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Abstract: In previous experimental study with three-way-
reversal and juggling sequence rotation algorithms, using
20,000,000 elements for type LONG in Java, the average
execution times have been shown to be 49.66761ms and
246.4394ms, respectively. These results have revealed
appreciable low performance in the juggling algorithm
despite its proven optimality. However, the juggling
algorithm has also exhibited efficiency with some offset
ranges. Due to this pattern of the juggling algorithm, the
current study is focused on investigating source of the
inefficiency on the average performance. Samples were
extracted from the previous experimental data, presented
differently and analyzed both graphically and in tabular
form. Greatest common divisor values from the data that
equal offsets were used. As emanating from the previous
study, the Java language used for the rotation was to simu-
late ordering of tasks for safety and efficiency in the context
of real-time task scheduling. Outcome of the investigation
shows that juggling rotation performance competes favor-
ably with three-way-reversal rotation (and even better in
few cases) for certain offsets, but poorly with the rests. This
study identifies the poorest performances around offsets in
the neighborhood of square root of the sequence size. From
the outcome, the study therefore strongly advises applica-
tion developers (especially for real-time systems) to be
mindful of where and how to in using juggling rotation.
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1 Introduction

Rearrangement of objects to achieve some goal is common
in many aspects of computing, including databases, image
processing, cryptography, priority queuing of tasks for sche-
duling in operating and real-time systems, to mention but a
few. When memory is a scarce and critical resource in the
systems, such as embedded/real-time systems, the opera-
tion would be restricted to minimum or constant memory
usage known as “in-place” execution [1,2]. Typical in-place
objects rearrangement algorithms such as those for in-
place sorting include insertion sort, quick sort, and some
implementation of merging in merge sort. In-place re-
arrangement operations are commonly accomplished using
sequence (or array) rotation. Sequence rotation or circular
shifting is also increasingly being used in internal buffer
management in text editors [3-5], co-processor design
[6], image encryption [7], permutation in Data Encryption
Standard and Advanced Encryption Standard [8], and task
scheduling in real-time systems [9]. Hence, sequence rota-
tion algorithms have become so ubiquitous that they form
part of programming languages standard libraries such
as Java and C++ “Standard Template Libraries” (STL)
[10,11]. In short, any in-place operation to rearrangement
of sequence items would likely employ sequence rotation.
Popular among these rotation algorithms are three-way-
reversal and juggling rotation.

Juggling sequence rotation is a circle shifting of sequence
(or array) elements to exchange part of the sequence with
another. Each element move (or assignment) is accom-
plished in a circular fashion at specified length or number
of skipped positions on the sequence, known as cycle gap/
cycle length (or offset). A move is “either assigning a value
into an array[/sequence] element or copying an array
[/sequence] element to elsewhere” [10]. The next element
to move requires jumping/skipping one or more specified
preceding/succeeding elements (depending on left/right
rotation, respectively [12]) like a juggler exercise, hence
the term ‘Juggling Rotation.” It was first tagged “Dolphin
algorithm” as the idea was conceived to be “like Dolphins
leaping out of water and disappear again” [5] (Figure 1a).
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The skipped elements respective positions, which consti-
tute the cycle gap, include the destination location but
exclude the source position of the next element to be
moved. The number of circles required to accomplish com-
plete sequence block exchange with another is calculated
using greatest common divisor (GCD) of the sequence size
and the cycle gap, hence the alternative term ‘greatest
common divisor (or simply GCD) based sequence rotation’
[13]. Thus, the juggling length (or offset) determines the
GCD-computed number of circles to complete the rotation.

Three-way-reversal, on the other hand, takes a reversal
approach in rotating a sequence. A sequence reversal maps
entire sequence into pairs of corresponding elements from
both ends of the sequence and swap the paired elements.
The pairing divides the sequence, at the middle, into two
equal discrete halves. Mirrored items from opposite halves
are swapped. Let the sequence S be sorted such that
S = {(e)icnlei < €i+1}. We define the reversal or inversion of
S as S7! = {(e)jenle = €j11}. For example, if S = {1, 2, 3, 4},
then S~1 = {4, 3, 2, 1}. Three-way-reversal divides the sequence
into two halves at the middle and applies the reversal
function on both halves separately and independently. If
the sequence size is odd, the middle item is untouched.
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Figure 1: Illustrative diagrams of juggling and three-way-reversal
sequence rotation. (a) A sequence size 7 with cycle gap 3 rotation.
Number of circles = gcd(7, 3) = 1. Elements move in the direction of
the arcs (like dolphins), each skipping cycle gap item positions to
its destination. (b) A sequence size of 10 with cycle gap 5 rotation
using three-way-reversal. The numbering at the bottom of the
sequence is a mirror of the original sequence. The two sets of arcs at
the top do independent reversals on their respective portions of the
sequence and the set of arcs at the bottom does the final reversal
after the first two have completed.
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Finally, the entire resulting sequence is again reversed
making the third reversal, hence the “three-way-reversal”
(Figure 1b). Note that the reversal function is not stable, but
three-way-reversal is, with regard to individual elements in
their respective separate halves and not for identical elements
across the halves. We are interested in the performance of
juggling rotation in the light of its rival competitor — the
three-way-reversal.

The motivation for this interest is that we want to see
algorithm that runs with few number of elements assign-
ments and requires the smallest extra memory usage,
making it suitable for embedded/real-time systems. In
particular, hard (or even soft) real-time systems, whose
timing requirements must not be compromised, require
such algorithm that executes uniformly with few extra
memory need. Although, other domains may not bother
about duration of the algorithm execution, the real-time
system domain cannot afford to gamble with timing and
accuracy of algorithm. Hence, in studying the juggling
algorithm, our focus is on embedded/real-time system
domain that would require fewest element assignments
running proportionately (and accurately) with algorithm
timing in a uniform fashion. As an optimized algorithm,
we expect the juggling algorithm to run fastest and uni-
formly — given that it assigns fewest number of elements,
as against three-way-reversal algorithm. Such algorithm
will be well suited for the embedded/real-time systems,
whose timing constraints must not be undermined.

A good performing algorithm is judged by its effi-
ciency using computational complexity theory [14,15].
The complexity is the execution cost measured in terms
of storage, time, and/or “whatever units are relevant”
[16]. Sometimes, the performance is measured in terms
of optimality, focusing on “best configuration” (such as
number of element assignments and comparisons [10]) to
achieve some goals [17,18]. On this, juggling rotation
algorithm is optimal [5,19]. But this may not translate
to time or space complexity efficiency, suitable for time
critical systems. The following notations are used in this
article: gcd-R — GCD-based rotation; twr — three-way-
reversal rotation.

In this article, Section 1 presents the introduction.
Section 2 contains the related works that briefly review
the literature and clearly states the problem. Section 3
highlights the tools and methods used in the experimen-
tation. Section 4 presents and analyzes the results. In
discussing the results, Section 5 explains the implication
of the outcome, identifying the positivity and negativity
of it. Finally, Section 6 concludes the article with emphasis
on the positivity and negativity of the research and also
gives some direction for future scope.



94 —— Joseph A. Erho et al.

2 Related works

In the light of memory/time criticality of systems, most
embedded systems demand that any applied algorithm
consumes minimum memory [20,21] to satisfy the “three
common principles” [22] of embedded systems: perfor-
mance, low energy consumption, and low price due to
limited hardware [23]; and if the embedded systems are
real-time, the execution must also be time bound [24].
While unexpected delay in execution may be tolerated
in some applications such as ordinary in-place sorting,
this is forbidden in some embedded/real-time system
operations [25] such as ordering sequence of tasks for
priority scheduling. Yet, most of the studies on real-
time system scheduling have been on solving the com-
plex, “NP-hard” [9], problem of allocating tasks to uni
(multi)processor(s) for execution to meet deadline. Little
attention has so far been given to efficient (re-)ordering of
tasks themselves before safely allocating to processors.
Interestingly, all these studies often defined task models
that comprised sequence of jobs [9,26] as ordered set or
vector of tuple of parameters such as arrival time, size of
task, and deadline.

While studying real-time “scheduling algorithms for
divisible loads,” Lin et al. [27] made three important deci-
sions, including “scheduling policy to determine the order
of execution for tasks,” “number of processing nodes to
allocate to each task,” and “strategy to partition the task
among the allocated nodes.” Our interest here focuses on
the scheduling policy. The study investigated policies for
ordering of tasks to be executed — the popular FIFO (First
In First Out in which tasks were scheduled in “their order
of arrival”), EDF (Earliest Deadline First in which tasks
were ordered for real-time scheduling by “their absolute
deadlines”), and MWF (“Maximum Workload derivative
First” which was “a real-time scheduling algorithm for
divisible tasks”). Whichever policy or combination of
policies adopted, one concept was common — ‘ordering
of sequence of tasks,” even if the policies included “pro-
cessor preemption” [9]. Also, Dinh [28] carried out exten-
sive and excellent study of scheduling parallel tasks
for multiprocessor. Whether it be “Federated scheduling”
(based on “heavy tasks” and “light tasks™) or “global
fixed-priority (G-FP)” or “global scheduling and parti-
tioned scheduling” for multiprocessor scheduling, there
was usually associating queue (or sequence) containing
“the tasks sorted” [28] in a particular order. But there was
little study on the safety and efficiency of the algorithms
used for sorting the tasks queue for the scheduling.

Probably, these studies on scheduling already settled
for existing (re-)ordering algorithms. But it is a common
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knowledge that the complexity of computer architecture
keeps on increasing, in their power and number of pro-
cessors, from “clusters” well into “cloud” of multiproces-
sing systems that comprises “hundreds and thousands
computers” in their respective “utility computing” clus-
ters [29]. This has correspondingly opened the flood gate
of tremendously increasing size of data of different forms
admissible for processing. Here comes two ever emerging
concept: increasing power and number of processing
units versus increasing data size. In the context of real-
time systems, this would mean more than scheduling
tasks for “clusters” [27] of multiprocessors and to include
efficient (re-)ordering of the tasks (possibly in huge number)
for safety scheduling. Now, as the sequence size of the jobs
increases, we are faced with the challenge of identifying the
sorting algorithms that would rearrange the tasks efficiently
without compromising the deadline targets

Mittermair and Puschner [30] sought to address the
efficient re-ordering question by asking “Which sorting
algorithms|...]” were suitable for hard real-time systems.
In addressing it, they showed that of the eight sorting
algorithms studied — “bubble sort, insertion sort, selec-
tion sort, merge sort, quick sort, heap sort, radix sort, and
distribution counting sort” — merge sort was the most
“stable” and had “the best worst-case performance” as
the size of data increases. The study opined that because
of the time criticality of hard real-time systems, any con-
sideration of algorithm suitability should be based on
worst-case execution. In this case, merge sort won.

For merge sort, the most time intensive component of
the algorithm is the merge function. Suitable implemen-
tation of merge sort for embedded/real-time systems
would be the in-place merging strategy, because of the
system minimum memory requirements. And, in-place
merging is commonly accomplished with sequence rota-
tion. This is where our research is anchored on the context
of real-time system task scheduling.

Now, given the theoretical optimality of juggling
array rotation, developers who use the algorithm may
choose any cycle gap to implement rearrangement of
tasks requirements, including those for some hard real-
time applications. This can be disastrous for time critical
systems if execution is delayed, failing to satisfy one or
more of the requirements stipulated in system formal
specification [31].

The current study examines delays in execution for
juggling rotation algorithm. We use Java as simulation
programming language for the rotation to simulate ordering
of tasks for safety and efficiency in the domain of real-time
scheduling, since Java is popular for implementing real-
time systems — coined as “real-time Java.” The study is
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limited to GCD values that are equal to cycle gaps, since all
other cycle gaps decompose to GCDs that equal cycle gap as
adequately studied by ref. [10].

In the study by ref. [10], two in-place rotation algo-
rithms, implemented in the STL distribution, were ana-
lyzed. The first, STL,, used swap function while the other,
STL,, used GCD function. The study proved theoretically
that STL; used n — gcd(n, A) swaps to rotate array of size
n and cycle length A, noting that each swap “macro”
required three assignments or movements of elements.
The STL, version used explicit GCD and proved, using
graph theory, that total number of elements moves required
were n + gcd(n, A). It further showed that any array of
size n can be decomposed into “disjoint classes of cycle
lengths.” The study concluded that STL, rotation algorithm
is optimal, since it used only n + gcd(n, A) item moves
(compare ref. [19]). To further cement the finding, empirical
results were obtained both for STL; and STL, and for addi-
tional STL3; and Space algorithms. STL; was the version that
used implicit GCD (i.e., the GCD was incorporated into the
inner loop of the rotation) while Space used auxiliary
memory. The outcome of the experiment is as follows:
Space had the fastest running time followed by STL,, while
STL, and STL; exhibited almost same running times. The
study suspected that incorporation of “variable Bound” into
STL; could be the reason for its low performance, since the
Bound was maintained in n times. Even though there are
other implementation styles [32,33], including non-GCD
explicit version STLs, the current study is motivated to
use the GCD explicit version (STL,) for the in-place rotation,
since Space used auxiliary memory and the fact that “the
extra cost of implicitly computing the GCD was significantly
higher than computing it explicitly” [10] — not suitable for
hard real-time systems.

In using GCD rotation algorithms to exchange (or
rotate, circle shift) block or section of sequence or array
with another in an in-place sorting, studies have shown
that its use is optimal as stated earlier [17,19] and the
experimental running time result from the algorithm is
believed to exhibit high performance strength [18]. This is
good fit; since every computing system is desired to exe-
cute at best performance, placing more demands for selec-
tion among candidates, especially for embedded/real-time
systems. As mentioned earlier, the GCD-based rotation or
“vector exchange” [19] is believed to be more efficient than
some other rotation algorithms. On this, Erho et al. [13]
and Symvonis [34] found that “the problem solution can be
reduced” to m + n + gcd(m + n, n) moves [10] as against
its three-way-reversal counterpart that used as much as
3(l(m + n)2| + [m2] + |[n/22]) moves [19], where m + n
was the sequence size and n the cycle gap or offset [10].
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However, Erho and Consul [35] had further reduced the
excessive mathematical expression of three-way-reversal
element moves to 3(m + n — ev) and index comparison to
m+n + 3 - ev, where ev = 0 or 1 as determined by ref.
[35] using a modular function

v = m mod 2, if m mod 2 =n mod 2
“ 11, otherwise.

Additionally, in the study by ref. [35], a claim was
made that the rotation algorithm performance might not
be affected by the size of elements versus indexes varia-
bility. The study cited a student record database table
that had score field, the main field of interest, ranging
from -1 to 100% but index field ranging into millions. In
such case, indexes were “predominantly heavier than ele-
ments” [13]. This motivated the study in ref. [13] to choose
sequence size of 20,000,000 to enable the processor spend
enough time doing the rotation and for the researchers to
observe the behavior of the algorithm over large input of
indexes against different sizes of elements as enshrined in
four primitive data types.

While using the least common multiple and GCD
[6,36], Erho et al. [13] not only confirmed that the GCD-
based rotation actually required m + n + gcd(m + n, n)
element moves, they additionally derived that it required
2m + 3n - gcd(m + n, n) index moves for some imple-
mentation style of explicit GCD calculated rotation — the
STL, [10]. Yet, the study by Erho et al. [13] showed that
despite sizable number, 3(m + n — ev), of element moves
and smaller number, m + n + 3 — ev, of index moves for
three-way-reversal, there was significantly huge discre-
pancy between the average execution time of the GCD
rotation and the three-way-reversal approach across all
four data types (LONG, INT, SHORT, and CHAR) in
Java. This conclusion was reached using “two-way ANOVA
test” on the empirical data with R statistical package. By
testing hypothesis on the interaction of the two factors: algo-
rithms versus data types and their levels — (gcd-R versus twr)
and (LONG, INT, SHORT, versus CHAR) — respectively, the
study showed that index computing had no significant effect
on the running times of both algorithms across the four data
types, but element moves did. This element assignment
observation had already been made by Bentley [4], pointing
out that this phenomenon was due to the algorithm “poor
caching behavior.” However, this general observation was
not in the light of different data types and lacked sufficient
details.

Taking one of the data types, type LONG for instance,
Erho et al. [13] showed that, on the average, execution
time for three-way-reversal was only 49.66761 ms, whereas
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that of GCD-based rotation was as huge as 246.4394ms —
approximately 496.18% difference. This study is curious
about what contributes to this apparent big gap, outside
the observation by ref. [4], given the theoretical derivation
that GCD-based rotation used only m + n + gcd(m + n, n)
element moves against three-way-reversal rotation
which used as much as 3(m + n — ev) element moves.
The interest of this current study is therefore to investigate
the source of the huge up surge in the average execution
time of the GCD-based rotation. The aim is to properly
guide prospective implementation of the juggling rotation
(particularly in real-time system task scheduling) should
the algorithm be a choice. The objective is to establish
better understanding of the behavior (in terms of time
complexity in a real-time system context) of the GCD-
based rotation at various ranges of cycle gaps, through
experimental data analyzed both graphically and tabu-
larly. This can only be achieved with good tools and appro-
priate methods.

3 Materials and methods

The data presented in this study were extractions from
the ones studied in ref. [13], but distinctively in different
form. Also, a preliminary version (mainly the data and
results) of this current form of the article has already
been presented at a conference [37]. So the tools and
methodology used were exactly the ones described in the
previous studies. Briefly on the experiment, as reflected in
refs [13,37], two algorithms (juggling and three-way-

private static void gcdRotate(long]]

{
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reversal) were used for each of the four data types
(Figures 2 and 3). The function codes for both algorithms
were copied directly from the simulation implementa-
tion in ref. [13] and briefly discussed also in ref. [37].
Execution timings of all four data types were computed
in the same manner with the two algorithms encap-
sulated within their respective data type blocks of runn-
ing loops, each type in seperate program file. The
block execution iterating for 100 times was nested in
an outer loop iterating for 5 times and the execution
times for each appended to a text file. The 5-times-limit
looping was again nested in another outer loop running
for 71 times. On the whole, we had 100 x 5 x 71 = 35,500
records generated. However, this current study did not
give attention to indexes assignments execution timing,
since the concern here was on influence of cycle gaps/
GCD on execution timing. Also, the sampled data used
here were selection of only one record per cycle gap
instead of five (each from every next 100 records) in the
previous study.

In this study, extract of 71 records representing the
different cycle gaps from the large pool of raw data, gen-
erated in ref. [13], is presented. The data are plotted in
graphs using Microsoft Excel and inspected pictorially.
The patterns exhibited in the graphs necessitated rein-
spection of the actual data from the various data types.
But it turned out that inspection of one type sufficed.
Thus, type LONG data were presented also in tabular
form for correlation with its corresponding graph. Table
1is extracted from the LONG data type record sample of
that pool of data.

a, int p, int q, int rl)

int Cycles, Moves, From, To, i, size = rl p, offset = q pP:
long Save;
Cycles = ged(size, offset)+p:
Moves = size [ Cycles;
for(i = p; i < Cycles + p; i++)
To = i;
Save = a[To];
From = To offset + size;
for(int j = p + 1: j < Moves + p: j++)
{
a[To] = a[From];
To = From;
From —= offset ;
if (From < 0) From += size;

}
a[To] = Save;

}

Figure 2: GCD-based rotation function as implemented in Java program.
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private static void reversel(long[] b1, int p, int ril)
{
while (p < --ri1)
{
long t = bi[pl;
bi[p++] = bilril;
bi[ri] = t;
}
}
private static void rotatel(long([] b1, int p, int q, int ril)
{
reversel (bl, p, q);
reversel(bl, q, r1);
reversel (bl, p, rl);
}

Figure 3: Three-way-reversal-based rotation function in Java program.

The table is arranged in a way that several cycle gap
records can be viewed side by side. It is arranged into four
columns labeled table page 1 to table page 4. Each table
page holds records of cycle gaps with their corresponding
algorithms running times. The table-page columns should
be seen as sequential. For example, table page 2 column
follows table page 1 column, in that order, if vertical
arrangement of table-pages is assumed. The gray-colored-
column serial numbering of the rows is the 71 cycle gaps
represented in the horizontal entries of the graphs. On the
table, serial numbers 1 to 5, for example, represent cycle
gaps 1, 2, 4, 5, 8, and serial numbers 69, 70, 71 represent
4,000,000 and 5,000,000 and 10,000,000, respectively.
Sequel to this, the horizontal entries of a corresponding
graph for serial number 1, 3, and 5 represent the cycle
gaps 1, 4, and 8, respectively.

The three-way-reversal rotation data were also extracted
and placed alongside the juggling rotation for easy compar-
ison of deviations from uniformly efficient performance.
Now, we want to figure out the outcome of these experi-
mental data.

4 Results

We want to disclose here that the results of this work have
already been published in a Conference Proceedings [37].
However, there are great variations between the confer-
ence paper and what we present here. In fact, the title of
the conference paper had a limited view on the study,
which also affected the keyword choices. Again, the article
was barely five pages with bogus images having dotted
lines. The table, too, was slightly different in shape and
coloration. Little (or non) was said about the application
domains and significance of the study could not be clearly

ascertained in that conference article. In addition, far
reaching conclusions of the research were altogether either
missing or scanty at best. Now, let us analyze these results
to see in depth of what they mean.

In a quick look through the first few and the last few
cycle gaps in the table of rotation algorithms data, the
execution timing shows that GCD-based sequence exchange
actually performs better than three-way-reversal rotation.
Yet, the study [13] had successfully shown that, on the
average, execution time for three-way-reversal was only
49.66761ms, whereas that of GCD-based rotation was as
big as 246.4394ms. We are now more inquisitive than ever
to know the reason for this apparent big gap.

4.1 Analysis of the graphs

Although Table 1 may not really be necessary since it
represents Figure 4, we present it here for the purpose
of easy comparison with the figure. Conversely, Figure 4
graph would not be required for the same above reason
[38]. The three-way-reversal rotation graph was plotted
alongside the juggling rotation for a clear comparison
and to give a feel of the deviations from efficient perfor-
mance. Plotting the extracted data in Excel, the look of all
four graphs tends to be like bell shapes. This meant that
GCD rotation efficient performance was lowest around
a consecutive range of cycle gaps - quite some points
away from both ends and concentrating around the
middle of the cycle gaps listing. For data type LONG,
the range is between point 9 and 44 standing for cycle
gaps 25-16,000. But note the high performance indication
from point 45-65, for cycle gaps 20,000-1,000,000 of jug-
gling rotation and even outperformed three-way-reversal
rotation at point 66—71. This trend appeared to be similar
to those of the integer data type (Figures 4 and 5).
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Table 1: Sampled data for GCD rotation and three-way-reversal rotation, one record per cycle gap of 71 (see refs [13, 37])

Table page 1 Table page 2

Table page 3 Table page 4

gcd-R  twr  Cycle gap gcd-R  twr  Cycle gap gcd-R  twr  Cycle gap gcd-R  twr  Cycle gap

45 49 10,000,000 71 133 49 80,000 53 464 50 3,200 35 270 48 128 17
43 48 5,000,000 70 144 53 78,125 52 437 51 3,125 34 281 48 125 16
43 48 4,000,000 69 78 49 62,500 51 448 59 2,500 33 284 49 100 15
44 51 2,500,000 68 99 49 50,000 50 405 50 2,000 32 303 48 80 14
50 48 2,000,000 67 105 52 40,000 49 427 50 1,600 31 270 48 64 13
48 51 1,250,000 66 212 49 32,000 48 440 48 1,280 30 257 48 50 12
61 52 1,000,000 65 123 49 31,250 47 397 49 1,250 29 305 49 40 1
131 54 800,000 64 102 50 25,000 46 376 48 1,000 28 315 49 32 10
74 49 625,000 63 152 50 20,000 45 390 48 800 27 321 51 25 9
69 59 500,000 62 407 48 16,000 44 398 50 640 26 292 48 20 8
108 52 400,000 61 379 49 15,625 43 382 52 625 25 272 49 16 7
84 48 312,500 60 406 49 12,500 42 411 48 500 24 207 50 10 6
67 48 250,000 59 490 48 10,000 41 376 50 400 23 173 49 8 5
99 47 200,000 58 433 47 8,000 40 381 49 320 22 106 48 5 4
195 49 160,000 57 479 50 6,400 39 303 47 256 21 89 49 4 3
113 57 156,250 56 469 49 6,250 38 347 49 250 20 54 49 2 2
66 51 125,000 55 466 48 5,000 37 309 49 200 19 43 48 1 1
116 51 100,000 54 462 49 4,000 36 310 49 160 18

The case was a little different for SHORT and CHAR
data types, probably due to the circumstance of the mate-
rials and methods used. With these types the bell shapes
are still visible but with some sort of down skewness
close to the peak of the bells, tending to split the single
bell into two, respectively. This occurs around point 18 to
31 for the cycle gaps 160-1,600, in that order. Note that
even though Table 1 is meant for type LONG, the serial
numbering (the gray-colored) and the cycle gap columns
are the same across all four types. In similarity with types
LONG and INT, the SHORT and CHAR types also had high
performance indications from point 1 to 5, for the cycle
gaps 1-8 and from points 50 to 71, for the cycle gaps
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50,000 to 10,000,000. Type CHAR even had higher per-
formance indication from points 1 to 3, for the cycle gaps
1, 2, and 4 (Figures 6 and 7). This is important in view of
the domain under consideration. Let us have a glimpse of
the implications of these results.

5 Discussion

The previous study by Erho et al. [13] had already shown
that GCD-based rotation demonstrated, on the average, a
huge up surge of 246.4394ms in execution time than
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Figure 4: Gcd-R for LONG data type.

Figure 5: Gcd-R for INT data type.
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Figure 6: Gcd-R for SHORT data type.

three-way-reversal running time of just 49.66761ms. This
was approximately 496.18% difference. What the current
research has shown is that the GCD rotation performance
for some of the cycle gaps actually competes favorably
with three-way-reversal rotation, which means a good
and balanced efficiency in performance along the other
competitor is maintained with these cycle gaps. This can
easily be seen from the two extreme points on the x-axis
of all four graphs.

Surprisingly, though, the plots begin to exhibit sharp
rise after few cycle gaps and then steep fall before few
remaining cycle gaps, considerably. The pattern pro-
duced appears to be bell shaped. This could not be as a
result of mere outliers, otherwise it would not maintain
somewhat uniform pattern across all four graphs. The
conclusion reachable here is that ‘there could be a phe-
nomenon playing out’: for some cycle gaps (around the
region closest to 1 and/or near, but not higher than, half
of the sequence size) the performance is quite efficient, but
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Figure 7: Gcd-R for CHAR data type.
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very poor otherwise. This could be deceptive to system
developers given the known optimality of juggling rota-
tion algorithm.

A careful comparison of Figure 4 with Table 1 shows
that the worst of this poor performance coincides with
cycle gaps within the neighborhood of the square root
of the sequence size; and all four graphs conform to
this fact. For instance, the sequence size used for this
experiment was 20,000,000 and the square root was
approximately 4472.14. The table has that about seven
(7) cycle gaps to both left and right of the square root
value (4472.14) fall within the worst performing values
for the GCD-based sequence rotation. These cycle gaps
correspond to ranges 30-43 horizontal entries for the
graphs. This range pattern appears to cut across all four
data types as can be seen from the graphs. Impact of this
discovery is better imagined in the development of real-
time systems. A real-time system application developer,
working on problem such as task scheduling, who is
familiar with the theoretical optimality of juggling rota-
tion and has also tested with the algorithm using small-
size versus half-of-sequence-size ranges of cycle gaps
would not imagine that some cycle gap values in between
(around the square root of sequence size) will fail the
system.

Some form of skewness in graph is also observed
with regard to some of the data types. It appears that as
the data type decreased from long (LONG) to character
(CHAR), the skewness became more and more pronounced.
This pattern tends to split the single bell apparently into two
in the case of SHORT and CHAR types. These points of
skewness seem to improve the GCD rotation performance
a little. This phenomenon may be language, operating
system, and/or machine dependent. But our interest is in
the behavior of the algorithm in Java, since Java (Real-Time
Java) is popular for real-time systems. In any case, this
phenomenon sound like a little good news for system devel-
opers/users if their data are of smaller sizes or around half
of sequence size. Next, we want to know what to make of all
these.

6 Conclusion and future work

This article has analyzed the relationship between sequence
rotation cycle gaps, which are used to determine their
GCDs, and the performance of GCD-based sequence rota-
tion. Using randomly sampled data, extracted from the
experiment data of the study in ref. [13] but presented in
different format, the study found that efficient performances
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of the algorithm depended on the cycle gaps, which deter-
mined GCD. For cycle gaps that were close to 1 and/or close
or up to half of the sequence size, the performance was
quite efficiently competitive.

Perhaps, this might explain why some previous stu-
dies quickly concluded that GCD rotation performed better
than three-way-reversal rotation [18]. Mostly in an in-place
sorting, the block to rotate with another would likely be
about half of the sequence under consideration. In such a
case, the implementation simply fall in the range of cycle
gaps that we are designating in this study as “GCD rotation
friendly” — compare Figure 7 and the data type used in ref.
[10]. This can be deceptive to unsuspecting developer and
dangerous for time critical systems.

The study found that the situation was quite different
when the cycle gaps were not in the ranges of GCD rota-
tion friendly. In fact, the poor performance was worst
when the algorithm used cycle gaps that were within
about seven (7) cycle gaps to both left and right of
the square root of the given sequence size. This under-
standing is quite significant because unsuspecting user/
developer who may have used juggling rotation for in-
place sorting which commonly involves swapping one
half of a sequence with the other, may not imagine that
cycle gaps (each much smaller than half of the sequence
size) can be problematic in execution; given that algo-
rithm complexity is measured in terms of input size. For
instance, a real-time task scheduling application devel-
oper, knowing that it takes 50ms to rotate offsets of 4 or
less, and similar for half of 20,000,000 sequence sizes,
may implement requirement offset of just 4,500 items and
places some 100ms time bound for safety. But this cycle
gap runs for some 460ms (Table 1) — dangerous for time
critical systems. Again, in Section 2, we stated that “[...]
unexpected delay in execution may be tolerated in some
applications such as ordinary in-place sorting]...]”. But
can this 460ms execution time for the chosen cycle gap of
4,500 really be tolerated in sorting, where a much bigger
cycle gap of 10,000,000 executes for just 50ms? In addi-
tion to this understanding, it seems not clear (or even
unknown) in the literature that these peak sets of offsets
are within the neighborhood of the square root of the
sequence size.

However, some form of skewness was also noticed
that depended on the data types. SHORT and CHAR types
in particular exhibited this, tending to split the single
bell-shaped pattern of GCD rotation into two, respec-
tively. These points, representing cycle gaps, within the
splitting region showed slight improvement from the
worst poor performance of the algorithm.

DE GRUYTER

Thus, the GCD-based sequence rotation efficient per-
formance heavily depends on the greatest-common-divisor
values, which are direct reflection of the cycle gaps.
This research has given us a better understanding of
the GCD-based sequence rotation by throwing light on
the effect of GCD on performance of the algorithm. It
therefore strongly recommends that if application involves
sequence rotation (such as in-place sorting) with cycle
gaps that are within the neighborhood to both left and right
of the square root of the given sequence size, DO NOT use
GCD-based vector rotation, especially as the size of input
increases. For applications that are time critical, such as
hard real-time systems, DO NOT use juggling rotation
algorithm if the cycle gaps are not within GCD rotation
friendly range.

It is clear from this study that cycle gaps around the
square root of sequence size are heavily slow in juggling
rotation. The question is why is fewest number of element
assignments not proportionate with execution time of
juggling rotation? There is need for further work on
this. Also, this study was limited to cycle lengths that
were equal to GCD values. For instance, cycle gaps 3, 6,
7, 9, etc. that were not equal to their respective GCD were
not covered in this study. Will the performance of jug-
gling rotation on cycle gap 9, for example, be higher/
lower than that of 8 and 10, and in what pattern? This
is a question for investigation.
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