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Abstract: The authors consider a continuous dynamic ap-
proximatingmodel of a gas fields groupand, on its basis, set
maximum and minimum issues. The tasks proposed for re-
search are optimal control problemswithmixed constraints
with free-final-time and moving right end. We analytically
solve the rapid-action problem. The central mathematical
apparatus is Pontryagin maximum principle in Arrow form,
using Lagrange multipliers. The theoretically obtained re-
sults of the analysis are of particular interest.
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1 Introduction
Natural gas refers to non-renewableminerals located under
the surface of the earth at high pressure and temperature. It
is located in the earth’s layer in a gaseous state in the form
of separate accumulations (gas deposits). The composition
of natural gas includes many useful substances used in
industry.

We extract natural gas from the earth using wells. We
try to place the wells evenly throughout the field. Thus, we
ensure the same pressure drop across an entire deposit [1].

Natural gas is a valuable product with an enormous de-
mand. Russia is one of the wealthiest countries in the world
in terms of natural gas reserves. Proven natural gas reserves
in Russia for 2014 amount to 24.6% of world reserves [2].

However, the locations of gas production and its con-
sumption are at a considerable distance. One of the most
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effective ways to deliver gas to consumers is by transporting
it through a gas pipeline.

Gas pipeline capacity Q limits the volume of gas flow-
ing through it. There are many problems for gas workers in
the fields. The most important task is the execution of the
current gas production equal to the value Q.

We introduce the following notation:

• by i we denote an ordinal number of the deposit in a
group consisting of n elements;

• by N i we denote a total stock of producing wells in
the corresponding field;

• by Ni(t) we denote an operating wells stock at time t;
• by qi(t) we denote an average flow rate of producing
wells at time t.

If at time t the following strict inequality holds
n∑︁
i=1

qi(t)N i > Q, (1)

then there exists such an N̂i = Ni(t) ∈ [0, N i] at which the
equality

n∑︁
i=1

qi(t)N̂i = Q, (2)

is satisfied.
There aremany such solutions. Therefore, on this set, it

is possible to solve other both static and dynamic problems.
As the flow rate of producing wells decreases, there comes
a moment T at which the equality

n∑︁
i=1

qi(T)N̄i = Q. (3)

is fulfilled.
Further, we can no longer fulfil the plan for gas produc-

tion. Therefore, the value T is the shelf length of the gas
fields group. The question arises: within what limits can
be the shelf length of the gas deposits group be? Thus, it
is necessary to solve two optimal control problems with a
mixed restriction on the maximum and minimum. We can
analytically solve these problems and obtain theoretically
substantiated estimates of the gas fields shelf length. We
devote this paper to this statement. As the central math-
ematical apparatus, we choose the Pontryagin maximum
principle in the Arrow form.
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2 Pontryagin maximum principle in
Arrow form

About 50 years ago, K. Arrow, the 1972 Nobel Prize winner
in economics, published an article [3], where he, taking
Pontryagin maximum principle [4] as a basis, modifies it
and formulates propositions that allow solving problems
optimal control withmixed constraints. The proposals addi-
tionally include some elements of nonlinear programming,
such as Lagrangian function, Lagrangemultipliers, and the
complementary slackness conditions. The author of this
article used a modified principle in his papers [5, 6].

Among the Russian works on optimal control, we can
distinguish monographs by A. M. Ter-Krikorov [7], S. M.
Aseev, and A.V. Kryazhemsky [8]. An interesting interna-
tional paper is an article by E. Balder [9], in which the au-
thor proves the existence theorem for optimal control prob-
lems with an infinite horizon.

We formulate the Arrow proposition.

Proposition 1. Let v*(t) be a choice of instruments (0 ≤

t ≤ T) which maximizes
T∫︀
0
U[x(t), v(t), t] dt subject to the

condition,
(a) ẋ = S[x(t), v(t), t], 0 ≤ t ≤ T,
and subject to a set of constraints,
(b) F[x(t), v(t), t] ≥ 0
At least one constraint in (b) contains the instruments v(t)
at t ∈ [0, T]. The constraint set (b)may or may not include
the state variables x(t) at t ∈ [0, T], the initial conditions
x(t) at t = 0, and the non-negative terminal conditions x(t)
at t = T.

If the Constraint Qualification (Regularity Conditions)
holds, then there exist auxiliary variables p(t), such that, for
each t,
(c) v*(t)maximizes H[x(t), v(t), p(t), t] subject to the con-
staints (b), where H(x, v, p, t) = U(x, v, t) + pS(x, v, t);
(d) ṗi = −∂L/∂xi, when evaluated at x = x(t), v = v*(t),
p = p(t), where
(e) L(x, v, p, t) = H(x, v, p, t) + qF(x, v, t), and the La-
grange multipliers q are such that
(f) ∂L/∂vk = 0, for x = x(t), v = v*(t), p = p(t), q(t) ≥ 0,
q(t)F[x(t), v*(t), t] = 0, and
(g) p(T) ≥ 0, p(T)x(T) = 0.

Note that if a set of constraints (b) consists only of inequal-
ities

(b) F[v(t)] ≥ 0 at t ∈ [0, T],

then the optimal control problem posed in Proposition 1
can be solved using the maximum principle formulated by
L.S. Pontryagin.

3 Model Description and Problems
Posing

Let us consider a model for the functioning of a gas fields
group with interacting wells [10, 11]. By Vi(t) we denote the
recoverable gas reserve at time t. Between variables, we
establish a differential relationship, which we describe as
a system of differential equations:

V̇i = −Niqi , q̇i = −
q0i
V0
i
qi(t)Ni(t) when i = 1, n, (4)

under the initial conditions V0
i > 0, qoi > 0. We impose a

limit of 0 ≤ Ni ≤ Ni on the stock of operating wells. Here
Ni > 0. We assume an even distribution of production wells
over the entire area of each field. We suppose the fulfilment
of equalities for all values of t:

qi(t) =
q0i
V0
i
Vi(t) when i = 1, n, (5)

and limt→∞ Vi(t) = 0 when i = 1, n. By differentiating the
equalities in (5), we get the differential equations (4). We
also suppose different values for q0i

V0
i
N i.

There is a general limitation on the total shelf length
of the gas deposits given by

n∑︁
i=1

qi(t)Ni(t) ≤ Q.

We calculate cumulative gas production using the following
formula:

n∑︁
i=1

T∫︁
0

qi(t)Ni(t) dt.

The paper [6] considered two questions: the problem of
maximizing the accumulated extraction, and the problem
of maximizing the total shelf length for the gas fields group.
We present their mathematical formulations.

On the maximization of accumulated production for the
gas fields group
Problem 1. Wemaximize the functional

n∑︁
i=1

T∫︁
0

qi(t)Ni(t) dt (6)
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on the fixed interval [0, T] under the differential connec-
tions

q̇i = −α0i qi(t)Ni(t), 0 ≤ t ≤ T, i = 1, n (7)

with the initial conditions

q0i > 0, V0
i > 0, i = 1, n, (8)

where
α0i =

q0i
V0
i
. (9)

We impose the following restrictions on the controls:

0 ≤ Ni(t) ≤ Ni , 0 ≤ t ≤ T, i = 1, n, (10)

n∑︁
i=1

qi(t)Ni(t) ≤ Q, 0 ≤ t ≤ T . (11)

We also assume that
n∑︁
i=1

q0i N i > Q. (12)

Here qi(t) for i = 1, n are phase variables, and Q is a con-
stant value.

The controls Ni(t) for i = 1, n belong to a set of measur-
able functions. The right end of the phase trajectory is free.
The quantities q0i

V0
i
N i differ between themselves.

On maximizing the total shelf length for the gas fields
group
Problem 2. We maximize the functional T under the dif-
ferential connections (7), with initial conditions (8) and
constraints (10) and

n∑︁
i=1

qi(t)Ni(t) = Q, t ∈ [0, T]. (13)

We assume that the initial conditions satisfy the strict in-
equality (12). As in Problem 1, the controls Ni(t) when
i = 1, n, belong to a set of measurable functions. The fol-
lowing statements hold under these assumptions.

Proposition 2. For any admissible trajectory from sets (7),
(8), and (10) the following strict inequalities hold: qi(T) > 0,
i = 1, n.

Proposition 2 follows from the differential equations
in (7), the initial conditions (8) and restrictions on con-
trols (10).

Proposition 3. For any admissible trajectory from the
sets (7), (8), (10), and (13), and under the initial con-
straint (12), there exists T > 0 for which the following equality
holds:

n∑︁
i=1

qi(T)N i = Q. (14)

The point q(T) is the right end of an admissible trajectory
q(t). Further development of the system (7) is impossible due
to existing limitations.

Proof. Multiply both sides of each differential equation
in (7) by the corresponding value N i, then sum up and
integrate both sides. After simple transformations, we get

n∑︁
i=1

qi(t)N i =
n∑︁
i=1

q0i N i −
n∑︁
i=1

α0i N i

t∫︁
0

qi(t)Ni(t) dt. (15)

Taking into account (13), we continue the transformation
to yield

n∑︁
i=1

qi(t)N i =
n∑︁
i=1

q0i N i − α01N1Qt− (16)

n∑︁
i=2

(α0i N i − α01N1)
t∫︁

0

qi(t)Ni(t) dt.

Let α01N1 have the smallest value among the other values
α0i N i for i = 2, n, then

n∑︁
i=1

qi(t)N i ≤
n∑︁
i=1

q0i N i − α01N1Qt. (17)

The right-hand side of the inequality (17) reaches Q in a
finite time t′. Therefore, its left-hand side achieves the value
Q in the time T ∈ (0, t′). Thus, at time T, equality (14)
holds.

Proposition 4. Let the equality (14) holds on some trajec-
tory at time T, then

n∑︁
i=1

qi(t)N i < Q (18)

at T < t.

The following proposition follows from Propositions 3
and 4.

Proposition 5. For any admissible trajectory
from the sets (7), (8), (10), and (13), and un-
der the initial constraint (12), the control on the
right end is strictly definite, i.e. Ni(T) = N i
when i = 1, n.
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The exact upper bound for the total length of the shelf can
be obtained by solving the Problem 2. We have described
the solution in [6]. The essence of the solution is as follows.
We sort all deposits in ascending order of values α0i N i. Fur-
ther, we consistently bring into development all the exist-
ing fields from the group. The solution to the next problem
leads us to obtain a lower bound. Below we will describe
in detail its complete solution.

On minimizing a length of the total shelf for gas fields
group
Problem 3. It is required tominimize the functional T under
the differential connections in (7), with the initial condi-
tions (8) and with the constraints (10), (13).

We assume that the initial conditions satisfy the strict
inequality (12). As in Problems 1 and 2, controls Ni(t) when
i = 1, n, belong to a set of measurable functions.

In [6], the search for a solution to Problem 2 is carried
out indirectly. First, we solve Problem 1. Then, by taking lim-
its, we find the solution to Problem 2. However, the search
for a solution to Problem 2 can be carried out directly using
the Arrow proposition and the corresponding transversality
conditions.

The transversality conditions applied below are not
mentioned in the paper [3] along with the Arrow proposi-
tion. Nevertheless, they are used in solving similar prob-
lems of optimal control together with the Pontryagin maxi-
mum principle in the classical formulation [12].

We now reformulate Problems 2 and 3 as follows.

On maximizing a length of the total shelf for gas fields
group
Problem 2a. It is required to find optimal controls Ñi when
i = 1, n of the dynamic system (7) from the class of admissi-
ble controls, which translates the dynamic system from the
given initial state (8) to the hyperplane (14) for the maxi-
mum time T under the restrictions (10) and (13) on controls
and phase variables along the trajectories.

On minimizing a length of the total shelf for gas fields
group
Problem 3a. It is required to find optimal controls Ñi for
i = 1, n of the dynamic system (7) from the class of admissi-
ble controls, which translates the dynamic system from the
given initial state (8) to the hyperplane (14) for the short-
est time T under the restrictions (10) and (13) on phase
variables and controls along the trajectories.

Problems 2a and 3a are optimal control problemswith a
moving right end and free-final-time. Moreover, Problem 3a
refers to the optimal rapid action problem. The optimal so-
lution for Problems 2a and 3a exists. This fact, for example,
follows from the monograph [13]. In search of decisions
to Problems 2a and 3a, there is a logical relationship. The
existing differences are insignificant.

In [6] we have already found the optimal solution to
Problem 2. Therefore, in this paper, we restrict ourselves
only to searching for the optimal decision to Problem 3a.

4 Investigation of Problem 3a
We recall

α0i =
q0i
V0
i
, i = 1, n. (19)

Next, we order the phase variables in descending order of
α0i N i. We note that this order is unique since the values
α0i N i are different. According to Proposition 1, we write out
the Hamiltonian and the Lagrangian as follows

H(q, N, ψ) = c −
n∑︁
i=1

ψiα0i qiNi , (20)

L(q, N, ψ, 𝛾, δ, β) = c +
n∑︁
i=1

[︁
−ψiα0i qiNi (21)

+ 𝛾i(Ni − Ni) + δiNi
]︁
+ β[Q −

n∑︁
i=1

(qiNi)],

where
c = −1. (22)

Next, we describe a set of admissible controls G(q), on
which we maximize Hamiltonian (20) as follows

G(q) = {N ∈ Rn | 0 6 N 6 N̄,
n∑︁
i=1

qiNi = Q}. (23)

The main objective of the study is to search a continu-
ous vector function ψ(t) and control Ñ(t), which satisfy the
adjoint system of differential equations (27) and transver-
sality conditions:

H(q̃(T), Ñ(T), ψ(T)) = c −
n∑︁
i=1

ψi(T)α0i q̃i(T)N i = 0; (24)

ψi(T) = −νN i , i = 1, n, (25)

where ν is some number. For each t ∈ [0, T] the control Ñ(t)
maximizes the Hamiltonian

H(q̃(t), Ñ(t), ψ(t)) = max
N∈G(q̃(t))

H(q̃(t), N, ψ(t)) (26)
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= max
N∈G(q̃(t))

n∑︁
i=1

[c − α0i ψi(t)q̃i(t)Ni].

We represent the system of equations as

ψ̇i(t) = −∂L/∂qi = α0i ψi(t)Ñi(t) + β(t)Ñi(t), i = 1, n,

or
ψ̇i(t) = [α0i ψi(t) + β(t)]Ñi(t), i = 1, n. (27)

According to Proposition 1, the Lagrange multipliers
β(t), 𝛾(t), δ(t) must satisfy the equalities:

∂L/∂Ni = −α0i ψi(t)q̃i(t) − β(t)q̃i(t) − 𝛾i(t) + δi(t) = 0,
i = 1, n,

or

−q̃i(t)[α0i ψi(t) + β(t)] = 𝛾i(t) − δi(t), i = 1, n; (28)

β(t)[Q −
n∑︁
i=1

q̃i(t)Ñi(t)] = 0; (29)

𝛾i(t)[Ni − Ñi(t)] = 0, 𝛾i(t) ≥ 0, i = 1, n; (30)

δi(t)Ñi(t) = 0, δi(t) ≥ 0, i = 1, n. (31)

In nonlinear programming, the above relations (29),
(30) and (31) are complementary slackness conditions. We
introduce the notation φi(t) = −α0i ψi(t) for i = 1, n. In our
new notation, we represent the maximization of the Hamil-
tonian (26), the system of adjoint equations (27), equal-
ity (28), transversality conditions (24) and (25) in the fol-
lowing form:

H(q̃(t), Ñ(t), φ(t)) = max
N∈G(q̃(t))

H(q̃(t), N, φ(t)) (32)

= c + max
N∈G(q̃(t))

n∑︁
i=1

φi(t)q̃i(t)Ni;

φ̇i(t) = [φi(t) − β(t)]α0i Ñi(t), i = 1, n; ! (33)

q̃i(t)[φi(t) − β(t)] = 𝛾i(t) − δi(t), i = 1, n; (34)

H(q̃(T), Ñ(T), φ(T)) = c +
n∑︁
i=1

φi(T)q̃i(T)N i = 0; (35)

φi(T) = να0i N i , i = 1, n. (36)

Let us consider the transversality conditions in more detail.
It follows from (24) and (25) that the right end of the adjoint
trajectory ψ(t) lies in the negative region. However, if we

solved Problem 2a, then ψ(T) would belong to the positive
domain. Using the transversality conditions (24) and (25),
and taking into account (22), (35), and (36), we obtain

ν = 1∑︀n
i=1 α0i q̃i(T)N

2
i
, (37)

φi(T) =
α0i N i∑︀n

i=1 α0i q̃i(T)N
2
i
, i = 1, n. (38)

This implies the following proposition.

Proposition 6. The right end of the “adjoint” vector func-
tion φ(t) lies in the positive domain; that is, φi(T) > 0 when
i = 1, n. The values of vector components φi(T)when i = 1, n
decrease.

We do not know the value of the vector q̃i(T). However,
if we knew it, then the coefficient ν and, accordingly, the
values of the vectors φ(T) and ψ(T), we could determine.
Therefore, we can only get their estimates, given as follows

1
α01N1Q

≤ ν ≤ 1
α0nNnQ

; (39)

α0i N i
α01N1Q

≤ φi(T) ≤
α0i N i
α0nNnQ

, i = 1, n; (40)

− N i
α0nNnQ

≤ ψi(T) ≤ −
N i

α01N1Q
, i = 1, n. (41)

Theorem 1. Let phase variables qi(t) be in descending or-
der α0i N i, then:

(1) we determine the optimal trajectory by the formulas:

q̃i(t) = q0i exp[−α0i

t∫︁
0

Ñi(θ) dθ], i = 1, n; (42)

(2) the following rule uniquely determines the vector of
optimal controls Ñ(t). For each t there exists an in-
teger k ∈ {1, . . . , n} such that the following double
inequality holds

∑︀k−1
i=1 q̃i(t)N i < Q ≤

∑︀k
i=1 q̃i(t)N i,

and
Ñi(t) = Ni for i = 1, 2, . . . , k − 1, (43)

Ñi(t) = 0 for i = k + 1, . . . , n, (44)

Ñk(t) =
[︃
Q −

k−1∑︁
i=1

q̃i(t)N i

]︃
/q̃k(t); (45)

(3) we combine a set of values t related to one integer
k into half-intervals (τk−1, τk]. Under the condition
q01N1 > Q, the number of such half-intervals in the
whole considered period is n.
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Proof. Further, we will adhere to the condition formulated
in paragraph (3) of Theorem 1. We install

φ1(0) > φ2(0) > . . . > φn(0). (46)

Below, in Proposition 7, we show the same order of
functions φi(t); that is, for any t ∈ [0, T] the strict inequali-
ties hold: φ1(t) > φ2(t) > . . . > φn(t).

Maximizing the Hamiltonian (32) reduces to function
maximization

max
N∈G(q̃(t))

n∑︁
i=1

φi(t)q̃i(t)Ni . (47)

Now we introduce the following notation: u = q̃N and u =
q̃N. As a result, the maximization of the Hamiltonian (32)
reduces to the following linear programming problem:

n∑︁
i=1

φiui → max (48)

under the conditions
n∑︁
i=1

ui = Q, (49)

0 ≤ u ≤ u. (50)

At the same time, the coefficients φi decrease.
Taking (49) into account, we transform the linear func-

tion (48) andobtain the following linear programmingprob-
lem at maximum

n−1∑︁
i=1

(φi − φn)ui → max . (51)

Note that the coefficients φ′
i = φi − φn in the description

of the linear function (51) are positive and decrease as we
increase the sequence number components of the vector u.

The following procedure allows us to find such an opti-
mal vector ũ, which gives the maximum of the linear func-
tion (51) and, accordingly, the maximum of the linear func-
tion (48).

At the first step, we choose u1. If u1 ≥ Q, then ũ1 = Q
and ũi = 0 when i = 2, n. In this case, we determine all the
optimal values of the vector ũ. If u1 < Q, then ũ1 = u1 and
we replace Q = Q − u1.

Then we go to the second component u2, and repeat
the first step’s procedure, but with the changed value of Q.
At the second step, we change the adjusted magnitude of
Q again.

If we stop at the k-th step, then ũi = ūi when i =
1, k − 1, ũk = Q, ũi = 0 when i = k + 1, n. If we go
through all the steps from one to n − 1, then ũi = u when
i = 1, n − 1, ũn = Q.

From the above proof, it follows that for any k-th com-
ponent of the control vector N(t), the following statements
hold

(1) if ũk = uk, then Ñk(t) = Nk;
(2) if ũk = 0, then Ñk(t) = 0;
(3) if ũk ∈ (0, u), then Ñk(t) ∈ (0, N).

Let’s consider the optimal trajectory’s dynamic behav-
ior on the segment [0, T]. Suppose that at the initial time
q01N1 > Q, then Ñ1(0) ∈ (0, N1), Ñi(0) = 0 for i = 2, n.
In connection with a decrease of the phase variable q̃1(t),
there is a moment τ1 such that:

(1) the following relations hold Ñ1(t) ∈ (0, N1) and
Ñi(t) = 0, i = 2, n on the interval t ∈ (0, τ1);

(2) Ñ1(τ1) = N1 and Ñi(τ1) = 0 for i = 2, n.

From the system of “adjoint” equations (33) we take
into account (34), (30) and (31) at t ∈ (0, τ1) to get 𝛾1(t) = 0;
δ1(t) = 0; β(t) = φ1(t) = β1 = const; φi(t) = const for
i = 2, n. In this case, the order relations established among
the components of the vector function φ(t) at the initial
moment t = 0 do not change on the segment [0, τ1].

Then there is a moment τ2 such that:

(1) the following relations hold Ñ1(t) = N1, Ñ2(t) ∈
(0, N2) and Ñi(t) = 0, i = 3, n on the interval
(τ1, τ2);

(2) Ñ1(τ2) = N1, Ñ2(τ2) = N2 and Ñi(τ2) = 0 for i = 3, n.

From the system of “adjoint” equations (33), and tak-
ing into account (34), (30) and (31) at t ∈ (τ1, τ2), then
we get 𝛾2(t) = δ2(t) = 0; β(t) = φ2(t) = β2 = const;
φi(t) = const for i = 3, n; the function φ1(t) increases on
the segment [τ1, τ2]. The latter follows from the inequality
β1 = φ1(τ1) = φ1(0) > β2 = φ2(τ1) = φ2(0).

On the segment [0, τ1], the function φ1(t) − φ2(t) is
constant, and on [τ1, τ2] this function strictly increases.
The order relations established among the components of
the vector functions φ(t) at the time t = 0, do not change
on the segment [0, τ2]. Thus, we divide the segment [0, T]
into n parts [0, τ1], [τ1, τ2], ..., [τn−1, τn]. Here τn = T. At
the end of each k − th segment the equality holds

k∑︁
i=1

qk(τk)Nk = Q, k = 1, n.

Proposition 7. Let t ∈ (0, τ1), k = 1, then:

β(t) = φ1(t) = φ1(0) = β1;

Ñ1(t) =
Q
q̃1(t)

and Ñi(t) = 0 for i = 2, n;

φi(t) = φi(0) = βi for i = 2, n.
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All functions φi(t) are constant on the segment [0, τ1]. On it,
the strict inequalities hold φ1(t) > φ2(t) > . . . > φn(t).

Let t ∈ (τ1, τ2), k = 2, then:

β(t) = φ2(t) = φ2(0) = β2 < β1;

Ñ1(t) = N1, Ñ2(t) =
Q − q̃1(t)N1

q̃2(t)
and Ñi(t) = 0 for i = 3, n;

φ1(t) = φ2(τ1) + [φ1(τ1) − φ2(τ1)] exp[α01N1(t − τ1)]
= φ2(0) + [φ1(0) − φ2(0)] exp[α01N1(t − τ1)],

φi(t) = φi(0) = βi for i = 3, n.

The function φ1(t) strictly increases on the segment
[τ1, τ2]. The remaining functions φi(t) for i = 2, n,
are constant. On it, the following strict inequalities hold
φ1(t) > φ2(t) > . . . > φn(t).

Let t ∈ (τk−1, τk), k = 3, n, then:

β(t) = φk(t) = φk(0) = βk < βk−1;
Ñi(t) = N i for i = 1, k − 1;

Ñk(t) =
Q −

∑︀i=k−1
i=1 q̃i(t)N i
q̃k(t)

and Ñi(t) = 0 for i = k + 1, n;

φi(t) = φk(τk−1)
+ [φi(τk−1) − φk(τk−1)] exp[α0i N i(t − τk−1)]
= φk(0) + [φi(τk−1) − φk(0)] exp[α0i N i(t − τk−1)]
for i = 1, k − 1;

φi(t) = φi(0) = βi for i = k + 1, n.

The functions φi(t), where i = 1, k − 1 strictly increases
on the segment [τk−1, τk], and the remaining functions φi(t),
where i = k, n, is constant. On it, the following strict inequal-
ities hold φ1(t) > φ2(t) > . . . > φn(t).

Proof. Using the relations (28)–(31), (33), (42) and tak-
ing into account the continuity of the vector function
φ(t), we write out formulae for calculating the variables
β(t), N(t), φ(t) on each of the n segments.

Taking into account the earlier established orders
φ1(0) > φ2(0) > . . . > φn(0), we prove the strict inequali-
ties φ1(t) > φ2(t) > . . . > φn(t) on each time segment.

For the dimension n = 3 in Figure 1, we schematically show
the behaviour dynamics of optimal controls Ñ1(t), Ñ2(t),
Ñ3(t), the functions φ1(t), φ2(t), φ3(t) and the Lagrange
multiplier β(t) obtained by solving Problem 3a.

Let us describe a scheme for determining the continu-
ous vector function φ(t). First, we find τ1, τ2, . . . , τn = T
and qi(T) for i = 1, n.

Next, from the formula in (38), we calculate the exact
values of the vector φ(T), whose components, according to
Proposition 6, are in descending order.

Figure 1: Behavior dynamics of optimal controls Ñ1(t), Ñ2(t), Ñ3(t),
the functions φ1(t), φ2(t), φ3(t) and the Lagrange multiplier β(t) by
solving Problem 3a of dimension n = 3.

The results in Proposition 7 are the basis for fur-
ther description of the algorithm. We consider the
segments sequentially starting with [τn−1, T] and end-
ing with [0, τ1]. We know the Lagrange multiplier
β(t) = βn on the n-th interval (τn−1, T), the function
φn(t) = φn(0) = φn(T) = βn on the segment [0, T] and the
values φi(T), i = 1, n, under which the following strict in-
equalities hold φ1(T) > φ2(T) > . . . > φn(T). The following
formula calculates all other components of the vector func-
tion φ(t) on the n − th segment [τn−1, T]:

φi(t) = φn(T) + [φi(T) − φn(T)] exp[−α0i N i(T − t)], (52)

where i = 1, n − 1.
The following inequalities hold φi(t) > φn(t) for

i = 1, n − 1 on the n-th segment of [τn−1, T]. Thus, we find
φi(τn−1) when i = 1, n.

We proceed to the sequential study of functions φk(t)
on the k-th segment of [τk−1, τk] for k = 1, n − 1. We know
all the values of φi(τk) when i = 1, n. We also know
the functions φi(t) = φi(τk) = βi, i = k + 1, n on the
segment [τk−1, τk]. We determine the Lagrange multiplier
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β(t) = βk on the k-th interval (τk−1, τk) and the function
φk(t) = φk(0) = φk(τk) = βk on the segment [0, τk]. The
following formula calculates all other components of the
vector function φ(t) on the k − th section [τk−1, τk]:

φi(t) = φk(τk) (53)
+ [φi(τk) − φk(τk)] exp[−α0i N i(τk − t)]

when i = 1, k − 1.
Thus, we find all φi(τk−1), where i = 1, n for each mag-

nitude of k = 1, n − 1. Including for the first segment, we
determine all values of φi(0) when i = 1, n.

Therefore, on the segment [0, T], we have constructed
a single-valued vector function φ(t) satisfying the transver-
sality conditions (38) and the maximum principle in the
Arrow form. Moreover, this function is unique. Indeed, any
other order of the components of the vector φ(0) does not
allow us to hold the necessary optimality conditions.

Taking into account the existence of an optimal tra-
jectory for the problem under study, we come to the fol-
lowing conclusion. We have found the only “adjoint” vec-
tor function φ(t) and the corresponding optimal trajectory.
We have proved Theorem 1.

Next, we consider the case when all indicators α0i N i are
equal to each other and calculate the time T.

Proposition 8. For any admissible trajectories from
sets (7)-(10) and (13) of the total shelf lengths under the
condition

α0N = α01N1 = . . . = α0nNn (54)

the lengths of their shelves are the same and they are calcu-
lated using the following formula

T =
∑︀n

i=1 V
0
i

Q
− 1
α0N

. (55)

Proof. We determine the accumulated production by the
formula:

QT =
n∑︁
i=1

[V0
i − Vi(T)]. (56)

Taking into account (5) and (54), we rewrite (56) as follows

QT =
n∑︁
i=1

[V0
i −

qi(T)N i
α0i N i

] =
n∑︁
i=1

V0
i −

∑︀n
i=1 qi(T)N i
α0N

. (57)

According to Propositions 3, 4, and 5, at the end of any
admissible trajectory, the equality

n∑︁
i=1

qi(T)N i = Q. (58)

holds. From (57). taking into account (58), we get (55).

We now turn to the description of the algorithm for deter-
mining the minimum and maximum length of the total
shelf.

Algorithm for calculating the minimum and maximum
length of the total shelf for a group of gas fields
To minimize, we sort deposits in descending order of val-
ues α0i N i. To maximize, sort these values in reverse order.

First step. We put the first field into development and, us-
ing Proposition 8 with n = 1 we calculate the temporary
step length:

τ1 =
V0
1
Q
− 1
α01N1

. (59)

Denote q01 − α01Qτ1 by q11. Using (4) and (5), we get the
following dynamics of the production wells flow rate of the
first field

q1(t) =
{︃
q01 − α01Qt for t ∈ [0, τ1];
q11 exp(−α01N1(t − τ1)) for t ≥ τ1.

(60)

Note that q11N1 = Q.

Second step. Denote by θ2 the temporary second step
length. Denote by q21 the production wells flow rate of the
first field at the end of the second step, and denote by q22
the production wells flow rate of the second field at the end
of the second step.

We determine the temporary length of the second step
from a solution of equation (61) with one unknown. Taking
into account (4) and (5), τ2 = τ1 + θ2 and q11N1 = q21N1 +
q22N2 = Q, we write out this equation as follows

V0
2 = Q

[︁
θ2 +

(︀
1 − exp(−α01N1θ2)

)︀ (︁ 1
α02N2

− 1
α01N1

)︁]︁
. (61)

We consider equality (61) as an equation with one un-
known variable θ2 We denote the right-hand side of equal-
ity (62) by F(θ2). We differentiate the function F(θ2) and
analyze it. As a result, we obtain the following inequality

F′(θ2) = Q
[︃
1 + exp(−α01N1θ2)

(︃
α01N1
α02N2

− 1
)︃]︃

> 0 (62)

for θ2 ≥ 0.

Hence, the function F(θ2) is an increasing function for all
positive values θ2.

The inequalities V0
2 > F(0) and V0

2 < F((V0
1 + V0

2 )/Q)
hold. Equation (61) has no explicit solution. We can solve
it numerically by dividing the segment in half. At the end
of the second stage, we describe the producing wells flow
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rate dynamics of the second field

q2(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q02 for t ∈ [0, τ1];
q02 − α02Q

[︁
t − τ1 − 1−exp(−α01N1(t−τ1)

α01N1

]︁
for t ∈ [τ1, τ2];
q22 exp(−α01N1(t − τ2)) for t ≥ τ2.

(63)

k-th step, k = 3, n. Denote by θk the temporary k-th step
length. Denote by qki when i = 1, k the t production wells
flow rate of the i-th field at the end of the k-th step.

We determine the temporary length of the k-th step
from the solution of the equation with one unknown.
Taking into account (4) and (5), τk = τk−1 + θk and∑︀k−1

i=1 q
k−1
i N i =

∑︀k
i=1 q

k
i N i = Q, we write out this equation

as follows

V0
k = Qθk

+
k−1∑︁
i=1

qk−1i N i(1 − exp(−α0i N iθk))
(︃

1
α0kNk

− 1
α0i N i

)︃
.

It has one solution. To prove this, we denote the right-
hand side of the last equality by F(θk). It is easy to show
the following properties of the function F(θk): F′(θk) > 0
for all θk > 0; V0

k > F(0); V
0
k < F(

∑︀k
i=1 V

0
i /Q).

The last equation has no explicit solution.We can solve
it numerically by dividing the segment in half. At the end
of the k-th stage, we describe the producing wells flow rate
dynamics of the k-th field

qk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q0k for t ∈ [0, τk−1];

q0k − α
0
k
∑︀k−1

i=1 q
k−1
i N i

[︂
t − τk−1 −

1−exp(−α0i N i(t−τk−1)
α0i N i

]︂
for t ∈ [τk−1, τk];
qkk exp(−α

0
kNk(t − τk)) for t ≥ τk .

This completes the description of the algorithm.

5 Conclusion
When developing a group of gas fields, the main problem
at any given time is the fulfilment of the current gas produc-
tion plan. In the initial period of development of the gas
fields group, we can achieve this effect in different ways,
including by turning on or off wells. However, there comes
a time when there is not enough capacity to fulfil the cur-
rent gas production plan. All available wells in all fields
are involved in the development. At this point, the process
of developing the gas fields group is interrupted. Each de-
velopment dynamics of the gas fields group has its shelf
length. It is required to determine its exact estimates.

We solve the problems of optimal control for the mini-
mum andmaximum shelf lengths of gas fields group under
strict restrictions on total gas production. To solve the set
tasks, we sort all fields by the value of the parameter α0i N i.
When optimizing for a minimum, we vary them from the
maximummagnitude of the indicator to the minimum one.
Otherwise, we arrange parameters in the reverse order.

We divide the entire optimal period into n parts equal
to the number of deposits in the group. At the beginning of
each part of the optimal period, we bring into development
the next field in order. All previously commissioned fields
continue to operate at their maximum capacities until the
end of the optimal period and cannot ensure the implemen-
tation of the entire current production plan. Therefore, we
include a new deposit in development.

At the end of the current part of the optimal period, all
wells of the newly developing field are in development and
are operating at full capacity.

At the end of the optimal period, all wells in the group
of fields operate at full capacity with maximum efficiency.
Any further development of the group only leads to non-
fulfilment of the current plan for the volume of gas produc-
tion. This fact interrupts the dynamic process.If we set all
parameters α0i N i equal, then any acceptable field develop-
ment policy is optimal.

We have presented in this article an algorithm for cal-
culating the minimum length of the total shelf for a group
of gas fields.
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