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Abstract: The popularity of artificial intelligence applica-
tions is on the rise, and they are producing better outcomes
in numerous fields of research. However, the effectiveness
of these applications relies heavily on the quantity and
quality of data used. While the volume of data available
has increased significantly in recent years, this does not
always lead to better results, as the information content of
the data is also important. This study aims to evaluate a
new data preprocessing technique called semi-pivoted QR
(SPQR) approximation for machine learning. This tech-
nique is designed for approximating sparse matrices and
acts as a feature selection algorithm. To the best of our
knowledge, it has not been previously applied to data pre-
processing in machine learning algorithms. The study aims
to evaluate the impact of SPQR on the performance of an
unsupervised clustering algorithm and compare its results
to those obtained using principal component analysis (PCA)
as the preprocessing algorithm. The evaluation is conducted
on various publicly available datasets. The findings suggest
that the SPQR algorithm can produce outcomes comparable
to those achieved using PCA without altering the original
dataset.
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1 Introduction

When dealing with natural or artificial systems, relationships
between their inputs and outputs can be represented in
physical, mathematical, or logical ways. These relationships

create a link between the input and output data of the
system. In some cases, the input to the system can be repre-
sented by random variables in a mathematical model,
providing a quantitative representation of a natural phe-
nomenon. These models represent an object, a real phenom-
enon, or a set of phenomena, such as a mathematical model
of a physical, chemical, or biological system. While these
models are often approximate representations of reality,
they are useful for analysis and prognosis. Mathematical
models are widely used across various scientific fields, uti-
lizing tools ranging from combinatorics to infinitesimal cal-
culus. For example, in many cases, differential equations
provide a concise and intuitive description of phenomena.

To keep things simple, we will refer to the data that
enter and exit the model as data input and data output,
regardless of the type of characteristic transfer function
(such as linear dynamic systems, etc.). In this particular
case, we will treat the input and output data as discrete
random variables:

= =p x P X x .( ) ( )

A phenomenon that can be characterized by a random
variable can be described in terms of its probability dis-
tribution and associated parameters, such as the expected
value and variance. Variance is particularly important in the
study of models and is commonly utilized in techniques such
as Karhunen–Loeve transform, principal component analysis
(PCA), and its variants. PCA is frequently used for dimension-
ality reduction, which involves reducing the number of vari-
ables used to describe a dataset to a smaller number of latent
variables while minimizing the loss of information [1].

From this perspective, it can be argued that if an ori-
ginal dataset and a reduced dataset produced using PCA
are provided as inputs to a model, the resulting outputs
should be almost identical. To test this hypothesis, the cur-
rent study utilized a widely used method (PCA) as well as a
relatively new algorithm (semi-pivoted QR [SPQR] approx-
imation) [2,3] to reduce the dimensionality of various pub-
licly available databases [4]. To evaluate the methods
under different conditions, these datasets are very dif-
ferent from each other in terms of both the number of
features and instances.
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The study employed fuzzy clustering and silhouette
analysis to compare the results obtained from the different
methods. This choice is because the used databases have
not been classified a priori, and therefore, there is no
ground truth available for evaluating the results obtained
by the classification algorithms. The performances were
compared to each other, revealing significant variations
among the techniques and emphasizing the significant
impact that preprocessing methods can have on the per-
formance of machine learning algorithms.

The subsequent analysis evaluates the information
loss that occurs when using the well-known PCA method
compared to the SPQR algorithm. This evaluation was
performed on four public databases obtained from the
University of California, Irvine site [4], and for each data-
base, the following procedure was executed according to
the workflow in Figure 1:
• the raw data (namely, the original data stored in each
database),

• the dataset was reduced using the PCA algorithm, loosing
less than 2% of the total variation in the dataset,

• the dataset was reduced using the SPQR algorithm,
• the raw data normalized between 0 and 1,
• the normalized dataset was reduced using the PCA algo-
rithm, loosing less than 2% of the total variation in the
dataset, and

• the normalized dataset was reduced using the SPQR
algorithm.

To the best of our knowledge, in the literature, few
authors have used the SPQR algorithm for feature selection
[3] as a preprocessing step in machine learning. An inter-
esting comparative evaluation of the performance of this
algorithm can be found in the study of Boutsidis et al. [5].
The results obtained in this work show that the perfor-
mances of this algorithm in this kind of application are
very good, and they are comparable to those obtained

using PCA. This is a relevant result because SPQR is a fea-
ture selection method, and so it does not modify the ori-
ginal data (while PCA does it).

The remaining part of the article is organized as fol-
lows: Section 2 reports a brief overview of related works,
Section 3 describes the four databases used for the tests,
and Sections 4 and 5 describe, respectively, clustering and
silhouette algorithms. In Section 6, SPQR is described,
while in Section 7, the PCA algorithm is reported. Experi-
ments and results are reported in Section 8, and conclu-
sions and final remarks are in Section 9.

2 Related works

Modern applications generate vast amounts of data, which
may contain irrelevant information. Therefore, the conver-
sion of raw data into valuable insights is a highly relevant
topic of research [6]. Manymachine learning algorithms aim
to increase knowledge density by reducing data dimension-
ality without losing important information. To enhance the
computational efficiency of machine learning algorithms,
preprocessing techniques are commonly employed to filter
the data. This situation is not novel and has been known in
statistics since Karl Pearson introduced PCA in 1901.

PCA is a widely used statistical technique that reduces
the dimensionality of a dataset by projecting it onto a new
axis system. This makes it easier to visualize multidimen-
sional data. However, such techniques can significantly
affect the performance of learning algorithms because
they operate in a different space than the original data.
Therefore, unseeingly applying these algorithms may not
be advisable. Other, less well-known algorithms should be
considered, depending on the specific context and data.
Before applying any dimensionality reduction technique,
it is essential to carefully analyze the data and context. It is
also crucial to separate the re-projection of the data onto
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Figure 1: Experimental workflow.
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new axes from the evaluation of the amount of informa-
tion present in each dimension.

In the field of spatio-temporal series dimensionality
reduction, the scientific research over the last 15 years
has consistently focused on three distinct categories.

2.1 Methods based on statistics and
information theory

This family of methods focuses on reducing input data based
on statistical or information-theoretic criteria. Information-
theoretic methods can be viewed as a generalization of
statistical methods, as they can capture nonlinear relation-
ships between variables, handle interval and categorical
variables simultaneously, and many are invariant to mono-
tonic transformations of input variables. The most well-
known algorithm in this family is PCA, which involves
finding orthogonal directions that explain as much of the
variance in the data as possible.

To address nonlinear relationships, several dimension-
ality reduction techniques have been introduced, such
as Isomap [7], locally linear embedding (LLE) [8], Hessian
LLE [9], Laplacian eigen-maps [10], and their variants
[11], including kernel PCA [12]. These methods reveal the
inherent geometric structure of high-dimensional data.
Giraud [13] demonstrated that high-dimensional spaces
tend to be sparse and suffer from distance concentration.

2.2 Dictionary-based methods

Another approach for dimensionality reduction is based on
the decomposition of a matrix consisting of all input data
as columns. The input data matrix, using the input vari-
ables, is transformed into a new data matrix using new
variables, which are obtained through a simple linear var-
iation between the two sets of variables. This transforma-
tion is expressed through a matrix called a dictionary,
which consists of atoms, and there are various ways to
create such a dictionary [14]. Methods like singular value
decomposition (SVD) and vector quantization (K-means)
belong to this category, with K-means being an extreme
case of a dictionary-based algorithm, where input vectors
are represented by a single atom instead of a combination
of atoms.

While parameter aggregation methods facilitate the
updating of Pearson’s correlation and/or covariance [15],
SVD focuses on computational efficiency when all data are
available. Another possibility is offered by NDR (nonlinear
dimension reduction), which allows the SVD results to be

used to better organize groups (dictionary). Furthermore,
if information on such relationships is available, the gen-
eric organizational structure proposed here allows this
information to be incorporated in the first step. However,
this process requires several steps.

2.3 Projection-based methods

In this particular family of algorithms, the task of dimen-
sionality reduction is framed as a projection of the initial
data onto a subspace with specific properties [16]. The pro-
jection search involves identifying the output subspace
by seeking out “interesting” directions. The definition of
“interesting” is dependent on the particular problem being
addressed, but generally, interesting directions are those
where the projection values exhibit non-Gaussian behavior.
Projection Pursuit is an approach that seeks out directions
that maximize the deviation from the normal distribution
(kurtosis) of the projected values as a measure of non-
Gaussianity.

Similar to NDR, another algorithm called SPQR is an
efficient deterministic method for reducing a given matrix
to its most important columns. SPQR, which stands for
SPQR approximation, was introduced by Stewart [2,17,18].

This article evaluates this algorithm for its suitability in
reducing the dimensionality of data for machine learning
applications. As the name suggests, the approach is based on
QR decomposition, which expresses matrix A as the product
of an orthogonal matrixQ and an upper triangular matrix R.
These factors are obtained by orthonormalizing the columns
of A one by one using the Gram–Schmidt algorithm from the
first to the last. This procedure is preferred because it uses
the rotated QR, which differs because the Gram–Schmidt
procedure takes the largest column left at the beginning of
each new step [19]. The new step is then taken, and a per-
mutation matrix P is created such that:

− = −A P Q R.

It is important to note that, for this article, there is no re-
projection of the data into a new space, and there is no loss
of significance in the results. The user only sees the columns
of their data structure reordered according to decreasing
significance.

3 Database description

All the experiments carried out in this work have used
public databases downloaded from the study of Dua and
Graff [4]. In particular, the used databases are as follows:
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1. Gender Gap in Spanish WP Dataset [20]: Dataset used to
estimate the number of women editors and their editing
practices in the Spanish Wikipedia. It is composed of 21
attributes and 4,746 instances.

2. TUANDROMD (Tezpur University Android Malware
Dataset) Dataset [21]: this dataset contains 4,465 instances
and 241 attributes. The target attribute for classification is
a category (malware vs goodware).

3. Room Occupancy Estimation Dataset [22]: this dataset
contains 10,129 instances and 16 attributes, and it is
used to estimate the occupation level of the room. The
setup consisted of seven sensor nodes and one edge
node in a star configuration, with the sensor nodes
transmitting data to the edge every 30 s using wireless
transceivers. Each sensor node contains various sensors
such as temperature, light, sound, CO2, and digital pas-
sive infrared.

4. Myocardial Infarction Complications Dataset [23]: this
dataset contains 1,700 instances and 124 attributes. The
main application of this database is to predict complica-
tions of Myocardial Infarction based on information
about the patient at the time of admission and on the
third day of the hospital period.

In all the experiments, for each database, only the
numerical features have been considered.

4 Clustering

Clustering algorithms typically fall under unsupervised
learning techniques as they do not use labeled data to
group objects [24]. However, there are also semi-super-
vised clustering algorithms that incorporate some labeled
data in the clustering process [25]. A variety of algorithms
fall under the category of clustering, including hierarch-
ical, partitional, grid, density, and model-based techniques,
all of which aim to group objects based on a defined simi-
larity criterion [24].

In this work, the authors employed the fuzzy C-means
(FCM) algorithm [26,27], which generates fuzzy partitions
and prototypes for numerical datasets by optimizing a gen-
eralized least-squares objective function:
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where ∵∥ ∥ is a distance function such as: Euclidean,
Mahalanobis, etc.; v1, v2, …, vc are the centroids of the
clusters also called prototypes; X = {x1, x2, …, xN} is the
set of the points to be clustered; U = [uik] is the partition

matrix; c is the number of clusters; N is the number of
points to be clustered; i is an index that varies from 1 to
c; k is an index that varies from 1 to N; “m” is a coefficient
called “fuzzification coefficient.” It is greater than 1, and it
is responsible for the level of “fuzziness” of the partition
matrix. In other words, it controls the level of fuzziness
with which each point belongs to the various clusters.

This study uses this algorithm to generate fuzzy parti-
tions and prototypes for a set of numerical data. It opti-
mizes a generalized least-squares objective function,
minimizing it with respect to the given prototypes and par-
tition matrix U to discover the internal structure of the
datasetX. Theminimization process is iterative and involves
updating the partition matrix and prototypes until a stop-
ping criterion is met.

As an example, during the iterative process of updating
the partition matrix and prototypes in FCM algorithm, the
procedure may stop when the quantity

− ′ = − ′U U u umax ,i k ik ik,

∥ ∥ ∣ ∣ (2)

which measures the difference between two consecutive
partitions matrices U and U′, becomes smaller than a pre-
defined positive threshold ε.

It is important to note that the optimization function
used in the FCM algorithm results in a solution that reflects
the geometry of the input dataset to some extent.

On the other hand, the clustering algorithm can also be
used to classify new elements added to the dataset after the
initial clustering based on the hidden structure discovered
by the algorithm. This task can be accomplished by applying
the following rules:
• The “anchor points” of the classificator are the proto-
types of the clusters;

• Each cluster defines a class;
• A point x belongs to a class defined by the cluster with
prototype vj if:

= −j x varg min .i i
2( || || ) (3)

5 Silhouette method for clustering
evaluation

Evaluating the performance of a clustering algorithm is
not an easy task, as it can lead to one of the following
scenarios:
• The correct solution is known: in this case, the perfor-
mance evaluation of a clustering algorithm involves
computing the number of misclassified patterns or error
rates. In this case, the classification of each point is
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known a priori, and the clustering algorithm’s perfor-
mance can be measured based on how many patterns
are incorrectly classified.

• The correct solution is subjective: in this case, there is no
ground truth against which to evaluate the results of the
clustering algorithm. As the classification is subjective,
there is no universally acceptable solution, and the clas-
sification task falls into the semantic gap problem [28].

• The correct solution is unknown: in this case, evaluating
the performance of a clustering algorithm can be chal-
lenging because there is no ground truth against which to
evaluate the results of the clustering algorithm. Various
approaches have been proposed to address this issue, as
described in the study by Rand [29]. One commonly used
method in recent years is the silhouette parameter, which
measures the quality of clusters [30].

In this work, the authors utilized the silhouette para-
meter to evaluate the performance of their clustering algo-
rithm. This evaluation method compares the similarity
levels of each object within its own cluster (tightness)
and with objects in other clusters (separation). The silhou-
ette parameter is defined as follows: for a point y that
belongs to cluster A, the mean distance between y and
all other points of A is computed and denoted as t(y).
Then, for any cluster B different from A, the average dis-
tance between y and all points of B (d(y,B)) is calculated.
After calculating the distance between point y and each
cluster B where B ≠ A, we choose the minimum value
among all these distances and denote it by

(( ))=
≠

v y d y B,min .

A B

( ) (4)

Starting from these considerations, the silhouette for the
point y is defined as shown in the following formula:
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From this definition, it is possible to say that for each point
x in the dataset: −1 < s(y) < +1

An in-depth analysis of this parameter is reported in
the study of Rousseeuw [30].

On the other hand, utilizing the silhouette parameter
method allows us to present the clustering results through
a visual representation that showcases how well each
point has been classified. Additionally, it is worth noting
that this method is flexible since it allows the use of various

distance metrics such as Mahalanobis, Euclidean, and
Manhattan, among others.

All these features give the silhouette parameters useful
for evaluating clustering algorithm performance on data-
sets with no prior knowledge (that is also the case study of
this article).

The silhouette method can also be used as a reference
guide to determine the optimal number of clusters for a
dataset. This can be achieved through an iterative process
involving the following steps:
1. Run the clustering algorithm using a certain number of

clusters “C.”
2. Compute the silhouette for the obtained clusters.
3. If there is a satisfying number of points with a good level

of silhouette then “C” can be considered a good number
of clusters; else, change the value of “C” and return to
step 1.

6 SPQR algorithm

Numerous data applications require the representation of
m entities with n attributes. A frequently utilized approach
to represent this data is to create a matrix A that has m
rows and n columns. However, in modern applications
of data analysis like environmental datasets and image
analysis, these matrices often possess a high number of
dimensions, resulting in complications in data mining,
representation, storage, and communication.

Over the past few years, numerous studies in the area
of feature selection [31,32] have shown that it is feasible to
detect and remove redundant or irrelevant features while
analyzing a dataset. By utilizing feature selection techni-
ques, several benefits can be achieved in the data analysis
process, including reduced data size, enhanced prediction
accuracy, identification of critical features, easier compre-
hension of attributes or variables, and reduced execution
time [31]. An informative paper providing an overview of
feature selection methods can be found in the study of
Venkatesh and Anuradha [31].

Many methods employed in data analysis aim to approx-
imate matrix A by utilizing a “smaller” matrix created by
combining its rows and columns. However, these techniques
typically result in dense factorizations that are much harder
to comprehend than the original terms. For instance, trun-
cating the SVD at k terms is a prevalent approach for
obtaining the “best” rank-k approximation of A regarding
any unitarily invariant matrix norm. Nonetheless, this
approach produces a representation of the dataset that
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is challenging to relate to the original dataset and the
processes that generated it. A similar issue is present in
another commonly used technique for feature selection,
the PCA.

Numerous techniques have been developed to address
the column subset selection problem based on the issues
[33]. These methods aim to identify the subset of k original
columns from A, where k is less than n, that contains the
majority of the information of A, with respect to the spec-
tral or the Frobenius norm.

Generally, there are two categories of methods that
can be defined:
1. Randomized methods: These techniques utilize prob-

ability distributions to select the most representative
columns in a matrix.

2. Deterministic methods: These approaches select col-
umns in a deterministic manner.

One effective deterministic technique for reducing
matrix A to its most important columns is the SPQR
approximation, developed by Stewart [2,17,18]. The central
approach in this method is to compute the QR decomposi-
tion of A, where A is decomposed into an orthogonal
matrix Q and a triangular matrix R. This factorization is
performed using the Gram–Schmidt algorithm to orthonor-
malize the columns of A sequentially, from first to last. In
many cases, the pivoted QR method is preferred, where
columns are exchanged at the start of each new stage to
select the largest remaining column. In this way, a permu-
tation matrix P is built such that

⋅ = ⋅A P Q R. (6)

In cases where A is rank deficient, column pivoting is
applied by using the matrix A·P to enhance the numerical
accuracy. Additionally, the selection of P ensures that the
diagonal entries of R do not increase, which is a beneficial
property for subsequent steps. More in detail, we can par-
tition the aforementioned expression as follows:

= ⎡
⎣⎢

⎤
⎦⎥B B Q Q

R R

R0

,

1 2

1 2

11 12

22

[ ] [ ] (7)

and the following properties hold:
1. B1 = Q1 · R11,

2. ||B2 − Q1 · R12|| = ||R22||.

The semi-QR algorithm exploits these results to use the
approximation

⋅ ≈ ⋅A P Q R R ,

1

11 12

[ ] (8)

that, thanks to property 1, reproduces the first k columns of
A·P exactly, by introducing a quantifiable error (property 2).

Another advantage of the SPQR method is that it does not
require the explicit computation of the non-sparse ortho-
gonal matrix Q1. In practice, the SPQR algorithm provides
the k columns of A whose span approximate the column
space of A, given a rank parameter k. These k columns
form matrix B1 of size m × k, while the factor R11 contains
the coefficients of the column orthogonalization.

7 PCA

PCA is a widely used method for a dimensionality reduc-
tion in large databases. While reducing the dimensions of a
dataset can lead to a loss of accuracy, it can also improve the
efficiency of data analysis algorithms, such as data explora-
tion, data visualization, and machine learning. Therefore,
when using PCA, it is necessary to find a balance between
the benefits of performance improvement and the potential
drawbacks of accuracy loss.

In this section, we will provide a brief operational
description of the PCA method, while a more detailed ana-
lysis can be found in the study of Jolliffe [34].

PCA is a process that can be divided into five steps. The
first step is standardization, which involves standardizing
the range of each initial variable so that they contribute
equally to the analysis. The second step is computing the
covariance matrix to determine the degree of relationship
among the variables. In the third step, principal compo-
nents are identified by computing eigenvectors and eigen-
values of the covariance matrix. These new variables are
uncorrelated and contain most of the information of the
initial variables. The fourth step involves selecting feature
vectors by sorting the eigenvectors in descending order by
their eigenvalues, allowing for the identification of the
most significant principal components. Finally, the fifth
step involves recasting the data along the principal compo-
nent axes.

8 Experiments and results

In this section, a brief description of the carried-on experi-
ments is reported. For each database described in Section 3
a clustering analysis using the FCM algorithm has been
conducted varying the number of clusters. The results of
each clustering have been evaluated using the silhouette
parameter. These analyses have been carried-on six times
using the workflow reported in Figure 1:
1. the raw data (namely, the original data stored in each

database),
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2. the dataset reduced using the PCA algorithm loosing less
than 2% of the total variation in the dataset,

3. the dataset reduced using the SPQR algorithm,
4. the raw data normalized between 0 and 1,
5. the normalized dataset reduced using the PCA algorithm

loosing less than 2% of the total variation in the dataset, and
6. the normalized dataset reduced using the SPQR algorithm.

In the following, the obtained results for each database
are reported.

8.1 Gender gap in Spanish WP dataset

8.1.1 Clustering and silhouette using raw data

The original dataset is composed of 20 numerical features.
Applying PCA to this dataset loosing less than 2% of the
total variation in the data produces a dataset with a single
dimension.

Figures 2–4 show the obtained results in terms of sil-
houettes varying the number of clusters from 10 to 50. Each
line represents the percentage of points with silhouette
greater than a given threshold that is 0.7 for the blue
line, 0.8 for the red line, and 0.9 for the yellow line.

8.1.2 Clustering and silhouette using normalized data

The original dataset has been normalized between 0 and 1.
Applying PCA to this dataset loosing less than 2% of the

total variation in the data produces a dataset with six
dimensions.

Figures 5–7 show the obtained results in terms of sil-
houettes varying the number of clusters from 10 to 50.
Each line represents the percentage of points with silhou-
ette greater than a given threshold that is 0.7 for the
blue line, 0.8 for the red line, and 0.9 for the yellow line.
In these experiments, the results obtained using normal-
ized data seem to be worse than that obtained on the
raw data.

Figure 2: Clustering performance in terms of silhouette using ori-
ginal data.

Figure 4: Clustering performance in terms of silhouette using the
reduced dataset with SPQR.

Figure 3: Clustering performance in terms of silhouette using the
reduced dataset with PCA.
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8.2 Room occupancy estimation dataset

8.2.1 Clustering and silhouette using raw data

The original dataset is composed of 20 numerical features.
Applying PCA to this dataset loosing less than 2% of the
total variation in the data produces a dataset with two
dimensions.

Figures 8–10 show the obtained results in terms of sil-
houettes varying the number of clusters from 10 to 50. Each
line represents the percentage of points with silhouette
greater than a given threshold that is 0.7 for the blue line,
0.8 for the red line, and 0.9 for the yellow line.

8.2.2 Clustering and silhouette using normalized data

The original dataset has been normalized between 0 and 1.
Applying PCA to this dataset loosing less than 2% of the total
variation in the data produces a dataset with five dimensions.

Figures 11–13 show the obtained results in terms of
silhouettes varying the number of clusters from 10 to 50.
Each line represents the percentage of points with silhou-
ette greater than a given threshold that is 0.7 for the blue line,
0.8 for the red line and 0.9 for the yellow line. In these

Figure 5: Clustering performance in terms of silhouette using normalized data.
Figure 7: Clustering performance in terms of silhouette using the
reduced dataset with SPQR applied to normalized data.

Figure 8: Clustering performance in terms of silhouette using ori-
ginal data.

Figure 6: Clustering performance in terms of silhouette using the
reduced dataset with PCA applied to normalized data.
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experiments, the results obtained using normalized data seem
to be slightly worse than that obtained on the raw data.

8.3 Myocardial infarction complications
Dataset

8.3.1 Clustering and silhouette using raw data

This dataset could be considered a sort of spare matrix.
There are many 0, and some features contain not a number

values (NaN). The proposed results have been obtained
selecting only the features without NaN values obtaining
a dataset composed of 13 dimensions. Applying PCA to this
dataset loosing less than 2% of the total variation in the
data produces a dataset with six dimensions.

Figures 14–16 show the obtained results in terms
of silhouettes varying the number of clusters from 10
to 50. Each line represents the percentage of points
with silhouette greater than a given threshold that is 0.7
for the blue line, 0.8 for the red line, and 0.9 for the
yellow line.

Figure 11: Clustering performance in terms of silhouette using normal-
ized data.

Figure 10: Clustering performance in terms of silhouette using the
reduced dataset with SPQR.

Figure 9: Clustering performance in terms of silhouette using the
reduced dataset with PCA.

Figure 12: Clustering performance in terms of silhouette using the
reduced dataset with PCA applied to normalized data.
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8.3.2 Clustering and silhouette using normalized data

The original dataset (without the features containing NaN
values) has been normalized between 0 and 1. Applying
PCA to this dataset loosing less than 2% of the total varia-
tion in the data produces a dataset with ten dimensions.

Figures 17–19 show the obtained results in terms of
silhouettes varying the number of clusters from 10 to 50.
Each line represents the percentage of points with silhou-
ette greater than a given threshold that is 0.7 for the blue
line, 0.8 for the red line, and 0.9 for the yellow line. In these

experiments, the results obtained using normalized data
seem to be worse than that obtained on the raw data.

8.4 TUANDROMD

8.4.1 Clustering and silhouette using raw data

This dataset could be considered a sort of spare matrix.
There are many 0, but there are not features containing
NaN. Applying PCA to this dataset loosing less than 2% of
the total variation in the data produces a dataset with
seven dimensions.

Figure 16: Clustering performance in terms of silhouette using the
reduced dataset with SPQR.

Figure 14: Clustering performance in terms of silhouette using ori-
ginal data.

Figure 13: Clustering performance in terms of silhouette using the
reduced dataset with SPQR applied to normalized data.

Figure 15: Clustering performance in terms of silhouette using the
reduced dataset with PCA.
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Figures 20–22 show the obtained results in terms of
silhouettes varying the number of clusters from 10 to 50.
Each line represents the percentage of points with silhou-
ette greater than a given threshold that is 0.7 for the blue
line, 0.8 for the red line, and 0.9 for the yellow line.

8.4.2 Clustering and silhouette using normalized data

The original dataset has been normalized between 0 and 1.
Applying PCA to this dataset loosing less than 2% of the

total variation in the data produces a dataset with seven
dimensions.

Figures 23–25 show the obtained results in terms
of silhouettes varying the number of clusters from 10
to 50. Each line represents the percentage of points
with silhouette greater than a given threshold that is 0.7
for the blue line, 0.8 for the red line, and 0.9 for the yellow
line. In these experiments, the results obtained using nor-
malized data seem to be similar to those obtained using
the raw data.

Figure 19: Clustering performance in terms of silhouette using the
reduced dataset with SPQR applied to normalized data.

Figure 17: Clustering performance in terms of silhouette using normal-
ized data.

Figure 20: Clustering performance in terms of silhouette using ori-
ginal data.

Figure 18: Clustering performance in terms of silhouette using the
reduced dataset with PCA applied to normalized data.
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8.5 Synthesis

The mean values of all the results shown in the previous
sections are reported in Figure 26. Figure 26 shows the mean
percentage of points classified with a silhouette greater than
0.7 using the various methods, while Figures 27 and 28
report themean percentage of points classified, respectively,
with a silhouette greater than 0.8 and 0.9.

9 Conclusions

The study aimed to evaluate a new data preprocessing
technique called SPQR approximation for machine learning.
To the best of our knowledge, the use of the SPQR algorithm
as a preprocessing stage in machine learning applications is
an original contribution of this article. The obtained results
show that this preprocessing technique can improve both

Figure 23: Clustering performance in terms of silhouette using nor-
malized data.

Figure 22: Clustering performance in terms of silhouette using the
reduced dataset with SPQR.

Figure 21: Clustering performance in terms of silhouette using the
reduced dataset with PCA.

Figure 24: Clustering performance in terms of silhouette using the
reduced dataset with PCA applied to normalized data.
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the classification performance and the computational effi-
ciency of a machine learning algorithm. A point of strength
of this method is that it belongs to the family of feature
selection algorithms; hence, it does not modify the original
data making it simple to add new data points for further
classification tasks.

These results have been obtained using the FCM algo-
rithm to clusterize data in four publicly available data-
bases using different preprocessing techniques:
1. No preprocessing, where the raw data was directly used

for clustering using FCM.

2. Data normalization, where each feature in the dataset
was normalized.

3. PCA, which involved reducing the dimensionality of the
dataset using PCA while retaining at least 98% of the
total variation in the data.

4. SPQR, which also involved reducing the dimensionality
of the dataset while retaining at least 98% of the total
variation in the data, but unlike PCA, it did not modify
the original dataset.

The results obtained by the FCM algorithm have been
measured using the silhouette method. This evaluation
method compares the similarity levels of each object within
its own cluster (tightness) and with objects in other clusters
(separation). To a certain extent, this method performs a
geometrical evaluation of the structure of the obtained clus-
ters. This approach is due to the fact that these datasets are
not labeled, so there is no ground truth against which to
evaluate the correctness of the clusters from a semantic
point of view.

The previous sections display the obtained results,
which enable us to draw certain considerations:
• The performance of clustering algorithms is affected by
data normalization, which has an “equalization effect” on
the shape of the feature space in a dataset. Normalizing a
dataset ensures that each dimension in the feature space
has an equal extension 1, giving each dimension equal
weight in the distance function used by the clustering
algorithm. However, from a semantic point of view, this
may cause issues when analyzing a dataset with features
of varying importance.

Figure 25: Clustering performance in terms of silhouette using the
reduced dataset with SPQR applied to normalized data.
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Figure 26: Mean results in terms of silhouettes >0.7 obtained by varying the number of clusters from 10 to 50.
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• The performance of classification algorithms can be
improved by reducing the dimensions of the dataset.
This can result in improvements in both computational
and classification performances, as observed in the
experiments.

• In Section 7, it was demonstrated that reducing dimen-
sions using PCA involves re-projecting the original feature
space into a new one that is defined by the eigenvectors of
the covariance matrix. This makes it challenging to deter-
mine the contribution of each feature in the original
dataset to the classification process. Additionally, any
new data points that are added to the original dataset
cannot be classified without being transformed into the
new feature space.

• The SPQR algorithm has been presented in Section VI.
This algorithm does not modify the original dataset and
only changes the position of some features within it. This
eliminates the limitations of PCA mentioned earlier.
Additionally, the results indicate that the performance
achieved using the SPQR algorithm for data preproces-
sing is similar to that obtained using PCA.
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Figure 28: Mean results in terms of silhouettes >0.9 obtained by varying the number of clusters from 10 to 50.
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