
Facebook and google dynamic ads,” in: Research Anthology on
Strategies for Using Social Media as a Service and Tool in Business, IGI
Global, 2021, pp. 582–599.

[21] A. Lovska, O. Fomin, V. Píštěk, and P. Kučera, “Dynamic load
modelling within combined transport trains during transportation
on a railway ferry,” Applied Sciences, vol. 10, no. 16, p. 5710,
Aug 2020.

[22] A. Saboor, A. K. Mahmood, A. H. Omar, M. F. Hassan, S. N. M. Shah,
and A. Ahmadian, “Enabling rank-based distribution of microser-
vices among containers for green cloud computing environment,”
Peer-to-Peer Networking and Applications, vol. 15, no. 1, pp. 77–91,
Aug 2021.

[23] S. E. Popov, R. Y. Zamaraev, N. I. Yukina, O. L. Giniyatullina, L. S.
Mikov, I. E. Kharlampenkov, et al., “Software for calculating
deformations of the earth’s surface using satellite radar data,”
Programmnaya Ingeneria, vol. 12, no. 5, pp. 246–259, Aug 2021.

[24] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, et al., “Latent error
prediction and fault localization for microservice applications by
learning from system trace logs,” in: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
’19, ACM, Aug. 2019.

[25] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“GrandSLAam: Guaranteeing SLAs for jobs in microservices
execution frameworks,” in: Proceedings of the Fourteenth EuroSys
Conference 2019, ser. EuroSys ’19, ACM, Mar. 2019.

[26] Z. Shah, U. Javed, M. Naeem, S. Zeadally, and W. Ejaz, “Mobile edge
computing (MEC)-enabled UAV placement and computation effi-
ciency maximization in disaster scenario,” IEEE Transactions on
Vehicular Technology, vol. 72, No. 10, pp. 13406–13416, 2023.

[27] S. Prayla Shyry, Biometric-based three-tier microservice architecture
for mitigating the Fraudulent behaviour, Springer Nature, Singapore,
Dec. 2019, pp. 399–404.

[28] N. Sänger and S. Abeck, “User authorization in microservice-based
applications,” Software, vol. 2, no. 3, pp. 400–426, Sep. 2023.

[29] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling
in edge computing enabled IoT,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 6164–6174, Jul. 2020.

[30] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, et al.,
“Localizing failure root causes in a microservice through causality
inference,” in: 2020 IEEE/ACM 28th International Symposium on
Quality of Service (IWQoS), Jun. 2020.

[31] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, et al., “Fault analysis and
debugging of microservice systems: Industrial survey, benchmark
system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243–260, Feb. 2021.

[32] X. Wang, J. Li, Z. Ning, Q. Song, L. Guo, S. Guo, et al., “Wireless
powered mobile edge computing networks: A survey,” ACM
Computing Surveys, vol. 55, no. 13, Art. No. 263, 2023.

[33] M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, “A review
on the edge caching mechanisms in the mobile edge computing:
A social-aware perspective,” Internet of Things, vol. 22,
p. 100690, 2023.

[34] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A
reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939–951, Mar. 2021.

[35] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, et al., “Characterizing
microservice dependency and performance: Alibaba trace ana-
lysis,” in: Proceedings of the ACM Symposium on Cloud Computing, ser.
SoCC ’21, ACM, Nov. 2021.

[36] M. Xu, L. Yang, Y. Wang, C. Gao, L. Wen, G. Xu, et al., “Practice of
Alibaba cloud on elastic resource provisioning for large-scale
microservices cluster,” Software: Practice and Experience, vol. 54,
no. 1, 39–57, 2023.

[37] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert,
“Microservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[38] T. Pikkumäki, Comparison of monolithic, micro-service, and cloud
development, JAMK University of Applied Sciences, Jyväskylä,
Finland, 2023.

[39] S. H. A. Hamed, “Reusability of legacy software using microser-
vices: An online exam system example,” Journal of Al-Qadisiyah
for Computer Science and Mathematics, vol. 15, no. 3, pp. 35,
2023.

[40] H. Bai and X. Liu, “Design and implementation of intelligent med-
ical system based on microservices,” in: Proceedings of the 4th
Management Science Informatization and Economic Innovation
Development Conference, MSIEID 2022, December 9–11, 2022,
Chongqing, China, 2023.

[41] S. Primer, “Service-oriented architecture and legacy systems SOA
Primer, 2023.

[42] C. Maniveena and R. Kalaiselvi, “A survey on IoT security and
privacy,” in: AIP Conference Proceedings, vol. 2904, no. 1, AIP
Publishing, 2023.

[43] V. A. Vasil’ev, P. S. Chernov, N. V. Gromkov, and M. A. Shcherbakov,
“Service-oriented architecture and its application to smart cap-
abilities of sensors,” in: 2017 International Siberian Conference on
Control and Communications (SIBCON), 2017, pp. 1–4.

[44] Sparkequation, Stateless vs stateful, 2022, https://sparkequation.
com/2020/11/12/stateless-vs-stateful-microservices-addressing-
the-benefits-and-quandaries/.

[45] T. Golis, P. Dakić, and V. Vranić, “Creating microservices and using
infrastructure as code within the CI/CD for dynamic container

20  Pavle Dakić

https://sparkequation.com/2020/11/12/stateless-vs-stateful-microservices-addressing-the-benefits-and-quandaries/
https://sparkequation.com/2020/11/12/stateless-vs-stateful-microservices-addressing-the-benefits-and-quandaries/
https://sparkequation.com/2020/11/12/stateless-vs-stateful-microservices-addressing-the-benefits-and-quandaries/

creation,” in: 2022 IEEE 16th International Scientific Conference on
Informatics (Informatics), IEEE, Nov. 2022.

[46] P. Dakić and M. Živković, “An overview of the challenges for
developing software within the field of autonomous vehicles,” in:
7th Conference on the Engineering of Computer Based Systems, ser.
ECBS 2021, New York, NY, USA: Association for Computing
Machinery, 2021, doi: https://doi.org/10.1145/3459960.3459972.

[47] N. Hroncová and P. Dakić, “Research study on the use of CI/CD
among Slovak students,” in: 2022 12th International Conference
on Advanced Computer Information Technologies (ACIT), IEEE,
Sep 2022.

[48] K. J. P. G. Perera and I. Perera, “TheArchitect: A serverless-micro-
services based high-level architecture generation tool,” in: 2018
IEEE/ACIS 17th International Conference on Computer and Information
Science (ICIS), 2018, pp. 204–210.

[49] M. Gördesli and A. Varol, “Comparing interservice communications
of microservices for e-commerce industry,” in: 2022 10th
International Symposium on Digital Forensics and Security (ISDFS),
2022, pp. 1–4.

[50] RedHat, What is server mesh, 2022. https://www.redhat.com/en/
topics/microservices/what-is-a-service-mesh.

[51] IBM, Containerization, 2022. https://www.ibm.com/cloud/learn/
containerization.

[52] R. Muddinagiri, S. Ambavane, and S. Bayas, “Self-hosted kuber-
netes: Deploying docker containers locally with minikube,” in: 2019
International Conference on Innovative Trends and Advances in
Engineering and Technology (ICITAET), 2019, pp. 239–243.

[53] NetApp, Container vs VMS, 2022. https://www.netapp.com/blog/
containers-vs-vms/.

[54] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis,
et al., “Large-scale analysis of docker images and performance
implications for container storage systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 4, pp. 918–930, 2021.

[55] M. R. Pratama and D. Sulistiyo Kusumo, “Implementation of con-
tinuous integration and continuous delivery (CI/CD) on automatic
performance testing,” in: 2021 9th International Conference on
Information and Communication Technology (ICoICT), IEEE, Yogyakarta,
Indonesia, 2021, pp. 230–235.

[56] Atlassian, Continuous integration, 2022. https://www.atlassian.
com/continuous-delivery/continuous-integration/how-to-get-to-
continuous-integration.

[57] IBM, A practical guide to the continuous integration/continuous
delivery (CI/CD) pipeline, 2022, https://www.ibm.com/cloud/blog/
ci-cd-pipeline.

[58] A. Malviya and R. K. Dwivedi, “A comparative analysis of container
orchestration tools in cloud computing,” in: 2022 9th International
Conference on Computing for Sustainable Global Development
(INDIACom), 2022, pp. 698–703.

[59] S. Telenyk, O. Sopov, E. Zharikov, and G. Nowakowski, “A compar-
ison of Kubernetes and Kubernetes-compatible platforms,” in: 2021
11th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS),
vol. 1, 2021, pp. 313–317.

[60] Helm, Helm, 2022, https://github.com/helm/helm.

Software compliance in various industries using CI/CD, dynamic microservices, and containers  21

https://doi.org/https://doi.org/10.1145/3459960.3459972
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://www.netapp.com/blog/containers-vs-vms/
https://www.netapp.com/blog/containers-vs-vms/
https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration/how-to-get-to-continuous-integration
https://www.ibm.com/cloud/blog/ci-cd-pipeline
https://www.ibm.com/cloud/blog/ci-cd-pipeline
https://github.com/helm/helm

	1 Introduction
	2 Contributions and novelty
	3 Materials and methods
	3.1 Research questions
	3.2 Keywords

	4 Literature review
	4.1 Microservice capacity (MSC)
	4.2 Web application microservices
	4.3 Error prediction and fault localization for microservice applications
	4.4 Monolithic systems
	4.5 Biometric three-tier microservice architecture
	4.6 MicroCause framework
	4.7 Complexity and dynamism of microservice systems
	4.8 MEC

	5 Microservices and different software architecture designs
	5.1 Monolithic design shortcomings
	5.2 SOA
	5.3 Stateless/stateful microservices
	5.3.1 Stateless microservices
	5.3.2 Stateful microservices

	5.4 Scalability
	5.5 Serverless architecture
	5.5.1 Serverless microservices
	5.5.2 Serverless architecture

	5.6 Communication
	5.6.1 Synchronous architecture (Service-to-service)
	5.6.2 Asynchronous architecture
	5.6.3 Service mesh

	6 Containerizations
	6.1 Docker image

	7 Analysis of CI in agile deployment
	7.1 Pipeline
	7.1.1 Jobs
	7.1.2 Stages

	7.2 Container orchestration
	7.3 Kubernetes
	7.4 Kubernetes cluster
	7.5 Namespace
	7.6 Worker node
	7.7 Master node
	7.8 Helm charts

	8 Results
	8.1 Prerequisites
	8.2 Implementation
	8.3 Web App
	8.4 Microservice for handling login
	8.5 Microservice for building image from Git repository
	8.6 Microservice for communicating with Minikube
	8.7 Microservice for generating pipeline and helm charts
	8.8 Databases
	8.9 Compliance operations and new GRCopOps method

	9 Limitations of the study
	10 Discussion
	10.1 Open questions

	11 Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

