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Abstract: Mobile edge computing (MEC) paradigm has
emerged to improve the quality of service & experience
of applications deployed in close proximity to end-users.
Due to their restricted computational and communication
resources, MEC nodes can provide access to a portion of the
entire set of services and data gathered. Therefore, there
are several obstacles to their management. Keeping track
of all the services offered by the MEC nodes is challenging,
particularly if their demand rates change over time.
Received tasks (such as, analytics queries, classification
tasks, and model learning) require services to be invoked
in real MEC use-case scenarios, e.g., smart cities. It is not
unusual for a node to lack the necessary services or part of
them. Undeniably, not all the requested services may be
locally available; thus, MEC nodes must deal with the timely
and appropriate choice of whether to carry out a service
replication (pull action) or tasks offloading (push action) to
peer nodes in a MEC environment. In this study, we contri-
bute with a novel time-optimized mechanism based on the
optimal stopping theory, which is built on the cost-based
decreasing service demand rates evidenced in various ser-
vice management situations. Our mechanism tries to opti-
mally solve the decision-making dilemma between pull and
push action. The experimental findings of our mechanism
and its comparative assessment with other methods found
in the literature showcase the achieved optimal decisions
with respect to certain cost-based objective functions over
dynamic service demand rates.
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1 Introduction

Through several application areas, such as smart homes,
smart agriculture, manufacturing, and healthcare, advance-
ments in the Internet of Things (IoT) have a revolutionary
effect on society and the environment. To accomplish this, a
growing number of diverse IoT devices are being linked to
provide real-time monitoring and actuation in various appli-
cation areas. Big data refers to the massive amounts of
information sent to the cloud through IoT devices. Due to
the following factors, centralized processing in the cloud
is unsuitable for numerous IoT applications. First, the fact
that many latency-sensitive applications cannot tolerate the
delay introduced by centralized cloud-based deployment
[28]. Second, there is an increased likelihood of data being
lost and network failure [24]. Third, the IoT devices’ battery
life may decrease more quickly if it is constantly uploading
data to the cloud [17]. Finally, request and response must be
tightly coupled in particular situations [3]. In order to solve
these problems, many ideas have been presented that bring
cloud-like assets to the network edge. In particular, mobile
edge computing (MEC), fog computing, and cloudlets have
gained much attention. Moreover, all of these approaches
are grouped together as edge computing (EC) platforms.
The term “mobile edge computing” (MEC) refers to a
novel concept in network architecture that places capabil-
ities for information technology and cloud computing at
the periphery of mobile networks [19]. MEC can provide
a service environment with extremely low latency, high
bandwidth, and direct access to real-time network infor-
mation because it is located in close proximity to its custo-
mers [26]. Mobile cloud computing (MCC) was first used to
offload computation, although it relied only on mobile
devices and the main cloud server sides to do this [7]. Never-
theless, during offloading operations, the main cloud side is
not near the mobile devices side. As a result, this causes a
latency issue on the media connection middleware and a
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major defect that prevents user mobility over the offloading

task [11]. MEC was then launched to assist in fixing the off-

loading process in MCC’s latency issue. The close position of
the MEC to the user/devices, as well as the need for low

latency and the delivery of high workload capacity, is a

defining element of MEC [18]. Due to closeness to end users,

MEC has much lower transmission and computation laten-

cies than MCCs that rely on more conventional, far-flung

resources for computation offloading [14].

Storage and processing power at MEC nodes are
restricted. However, they may provide necessary computa-
tional requirements for a number of services that facilitate
the execution of a wide range of processing tasks [10]. Data
processing tasks, for instance, predictive analytics and expla-
natory-driven models, are often offered in the form of
“requests” in such scenarios [20]. Moreover, in certain sce-
narios, nodes offload processing tasks onto peers by sharing
services or data. Edge nodes can only host some of the avail-
able services and data [8]. In order to successfully carry out
the processing tasks that have been given by applications or
users in the manner of tasks, services are a vital requirement.
As a consequence of this, the demand for services is continu-
ally adapting in order to satisfy the ever-changing require-
ments of a variety of activities and duties. It implies that a
task may request a service that may or may not be accessible
locally depending on its availability [10]. As mentioned in the
study by ALFahad et al. [1], the nodes have two options:

* Option 1: Nodes are able to undertake a service replica-
tion (pull action) from the cloud or their edge peers;
however, this is only possible if the service is adequate
for the computational capabilities that they possess;

* Option 2: Nodes have the ability to assign the duty, often
known as a “push action” to the peers or the cloud that
are currently hosting the service(s).

ALFahad et al. [1] adopted optimal stopping theory
(OST) to optimize and regulate the replication of services
in an EC environment, leaving the initiative with the EC
nodes to increase their autonomy. To ensure the service
can do the required activities as efficiently as possible, EC
nodes must determine locally when to duplicate the ser-
vice. Each EC node, in accordance with the requirements of
incoming tasks and the node’s condition, makes its own
decision-making about the replication of services indepen-
dently. This proposal is useful when the nodes receive the
same average number of requests for tasks.

In this work, we analyze the pull action when the quan-
tity of received tasks changes, especially decreases due to
the MEC’s mobility. Furthermore, MEC nodes will become
more independent and provide confirmation that the repli-
cation of services could be optimized and monitored in the

DE GRUYTER

MEC environment by applying the ideas of OST [6]. In this
scenario, MEC nodes must determine individually when it is
optimal to duplicate the service in order to maximize the
opportunity to carry out the sort of tasks. It is important to
note that every MEC node makes its own judgment about
whether or not to replicate services based on its own
internal state and the requirements of any arriving task.

The following sections of this article are laid out as
follows: before diving into the details of the proposed
0ST-based decision-making model in Section 3, we present
an overview of prior work, rationale, and novelty in Sec-
tion 2. Section 4 provides the results of our performance
and comparative evaluation, while Section 5 summarizes
the work and suggests additional areas for study.

2 Related work and contribution

2.1 Related work

It is advisable to start comparing our current work with
the previous work [1], as the strengths that encouraged us
to embark on this work will be evident from the compar-
ison. The work in the study by ALFahad et al. [1] focused on
decision-making in EC devices, which are mainly static.
Through this, EC devices receive a fixed average number
of requested tasks, and then, a decision on service replica-
tion is made. In contrast, our current work carries the
advantage of supporting the MEC devices to make the
appropriate decision of pull action for the required ser-
vices. Moreover, we focused in this study on the case of
the MEC devices in the scenario when the number of
requested tasks received is decreasing due to mobility. As
a result, the MEC devices use our innovative method to
make the most appropriate decisions individually.

Chen et al. [5] examined the authors examine the pos-
sibility of offloading tasks in a dynamic MEC framework.
They proposed a hybrid energy supply strategy in which
energy-collecting technology is included in IoT devices. In
order to reduce the overall system cost, we coordinate the
optimization of local processing and offloading time. More-
over, they provided a randomized optimization-based online
dynamic task offloading technique for MEC using a hybrid
energy supply. This technique is able to offload tasks based on
system cost and queue stability. However, our strategy is
distinct from that one because our methodology focuses
mainly on the actual advantage of the reward, which reflects
the requests existing users have made for a particular service.
Offloading decisions are basically formulated in previous stu-
dies [9,16] on the basis of a resource scheduling factor.
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However, our technique determines whether to decide on a
push-pull action based on the total number of newly assigned
tasks and the associated costs.

Zhang et al. [27] provided a task offloading strategy
that takes into consideration both the categorization of
tasks and the selection of offloading nodes. They aimed to
reduce the amount of time it takes to complete every task as
much as possible. Nevertheless, this research emphasizes
making decisions based on the level of demand for the ser-
vice necessary to accomplish the task. Liu et al. [12] offered a
dependent task offloading architecture for multiple MEC
environments. MEC devices may offload their compute-
intensive duties within this framework to the MEC-cloud
system while maintaining dependent restrictions. In order
to provide a better experience for the client, it is able to
delegate offloaded tasks to the MEC and the cloud dynami-
cally. Since our approach cost-based sequential decision
making (COST) has firm deals with limited capacity better
than the approach in the study by Liu et al. [12], we concen-
trate on making the choice of whether to pull push action for
a single user to an edge node or a peer in our method.

The authors deal with offloading decisions in the study
by Wang et al. [25] based on energy and task causality lim-
itations because of channel oscillations and the arrival of
dynamic tasks over time. They do so by jointly improving
the transmission power allocation at the energy transmitter
(ET) for wireless power transfer (WPT) and the task alloca-
tion at the user for local computing and offloading over a
particular finite horizon. This allows them to reduce the
total transmission power used at the ET while maintaining
the successful task execution of the user. This is accom-
plished over a particular finite horizon. However, the imple-
mentation of our solution may vary based on the level of
demand for the service and the point of making the decision
at the maximum reward. The approach in the study by
Alfakih et al. [2] copes with the problem of resource manage-
ment at the edge server and as a means of determining the
most effective offloading decision to lower overall system
costs. In addition, Tang and Wong [22] tried to make a choice
to offload based on reducing costs to the absolute minimum.
Our work, on the other hand, focuses on selecting the route
that will result in the most significant reward while also
taking into account the extra cost incurred if we skip over
the option of push action.

2.2 Rationale and contribution

In Figure 1, we provide a simplified representation of the
problem when the number (rate) of incoming tasks is
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Figure 1: Making an informed decision based on the task request rate at
each time instance ¢ to either (a) indicates a high popularity of the service
or (b) indicates a low popularity of the service.

decreasing per time and a node must decide whether to
replicate a service (i.e., pull action) from its neighbors on
the network edge or from the cloud and handle the proces-
sing locally or to offload the task to the cloud provider (i.e.,
push action) and let it handle the processing. Suppose that
the time when the amount of requests for tasks begins to
decrease is t = 0, and the time when the task must be
completed, which, hereinafter we refer to as the deadline
T > 0. Two choices with limited time are shown in Figure 1.
The situation shown in Figure 1(a) is one in which the pull
action choice is made early in time t* (and before the dead-
line T') due to the expectation of getting no deep decrease of
received tasks seeking the specified service. This indicates
that there are quite an acceptable number of tasks interest
in this service, suggesting that pulling the service locally to
the node is a good option. Moreover, one can observe what
would have happened if we postponed making a decision
with the help of our growing assurance that interest in the
service is low, as shown in Figure 1(b). Assuming that the
service request rate was insufficient, the node has the
option to offload the requests (push action) to its peers or
the cloud after the deadline has passed without a pull
action being agreed upon. This means that offloading is
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Algorithm 1: Cost-based decaying sequential decision-making (DOST)

Input: Initial mean rate y; decaying factor 0 < q < 1; delaying
cost ¢ > 0.
Output: Optimal rate and time t*.
Stop < False; t < 0; Ry < 0;
Repeat
Observe number of requests Y;;
R; < Ry + Y, /* update the cumulative sum of requests
~k/ :
If criterion in (6) is satisfied Then
Stop < True;
t* < t /* activate service replication (pull-action) and
start-off a new task’s service*/;
Else
t < t+1/* continue with the next received task*/ ;
End
Untilt<T
If (Stop = False)
Then call: push-action
End

required since there was a low amount of tasks seeking the
specified service. Let us assume that the node made the
decision to download (pull) the service early on, and then,
after some time, we discovered that only a tiny percentage
of users actually wanted it. If we had not performed the
pull service action, we would have wasted more resources.
Therefore, as shown in Figure 1(b), it would have been
beneficial to postpone our decision until the completion
of the specified time frame and then carry out the off-
loading action. However, if the node had chosen to send
(offload) the request to the cloud at an earlier moment, the
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node would not have had sufficient trust that this request was
frequently demanded on the node and would have been
inefficient as a result. This service would have been expected
to be requested in the near future. Hence, a push-based
approach is unsuitable.

An early push action may offload tasks to other peers
or the cloud prematurely, leading to network congestion if
the node later determines that service interest has not
decreased significantly. Therefore, as illustrated in Figure
1(a), the correct procedure is to intelligently postpone
any choice and execute service replication (pull action)
from the neighbors of the node or the cloud to the node
at a certain period t*. Finding the optimal balance between
task offloading and service replication in the scenario of
receiving a decreased number of tasks is the challenge we
face now that we know it has been formulated as t*. Taking
into consideration the latency costs, a creative solution has been
provided that guarantees the right option is made at time ¢*.

2.2.1 Contribution

Our methodology is flexible enough to be applied to appli-

cations that make use of offloading decision-making algo-

rithms in MEC circumstances. The primary technological
contribution that we make is:

— In the event that the number of tasks received decreases,
we present a unique adaptive approach that increases
the possibility of making the choice of service replication
(pull action) of the service with the highest (maximal)
return. This is shown by a total cumulative of the total
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Figure 2: A diagram illustrating the sequential decision-making process for determining the optimal time t* < T for either task offloading (push

action) or service replication (pull action) by the MEC node.
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amount of task requests to the node that is being consid-
ered while taking notice of the cost that has been got.
Using the concepts of OST, we theoretically analyze the
superiority of our approach.

We provide a comprehensive analysis of how our OST-
based approach compares to our prior work [1], which
generates the true optimum reward.

Figure 2 emphasizes on the decision-making state space.
In particular, the technique for determining whether to repli-
cate a service (pull action) or offload a task (push action) is
shown in Figure 1. The number of tasks received at each time
instance t < T for a given service is a significant factor in this
choice. The justification is as follows. At each time instance ¢,
the node obtains some received task requests ¥;. The node
then has two choices:
— It need to decide to terminate service at timet < t* < T,
if the number of requests is relatively large enough.
— Or, the node will re-evaluate its decision at time t + 1, if
there are incoming service requests.

In the event that the given deadline T is met, a choice will

be made on whether the task(s) will be passed on to a peer
MEC node or to the cloud to be processed further.

3 Problem fundamentals

First, we provide an overview of the system model, and
then in Section 3.2, we explore the description of the

<\ ", |30 Tasks|
MEC Server ﬁ
S il
5 L . -
| MEC
MEC
()
35 Tasks .

MEC Server

Figure 3: Example of MEC environment.
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Table 1: Notations of parameters

Notation Definition

M Set of MEC nodes

T Deadline

t Time instance

t Optimal stopping time

Y Number of tasks received at time t

A Arrival rate of tasks Y

0 Tolerance threshold

c Cost of the decision delay for the DOST model
b Cost of the decision delay for COST model

R; Cumulative sum of the number of tasks ¥; up to t

problem. In Section 3.3, we introduce our COST w.r.t. max-
imizing the rate of return in detail.

3.1 System model

As shown in Figure 3, we take into account that the net-
work environment is made up of a distant cloud data
center as well as an MEC system [4]. Each MEC base station
is equipped with certain MEC servers, and the MEC system
is built up of MEC base stations. Table 1 includes the nota-
tions used in this article. The set of MEC nodes will be
referred to as M ={1,2, ..,M}. In general, we operate
under the concept that a number of different service pro-
viders each install their own applications on each MEC

.. MEC Server

20 Tasks

25 Tasks
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node. Each MEC device has the capability to assign tasks to
an MEC node that is provided with suitable computing
services. Furthermore, MEC devices have the opportunity
to offload tasks to the cloud, provided that the cloud has all
of the necessary services as well as an adequate number of
computing resources [13]. The highest possible reward value
is taken into consideration when MEC devices make a choice
about task service replication (pull action). The period of
time is split into discrete intervals that are represented
by t=1,2,...,T. At a certain point in time t*, the MEC
device will, based on local information (for instance, task
information that includes the number of services that have
been received) come to a conclusion on whether or not
service replication (pull action) should occur. We build
our studies on the assumption that the actual position of
the MEC device and its associated network environment is
unchanging from one-time instance to the next. Because of
this, we are able to provide a guarantee that choosing the
task of replication (pull action) will take place at the same
moment as instance ¢.

3.2 Problem definition

The task model assumes that the number of requests for a
particular task at a given time instant, denoted by Y;, fol-
lows a Poisson distribution with a rate of A [21]. As the MEC
device is presumed to be in motion, fewer tasks may be
received. Assuming an exponential decay, the number of
tasks received after a certain amount of time ¢ is Poisson
with mean pq'™', where ¢ is the decay factor, which is a
scalar between 0 and 1, while u represents the initial mean
rate. In addition, since MEC devices are always in motion,
the number of MEC nodes that an individual MEC device is
able to sense and receive tasks from at any single instance
t. As an outcome, the accumulative total of the number of
requests made up to t is applied to every task that arrives
on the MEC device. We define the cumulative distribution
function of the demand rate at t as:

el . y qk(t 1)

y
P(Y<yd) = Z )

Consider now the cumulative sum of the reduced number
of requests R;, 0 < t < T as:

t
R = ) Y @
Problem 1. Find a stopping rule t* that maximizes the

expected rate of return per time instance ¢ in equation (3),
where R, = Y) +-+ Y
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[E[Rt - C]

E[t+1]° 3

t* = arg mtax

Let ¢ > 0 denote the cost incurred each time instance ¢
that the MEC does not make the decision of a pull action.
Our problem is to determine the ideal timing ¢ to stop in
order to maximize the total amount of rewards R;.

The rationale behind Problem ?? lies in the fact we
expect the rate of service requests per time ¢, excluding
the latency cost, to be considerably not deep decreasing.
Therefore, this exemplifies the possibility that the pull
action will prove to be stochastically a more advantageous
option than the push action would be. This is due to the fact
that we have become more certain that in the (not-too-
distant) future, we will be receiving a sufficient number
of requests for a service in a node despite the fact that the
number of requests is continuing to decrease. Because of
this, our goal is to maximize this rate of return.

3.3 Cost-based discounted sequential
decision-making (DOST)

In order to discover a solution to our problem in maxi-
mizing (3), we first focus on finding a stopping rule that
maximizes E[W; - AD;], where W; =R, - c and D; =t + 1,
with rate A > 0. We first check whether the one-stop look
ahead policy (1-sla) is the optimal one. Specifically, if we
quit after a period of time ¢, we will have gained reward:

Ri—c-A(t+1). @

Moreover, if we proceed to the next time instance ¢t + 1 and
then stop, we would anticipate that we will have gained

R+ E[Yq]l —c—- At +2) =R + uq* - ¢ = A(t + 2). (5)

Since the difference between (4) and (5) is monotone, the
optimal policy is 1-sla.

Theorem 1. The OST rule at which an MEC node stops at the
first time T; [15], which maximizes (3) is provided by:
log(u/2)

LT=min{t>0:A=2ug}=minjyt>0:t=2 ———=. (6)
1 { uq' log(1/q)

Proof. The 1-sla policy in Theorem 1 is the optimal criterion
that can maximize the rate of return. We proceed with
estimating this time T; as follows. We can re-write the 1-
sla given the initial mean p as [23]:

m=1, ifAzyu
T, = m, where{ _ 108(u/2) if 1 < ™)
log(1/q)’ #
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The expected return anticipated from (7) is a function of A:

VA =E[Ry — ¢ — A(m + 1)]
U+ grotgm) - c-Am+ 1)
_u-qn
1-9
In order to find A, we first make this equation equal to zero;
thus, we obtain

8
c—-A(m +1).

ud-qm _
_ -0
(m+1)

9)

Based on a A value from (9), we iteratively feed it to (7),
where we obtain an updated 7 = m value. This value is
then fed back to equation (9) to obtain a new value of A.
We proceed with this recursion until convergence. The
outcome is the optimal (maximal) expected rate of return
A along with the optimal stopping time m, where an MEC
node should stop within the horizon {1, ...,T} in order to
maximize the rate of return in equation (3). O

Our cost-based decaying sequential decision-making
process is provided in Algorithm 1.

4 Experimental evaluation

4.1 Experimental setup

We test two distinct models in our experiments that show
evidence of our approach: (i) the DOST model, which is
determined by the initial rate y; 0 < g <1 incurred cost
¢ > 0. In our proposed model, the decision to perform a
pull action is made if the accumulation value, R;, at the
time instance, ¢, meets the criteria outlined in equation (7).
(i) The COST model in the study by ALFahad et al. [1],
which calculates the cumulative total of the received tasks
R, based on the stopping criterion is as close as feasible to a
budget threshold 6. After this, it makes the choice of which
service replication (pull action) will result in the biggest
reward while also taking into consideration the cost that
will be incurred b for each time instance t, as shown in
equation (10). In every other case, the decision to offload is
taken if the deadline elapses.

In the experiments that were designed to provide a
comparative analysis in Section 4.2, we conducted the
test using both the DOST and the COST models. In addition,
we determine the values for each of the variables mu, ¢,
and theta, as well as the cost ¢ and cost-per-time b. Further-
more, we adjusted ¢ = 10, ¢ = 0.1y, and b = 0.1u. Moreover,
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we split the experiments into two groups. The first group
included an unchanged value for budget 6 = 50. After that,
we conducted the comparative tests with respect to the payoff
of the DOST and COST for q € {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}.
Finally, we analyzed the results of the experiments.
Furthermore, our assessment involves fixing a value for
q €{0.7,0.8,0.9} and running comparison experiments
between the payoff of DOST and COST for various values
of 6 € {10, 30, 50, 100}. All parameters are defined to simu-
late different scenarios that examine the models in dif-
ferent restrictions, for instance, capacity that is denoted
by 6 and decay factor ¢. In the second group, we carried
out experiments where we compared the amount of time
required to stop the DOST and COST models along with
the amount of time required to stop with the associated
payoff.

4.2 Comparative assessment

Choosing the moment to stop and maximizing cumulative
reward using OST is the foundation of the strategy pro-
posed in the study by ALFahad et al. [1], which we term
here as cost-based sequential decision making (COST). The
goal is to prevent more tasks from being accepted when the
cumulative total of those tasks, denoted by the variable R,
is getting close to a value 0, which represents the tolerance
threshold (budget). In addition, taking into consideration
the total amount of incurred cost b > 0 due to delays up to
that moment ¢. As a result, the optimal stopping rule with
the highest payoff achieved in the study by ALFahad et al.
[1] is provided in equation (10) for reasons of completion:

6-R;
t = inf[t 20: ) (Re+y) - b(t+1DP(Y=y)
- (10)
S Rt - bt]

The parameters for the first iteration of the compara-
tive evaluation experiment are as follows: u = 10, ¢ = 0.1y,
and b= 01u. Furthermore, we left 6 =50 and q €
{0.5, 0.6, 0.7, 0.8, 0.9, 0.99} unaltered in their respective
values. The results of our experiment are mostly influ-
enced by the different values of ¢, ¢, and b. Along with
this, the experiment determines the choice that resulted
in the greatest payoff at the time indicated by ¢*. In addi-
tion, the experiment was carried out using both of the
models.

The COST used to be compared with our DOST approach.
The many effects that ¢ has on both models in terms of payoff
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Figure 4: Expected payoff vs q for fixed delay cost value ¢ & b = 0.1*y for
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DOST and COST models; Expected payoff vs 8 for fixed g = 0.8 value for
DOST and COST models; Expected payoff vs 8 for fixed g = 0.9 value for
DOST and COST models.
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are shown in Figure 4. Also, from Figure 4, we note that there
are different values for the ¢, which means that g = 0.5, there
is a sharp decline in the number of tasks received, and as the
value of g increases, the decrease in the number of tasks
received decreases. In this scenario, we note the red line,
which represents the value of payoff across the different g
values of the COST model. On the other hand, we also note the
blue line, which represents the value of the payoff for our
new approach, the DOST model. Furthermore, it is noted that
the DOST model has a high return on payoff compared to our
previous work COST, regardless of the severity of the decline
in the number of requests received. However, our previous
work was clearly affected by the sharp drop in the number of
tasks received, as it shows a low value of payoff compared to
our DOST model, and these payoffs improve as the value of q
increases. Despite that and on all g values, the effectiveness of
the performance of our DOST model has a higher return of
payoff than our previous work COST model, and this demon-
strates the strength of the principle that we have chosen to
work with the challenge of decreasing the number of tasks
within the specified time T.

The following are the parameters that should be used
for the comparative assessment experiment’s first group as
shown in 4: u =10, ¢ = 0.1y, and b = 0.1x. In addition, we
adjusted the variables for different values of q. we experimented
when the value of g set to 0.7 and the 6 € {10, 30, 50, 100}. The
outcomes are mostly determined by the varying values of the
variables 6, g, ¢, and b, respectively. In addition, the experiment
found the option that led to the higgest payoff at the time indi-
cated by the symbol ¢t*. Beyond that, the experiment was con-
ducted with both of the models, ie, DOST and COST. Figure 4
demonstrates the effects of 6 on the COST model in terms of
payoff when ¢ is set to 0.7, illustrating various impacts. A further
observation that can be made from Figure 4 is that there is a
wide range of values for the parameter 6, which stands for the
diversity of MEC device capacities. If @ has a significant number,
it indicates that the capacity is also large. The red line, which
reflects the payoff value across the many 6 values of the COST
model, is something we observe in this particular circumstance.
On the other hand, we have also paid attention to the blue line,
which depicts the value of the payoff for our recently developed
strategy, which is the DOST model. On top of that, it has been
observed that the DOST model has a fixed return of payoff in
comparison with our previous COST, despite the fact that 6 may
take on many different values. However, it is evident that the
various values of 8 influenced our earlier study, as it demon-
strates a low value of payoff that has a deep decreasing parallel
with the expanding of 6 values. In spite of this, and for all &
values, the effectiveness of the performance of our DOST model
has a higher return of payoff than our previous work COST,
particularly with MEC devices that required high capacity
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volume. This shows the power of the concept that we decided to
work with.

Moreover, we modified the parameters by setting
q = 0.8. The experiment also determined the time (t*) at
which the choice with the highest payment was available.
Furthermore, both models were considered throughout the
duration of the investigation, i.e., DOST and COST. Some of
the payoff-related effects by 8 on the COST model are
shown in Figure 4. Figure 4 further shows that the para-
meter 0, which represents the variety of MEC device
capabilities, may take on a large set of values. If 6 is con-
siderable, then the capacity is likewise substantial. In this
case, we see the red line, which represents the payoff value
for all @ variables in the COST model. Meanwhile, we have
also been keeping an eye on the blue line, which shows the
payoff value of our newly devised technique, which is the
DOST model. Although 6 may take on a wide range of
values, it has been noted that the payoff from the DOST
model is fixed relative to our prior COST and is hence
larger than the value reported when g = 0.7. COST shows
that different 6 values have an effect since the payoff at low
values follows a deep falling parallel with increasing 6
values. Despite this, for all f values, our DOST model beats
our earlier work COST, especially when it comes to MEC
devices that need a lot of storage space. This demonstrates
how effective the idea was that we settled on.

Also, we setq = 0.9 as shown in Figure 4. In the present
scenario, we see the payoff value throughout a wide range
of 6 in the COST model, shown by the red line. We have,
however, also paid close attention to the blue line, which
represents the payoff value of the DOST model. Moreover,
it has been discovered that while & may take on many
different values, the DOST model has a fixed return of
payoff compared to our prior COST, and this return is
larger when compared to both values when ¢ = 0.7 and
q = 0.8. The COST was influenced by this finding because
it shows a low value of payoff that has a deep decreasing
parallel with the expanding of 8 values, and g = 0.9 is a key
factor in making the decrease in received tasks insignifi-
cant, leading to good results in terms of payoff at small
values of 6. However, for all 8 values, our DOST model
surpasses our earlier work COST, especially when it comes
to MEC devices that need a lot of storage space.

The following are the parameters that should be used
for the comparative assessment experiment’s second group
as shown in Figure 5: y = 10, ¢ = 0.1*u, and b = 0.1*u. The
settings for the second group, in which q was set to 0.9 and 6
was varied over the ranges € {10, 30, 50, 100}, were likewise
adjusted by us. The findings of the second group are signifi-
cantly affected by shifts in the values of 6, ¢, ¢, and b,
accordingly. The experiment also calculated the time (t*)
at which the option with the biggest potential payoff was

Task offloading using cost-based discounted optimal stopping =— 9
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Figure 5: Stopping time vs expected payoff for fixed ¢ = 0.9 value for
DOST and COST models.

shown. Furthermore, the experiment was conducted while
keeping into consideration both of the models. The COST
was often evaluated in comparison with the DOST model,
which served as the primary foundation of our strategy. The
effects of varying theta values throughout the stopping time
are shown in Figure 5, which was created using the COST
and DOST models. In the current situation, we see that the
stopping time in the COST model varies throughout a broad
spectrum of values for 6, as shown by the red line. Never-
theless, particular attention should be given to the blue line
representing the DOST model, which indicates the stopping
time for the model discussed. In addition, it was found that
the DOST model has a constant stopping time in comparison
with our earlier COST, despite the fact that the value of 6
might take on many distinct forms. The COST was impacted
by late stopping time in tandem with the growing of 6
values. Moreover, ¢ = 0.9 is a critical component in making
the drop in received tasks minimal, leading to positive find-
ings in terms of early stopping time for tiny values of 6. Our
DOST model is superior to our previous work COST, parti-
cularly when it comes to MEC devices that need a significant
amount of storage space.
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Moreover, the experiment’s second group details a
range of stopping timings for a number of payoff values,
as shown in Figure 5. The COST and DOST models were
used in its development. As indicated by the red line,
the stopping time and payoff in the COST model exhibit
increasing harm across a wide range of values for 6. How-
ever, you should also focus on the green dot within a thick
red color, as this represents the moment at which our DOST
model will stop and with the highest return payoff. Even if
the value of 6 may assume a variety of forms, it was dis-
covered that the DOST model has a set stopping time and
payoff compared to our prior COST. Positive results in terms
of early stopping time and the high payoff for insignificant
values of 8 are also seen when g = 0.9 is used to keep the
decline in received tasks to a minimum. As the 6 value
increases, the situation deteriorates. Therefore, when it comes
to MEC devices that need a large amount of capacity for sto-
rage, our DOST approach is better than our prior work COST.
This demonstrates the uniqueness of our solution.

5 Conclusions

We offer end-users/applications in MEC a time-optimized
decision-making strategy that is based on the OST and spe-
cifically in maximizing the rate of return. This decision-
making technique is particularly useful in the situation
in which users receive tasks with variable demand rates.
We provide a full evaluation of the procedure when it
comes to utilizing and implementing the DOST mechanism
for service replication (pull action) in MEC systems. According
to the findings of our experimental evaluations, the perfor-
mance of DOST is superior to that of COST, an OST-based
relevant work. These results are appropriate for use in
MEC nodes and are not influenced by the total amount of
resources that are available. Furthermore, the best results
are achieved by our model, which is superior to baseline
solutions in terms of payoff.

In the future, our goal is to develop a new model that
adopts artificial intelligence (AI) methods for selecting the
best set of MEC nodes to offload the tasks relying on multi-
armed bandits algorithms.
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