DE GRUYTER

Open Computer Science 2021; 11: 437-460

Research Article

Amol Adamuthe* and Abdulhameed Pathan

Enhanced shuffled frog leaping algorithm with
improved local exploration and energy-biased
load reduction phase for load balancing of

gateways in WSNs

https://doi.org/10.1515/comp-2020-0218
received August 14, 2020; accepted December 01, 2020

Abstract: Wireless sensor networks (WSNs) have grown
widely due to their application in various domains, such
as surveillance, healthcare, telecommunication, etc. In
WSNs, there is a necessity to design energy-efficient
algorithms for different purposes. Load balancing of gate-
ways in cluster-based WSNs is necessary to maximize the
lifetime of a network. Shuffled frog leaping algorithm
(SFLA) is a popular heuristic algorithm that incorporates
a deterministic approach. Performance of any heuristic
algorithm depends on its exploration and exploitation
capability. The main contribution of this article is an
enhanced SFLA with improved local search capability.
Three strategies are tested to enhance the local search
capability of SFLA to improve the load balancing of gate-
ways in WSNs. The first proposed approach is determi-
nistic in which the participation of the global best solu-
tion in information exchange is increased. The next two
variations reduces the deterministic approach in the local
search component of SFLA by introducing probability-
based selection of frogs for information exchange. All
three strategies improved the success of local search.
Second contribution of article is increased lifetime of
gateways in WSNs with a novel energy-biased load
reduction phase introduced after the information exchange
step. The proposed algorithm is tested with 15 datasets of
varying areas of deployment, number of sensors and
number of gateways. Proposed ESFLA-RW variation shows
significant improvement over other variations in terms of
successful local explorations, best fitness values, average

* Corresponding author: Amol Adamuthe, Department of CS & IT,
RIT Rajaramnagar, Maharashtra, India,

e-mail: amol.admuthe@gmail.com

Abdulhameed Pathan: Department of CSE, RIT Rajaramnagar,
Maharashtra, India, e-mail: abdulpathan1994@gmail.com

fitness values and convergence rate for all datasets.
Obtained results of proposed ESFLA-RW are significantly
better in terms of network energy consumption, load bal-
ancing, first gateway die and network life. The proposed
variations are tested to check the effect of various algo-
rithm-specific parameters namely frog population size,
probability of information exchange and probability of
energy-biased load reduction phase. Higher population
size and probabilities give better solutions and conver-
gence rate.

Keywords: shuffled frog leaping algorithm, load balan-
cing of gateways, wireless sensor networks, evolutionary
algorithms, roulette wheel selection, stochastic universal
sampling

1 Introduction

Wireless sensor networks (WSNs) play a very crucial role
in today’s growing technological era. WSN applications
are present in different areas, such as environmental
monitoring [1], defense [2], healthcare [3], automation
[4] and farming [5]. WSNs have become an important
aspect of information transfer these days. The design
and development in technology have made it feasible to
develop tiny sensor nodes that can get connected to
WSNs easily and perform the task of sensing and trans-
mission of data. WSNs consist of sensor nodes that are
responsible for sensing data, transmission of data to base
stations or other sensor nodes. Energy is required to per-
form these operations in WSNs [6,7]. The only source of
energy to sensor nodes is battery power. One major pro-
blem in these types of sensors is they come with very
limited power sources and their batteries cannot be either
replaced or recharged easily [8]. This leads to the need for
an energy-efficient data transmission plan, which is a
very challenging and important task.

8 Open Access. © 2021 Amol Adamuthe and Abdulhameed Pathan, published by De Gruyter. This work is licensed under the Creative Commons

Attribution 4.0 International License.

https://doi.org/10.1515/comp-2020-0218
mailto:amol.admuthe@gmail.com
mailto:abdulpathan1994@gmail.com

438 —— Amol Adamuthe and Abdulhameed Pathan

£2 Sensor Node
== Gateway
é Base Station

Figure 1: Communication of WSNs.

In cluster-based WSNs, a cluster head (CH) or gateway
is responsible to collect and process data received from
sensor nodes in the cluster region. Processed data are
then transferred to the base station or another CH
depending on its routing architecture [9]. Usually, CHs
are deployed with high-powered batteries compared to
other sensor nodes that are deployed with low-powered
batteries [10]. The process of WSNs, communication is
shown in Figure 1. Gateways are operated by batteries
and have limited power sources. Improper load balancing
can result in the early death of gateways due to excess
consumption of energy, which could increase the load on
nearby gateways and the death chain will be continued.
There is a need for proper load balancing of gateways to
avoid such problems [11].

In Figure 2, there are three gateways named g, g, and
g; with a cluster of 6, 4 and 2 sensor nodes, respectively.
Gateway g; has more load than other gateways, which
will lead to the early death of g;. This problem is solved
by proper balancing of load on gateways as shown in
Figure 2. In the literature, different algorithms are pre-
sented for optimization of WSNs [12-17]. Selection of
appropriate node to become CH is presented in ref. [18],
load balancing of gateways by assigning best feasible
sensor nodes to gateways is investigated in refs. [19,20]
and selection of best routing algorithms to send data from
gateways to base station due to transmission range lim-
itations is presented in ref. [21]. Allocation of ‘n’ gateways

o) Se=—T=<

7 - = BN
/7) g S m~
| \o_[w g« S

(4 s Cep) T) S
(@ h @) ;1 RN
82 \ . iL AT~ FS 82 i
N) ‘“1’”) , ‘(((I))) JAEN I
S {:> AR N
)// l"ll”""“\\(((r)) l/,
== QD) el
) B/ L o
’ ~ ’

(Before load balancing) (After load balancing)

Figure 2: Example of gateways load balancing.

DE GRUYTER

to ‘m’ sensor nodes is combinatorial problem with ™C,
combination. The combinations increase exponentially
with the increase in the number of sensor nodes and
gateways. Huge combinations make the load balancing
a complex problem ref. [22].

Nature-inspired algorithms are investigated to solve
different NP problems in different domains, such as health-
care, image processing, civil engineering, mechanical
engineering, science, etc. Evolutionary algorithms are
investigated in prediction [23-25], healthcare [26], com-
puter science [27], feature selection problem [28,29],
sentiment analysis [30] and turbines layout optimization
problems [31].

In the literature, different nature-inspired and bio-
inspired techniques are investigated for clustering pro-
blems in WSNs [10,13,19,32,33].

Nature-inspired algorithms are inspired by some nat-
ural phenomena. In recent years, a wide range of pro-
blems are investigated using nature-inspired algorithm,
such as ray optimization, gravitational search algorithm,
harmony search algorithm, flower pollination algorithm,
cuckoo search and bat algorithm.

Shuffled frog leaping algorithm (SFLA) is a popula-
tion-based heuristic algorithm that imitates the behavior
of a frog population searching for the food location [34].
SFLA was built on the idea of evolving individual memes
and exchanging information with other memes. Each indi-
vidual meme represents its thoughts, cultural information
and behavior that can be exchanged with global memes to
improve overall knowledge. Thus, SFLA takes the benefits
of memetic algorithm and particle swarm optimization [35].
Memes in SFLA spread faster than genes in GA resulting
in a better convergence rate [34]. The self evolutionary
approach of SFLA makes it more suitable for combina-
torial problems than PSO algorithm [34]. SFLA is investi-
gated to solve different complex optimization problems,
such as pick-and-place sequencing optimization [35], 0/1
knapsack problem [36], travelling salesperson problem
[37], project scheduling problem [38], flow shop sche-
duling [39,40], optimization in cloud computing [41],
optimization in social networks [42], vehicle routing pro-
blem [43] and economic load dispatch problem [44].

Several variations of SFLA are proposed in the litera-
ture to improve the efficiency of the algorithm. Centroid
mutation-embedded SFLA was presented by Sharma
et al. [45], where geometric centroid mutation was intro-
duced in the algorithm to improve the convergence pro-
cess. Binomial crossover-embedded SFLA [46] is presented
to speed up the convergence and to improve the exploita-
tion capabilities of the algorithm. Furthermore, an
Elitism-based SFLA [47] is introduced to improve the

DE GRUYTER

diversification in the algorithm. Wang et al. [48] pre-
sented a hybridized variant shuffled frog leaping differ-
ential evolution to enhance the radio time perception
such that the system throughput is increased.

Edla et al. [19] presented an improved shuffled frog
leaping algorithm (ISFLA) to balance the gateway load
in WSNs. Authors have compared the performance of
proposed ISFLA algorithm with other load balancing
techniques namely node local density load balancing
(NLDLB) [49], score-based load balancing (SBLB) [18],
simple GA (SGA) load balancing [50] and novel GA load
balancing (NGA) [51]. Authors have reported that the
ISFLA is better than the mentioned state-of-art load bal-
ancing algorithms. This article identifies three research
gaps as listed below:

e There is scope to improve the success of local search in
the SFLA.

e Investigate the effect of probability of information
exchange on the performance of SFLA.

e Incorporate problem-specific knowledge in SFLA to
improve the load balancing of gateways and network
lifetime.

This article presents an extension to the work pre-
sented by Edla et al. [19]. This article enhances the load
balancing in WSNs with modifications in ISFLA by Edla
et al. [19]. The main contributions of this article are sum-
marized as follows:
¢ Like other heuristic algorithms, SFLA has components

for local and global search. The local search is influ-
enced by particle swarm optimization algorithms. The
local search approach is a deterministic approach to
guide the random heuristic approach [34]. The article
presents three local exploration strategies to enhance
the performance of SFLA.

¢ The proposed energy-biased load reduction phase opti-
mizes load balancing of gateways and increases the
lifetime of WSNs.

e Tested the performance of SFLA with different frog
population size, probability of information exchange and
the probability of energy-biased load reduction phase.

e Enhanced SFLA (ESFLA) achieves better results with
respect to load balancing, network energy consump-
tion, convergence rate, successful local explorations
and first gateway die for small, medium and large data-
sets of WSNs.

This article is organized as follows. Related work is
presented in Section 2. Section 3 is about energy models
and basic SFLA. Section 4 presents the proposed ESFLA.
Section 5 presents experimental details, results and dis-
cussion. Finally, Section 6 is the conclusion.

Enhanced SFLA for gateways load balancing in WSNs =—— 439

2 Related work

In the literature, different algorithms are investigated
to optimize the clustering and load balancing in WSNs.
LEACH is a self-organizing, distributed clustering mecha-
nism that uses randomized rotation of CHs [52]. In this,
sensor nodes use energy probability to elect themselves
as CH. This randomization does not always guarantee a
good cluster formation. LEACH-C presents a centralized
version of LEACH [53]. In LEACH-C, CHs are selected by
base station rather than self-elected CH. However, load
on the base station is increased due to communication
overhead of CH selection. PEGASIS presents a chain-
ing mechanism where communication takes place only
between neighbors [54]. Although this algorithm is not so
stable for large networks, HEED presents an approach of
selecting CHs considering residual energy of each node
[55]. But in this algorithm, iterations required are very
high for transmitting control packets. Intra-cluster dis-
tance minimized using particle swarm optimization based
approach [56]. However, the distance to the base station
was completely ignored in this approach. Guru et al. [57]
have modified the PSO algorithm by presenting a boundary
checking routing phase. However, the residual energy of
nodes is not considered. An energy-aware PSO algorithm
(PSO-C) is presented in ref. [33]. This algorithm considers
various parameters, such as intra-cluster distance and the
ratio of initial energy to current energy in all sensor nodes.
However, the energy consumption does not take into
consideration the distance from base station to CHs. Singh
and Lobiyal [58] presented novel energy-aware PSO-semi
distributed (PSO-SD) approach in which energy consump-
tion for retransmission of collided packets is also consid-
ered. Hussain et al. [50] discussed genetic algorithm for
cluster formation of hierarchical WSNs. In this article, the
mutation operation is performed as inversion of a random
single bit of chromosome. Kuila et al. [51] presented the
novel genetic algorithm (NGA) to solve the load balancing
problem in WSNs. NGA improves initial population gen-
eration phase where connection between sensor nodes
and gateways is taken into consideration for generating
chromosomes. Kuila and Jana [10] presented a novel dif-
ferential evolution algorithm to increase the lifespan of
first node death. Energy consumption and network life-
span of each CH are considered for cluster formation.
However, the algorithm may cause energy inefficiency
due to random selection of CHs. Zhang and Yang [49]
presented an NLDLB algorithm that describes three steps
of selecting cluster members. First, if a member node has
connectivity with only one CH. Second, if the distance of
the member node and CH is below range R/2. Third,
remaining nodes are connected to CH within range with

440 —— Amol Adamuthe and Abdulhameed Pathan

minimum connections. Gattani and Jafri [18] presented a
score-based load balancing algorithm (SBLBA) in which
WSNs, lifetime is increased by controlling packet loss
during transmission. In this algorithm, the node that has
maximum residual energy is selected as CH. Then, it finds
two best score nodes; score for each node is calculated
using the ratio of residual energy and distance. Remaining
nodes send the sensed data to the CH via these two best
score nodes. Edla et al. [19] presented an ISFLA, which is an
evolutionary approach to balance gateway load in WSNs.
Also, energy-efficient fitness function is discussed where the
residual energy of gateways is taken into consideration.
ISFLA is compared with genetic algorithm, novel genetic
algorithm, NLDLB algorithm and SBLBA. ISFLA has proved
to be better. Edla et al. [32] presented a shuffled complex
evolutionary approach to solve the load balancing problem

DE GRUYTER

in WSNs. Authors presented novel residual energy aware
fitness function for solving load balancing problem. Edla
et al. [32] presented improved fitness function over Edla
et al. [19] and a new allocation constraint. The allocation
constraint instructs to allocate a minimum number of sen-
sors to the gateway that is farthest from base station. Table 1
presents a summary of related work.

3 Background

3.1 Network energy model

The radio signals are used in WSNs to communicate
across devices. Size of the signal depends on the size of

Table 1: Literature summary of clustering algorithms for optimization problems in WSN

Results

Objectives Algorithms Contributions

To minimize network LEACH CH is selected on the basis of initial energy. It

energy usage incorporates randomized rotation of CHs to
share the load among the nodes

To reduce the energy LEACH-C Assignment of CHs to sensor nodes is

consumption managed by the centralized base station

To improve the node PEGASIS Presented a greedy chain-based algorithm

lifetime in the WSN where node transmits data only to its close
node and this chain sends the data to BS

Increase network lifetime HEED Presented a hybrid solution that randomly
chooses CHs based on their residual energy
and nodes join clusters to reduce
communication costs

To maximize the network PSO-C Presented a centralized version of PSO. It

lifetime and data delivery focuses on reducing intra cluster Euclidean

at base station distance. Ratio of residual energy to initial
energy is considered in the objective function

To maximize the network PSO-SD Reduced intra cluster distance. Proposed

lifetime and reduce energy fitness function considers the energy

consumption consumption for retransmission of collided
packets

To perform load balancing NGA Presented a novel chromosome

of CHs in WSN representation scheme for a genetic
algorithm. Improved initial population
generation by considering communication
range for sensors

To perform load balancing NLDLB Ensure that the mean square deviation value

of CHs is as minimal as possible for the quantity of
sensor nodes within each cluster

To improve the network SBLBA Presented an energy aware approach to

lifetime assign a score to each node. Selection of CH
is carried by these scores

To improve the network ISFLA Presented an evolutionary approach by

lifetime

improving SFLA for proper load balancing of
gateways in WSNs. An energy-efficient fitness
function is also proposed to achieve better
solution

Results proved eight times better than static
clustering in terms of energy consumption
and first node die

Results proved that LEACH-C delivers 40%
more data as compared to LEACH per unit
energy

Results proved that PEGASIS improves node
lifespan by 100-300%

Results proved HEED improves network
lifespan compared to LEACH

Results proved PSO-C improves network
lifespan and data delivery compared to
LEACH and LEACH-C

Results are proved to be better than PSO-C
and LEACH-C in terms of network lifetime
and average energy consumption

Results are proved to be better than simple
GA, differential evolution in terms of load
balancing, active sensors and energy
consumption

Novel clustering approach. Results are

validated against a couple of algorithms to
prove its effectiveness in balancing the load
Controlled packet loss during transmission

Results proved that ISFLA performed better
in terms of load balancing, energy
consumption, network lifetime as compared
to GA, NGA, NLDLB, SBLBA, etc.

DE GRUYTER

the data that are being transmitted. Energy is consumed
in order to generate, transmit and receive these signals.
To calculate the consumption of energy for these activ-
ities, an energy model from Heinzelman et al. [53] is used.
Based on the distance within the transmitter and receiver,
this network energy model uses an appropriate channel
for the communication. Free space channel is used if the
distance is below the nominal distance § while a multi-
path fading channel is used if the distance exceeds the
nominal distance §. Energy consumed for transmitting
the x-bit message throughout the distance d is computed
as equation (1).

X % Egec + X % Egg + d?, if d < 8.

X % Eelec + X % Epp + d%, if d > 6.

Er(x,d) = { €
Here, E.. is per bit energy utilization of the electronic
circuit, Eg; is per bit energy utilization of the free space
model and Ey, is per bit energy utilization of the multipath
fading channel. Equation (2) demonstrates the energy con-
sumption of a node to collect x-bit data within its range.

Ep(x) = x * Eglec.)

3.2 SFLA

This subsection presents the strategy of the SFLA [19,34,59].
Figure 3 displays the flowchart of the SFLA. The steps of
SFLA are described below.

1. Initial population generation: Set of algorithm-specific
parameters namely maximum generations, memeplex
count, sub-memeplex count and population size are
initialized in this phase. Specified numbers of frogs
are randomly generated.

2. Fitness calculation and frog arrangements: In this step,
fitness values of all frogs are calculated with the help
of fitness function, then all the frogs are arranged in
ascending order according to their fitness value.

3. Memeplex arrangements: Sorted frogs are then distri-
buted into a specified number of the memeplexes. Frogs
are distributed like the first frog is placed in the first
memeplex, the next frog is placed in the second mem-
eplex, ith frog is placed in the ith memeplex and
(i + 1)th frog is again placed in the first memeplex.

4. Sub-memeplex arrangements: Each individual meme-
plex is further partitioned into a specified number of
sub-memeplexes.

5. Local exploration: Every sub-memeplex is evolved indi-
vidually as explained in Figure 4. During evolution,

Enhanced SFLA for gateways load balancing in WSNs —— 441
Parameter Initialization:
« Algorithmic Iterations (a)
« Memeplex count (i)
« Sub-memeplex count (j)
« Population Size (P)
\ J Initial
Population
y . Generation
Random population generation
L of P frogs)
{ . 3
Evaluate Fitness value for each Fitness
individual frog in population P. :
\ g pow J Calculation
&
: . Frogs
(Sort all P frogs in ascending order| arrange!r,nents
L of fitness value
>
- __ Memeplex
Partition P frogs into i meme| Iexes]
L g P Arrangements
Partition each memeplex into Sub-memeplex
L j sub-memeplexes Arrangements
Evolve each individual sub-
memeplex
(as shown in Fig. 4)
Convergence
Is Convergence Satisfaction
No Criteria satisfied?, Test

Yes

(Determine Best Solution)

Figure 3: Flowchart of SFLA.

information is exchanged between the best and the
worst frog of the sub-memeplex.

6. Convergence satisfaction test: At the end of each itera-

tion, convergence criteria are checked. If criteria are
satisfied, further execution is stopped, otherwise, algo-
rithms continue for the next iteration. Convergence cri-
teria could be threshold fitness value or maximum
iteration count.

442 —— Amol Adamuthe and Abdulhameed Pathan

r B

Select individual sub-memplex

. S

Find Pg, Py, Px and Pg for sub-
memeplex

\ J

[Information exchange within Pg]
and Py,

\ J

Information exchange within
Py and Pw

Information exchange within Pg
and Py,

Repeat &
times

[Generate a new random frog]

[Replace Py,]

Figure 4: Local search phase in SFLA.

4 ESFLA variations to balance the
gateways, load in WSNs

The evolution phenomenon of ISFLA speaks about improv-
ing the worst frog by exchanging memes with the best frog
of each sub-memeplex. Since information is exchanged
within best and worst frogs of each sub-memeplex, ran-
domness in the algorithm is reduced. This restricts the local
exploration capability of ISFLA. Three local exploration

DE GRUYTER

Figure 5: Sample individual frog representation.

strategies are proposed for improving the local exploration
capability. The proposed algorithm is an extension of the
ISFLA presented by Edla et al. [19]. This section presents
solution representation, initialization function, fitness func-
tion, steps of proposed ESFLA and the proposed energy-
biased load reduction phase.

4.1 Frog (solution) representation

Frog (solution) represents the assignment of gateways to
sensors. The length of the frog is equal to the count of the
sensors in WSNs. Each sensor is allocated to one of the
gateways within the interaction range. A sample solution
representation is shown in Figure 5. In the given repre-
sentation, sensors s,, S5 are connected to gateway g, and
Sensors sy, Se, So are connected to gateway g,.

4.2 Generation of initial populations

In the initialization phase, a specified number of frogs are
generated randomly. During the generation of each indi-
vidual frog, a gateway is randomly assigned to each
sensor node considering the interaction range. Since
gateways within interaction range are allocated to the
sensor nodes, each frog generated in the initialization
phase is feasible.

Example 1. Let us consider a WSN with ten sensor nodes
S = S0, S9, Sg, S75 Se»> S5, Sus S3, S2, S1 and four gateways
G = g, %, 8, 8,- Table 2 displays the gateways and sensor

Table 2: Example of sensor nodes and gateways within its inter-
action range

Sensor Gateways within Sensor Gateways within
node range node range

S1 9y 93 Se 93 9,

S2 g1v gz: 94 S7 91: gz

S3 gzr ga Sg gzr gax ga

S4 g1! g3v 94 Sg g4

S5 g3v 94 S10 91: ga

DE GRUYTER

Figure 6: A valid individual frog from the set of initial population.

nodes within the interaction range. As per Table 2, sensor
node s; can be connected to either g, or g;, sensor node
s, can be connected to g;, g, or g,. Figure 6 presents a
feasible frog for Example 1.

4.3 Fitness calculation

Fitness of each individual frog is calculated using a fit-
ness function presented by Edla et al. [19]. Equation (3)
defines the fitness function used in the proposed algo-
rithm.

fitness = (l - Mj

Gmax

G)

N #heavy and under loaded gateways
Total # gateways '

Here, p,,,4 represents the mean load on all gateways. .4
can be calculated using equation (4).
z:zlno of gateways Load (Gz)
gateways)

%)

Mioad =

For load calculation, the energy required to complete
various operations by gateways is taken into considera-
tion. Load on each gateway can be mathematically cal-
culated with equation (5)

Eremain(Gi)
Einital(G)
where x is the count of bits that are to be sent by ith
gateway. Eemain iS the residual energy of gateway G;,
while Ejniia is the initial energy of gateway G;. Eremain iS
calculated with equation (6)

Eremain = Einitial - ER(X) - ET(X: d) (6)

Load(G;) = x = (5)

Er(x, d) and Eg(x) can be calculated with equations (1)
and (2), respectively.

The number of heavy and under loaded gateways is
the count of gateways that are not between the maximum
threshold (Ti,ax) and minimum threshold (T,). Gateways
with load exceeding T,,x are heavy loaded gateways,
and gateways with a load below T, are under loaded

Enhanced SFLA for gateways load balancing in WSNs —— 443

gateways. Threshold values Ty.x and T, are calculated
with equations (7) and (8), respectively.

Tnax = Migaq + Mrange* (7)
Tnin = Mioad ~ Mrange* (8)

Mrange €an be calculated with equation (9) considering the
difference of boundary gateway load (R) and the total
count of gateways. The value of R can be calculated with
equation (10). In equation (10), Gpax iS the maximum

gateway load, while G, is the minimum gateway load.

R
Hrange = Total#gateways ©)
R= Gmax - Gmin- (10)

The problem is formulated as a minimization pro-
blem. Frog with minimum fitness value is better. The fit-
ness value is based on energy consumption, so it cannot
be zero or negative.

4.4 Memeplex arrangements

The number of frogs generated in the initialization phase
is distributed into a specified number of memeplexes. All
the frogs are arranged in increasing order of their fitness
value and then they are distributed among memeplexes.
The distribution of sorted frogs happens as per equation
(11), where the first frog is placed in the first memeplex,
ith frog is placed in the ith memeplex and (i + 1)th frog is
again placed into the first memeplex. Assuming eight
frogs generated in the initial phase are arranged in the
ascending order of their fitness value and named as f1 to
f8 as shown in Figure 7 and 8 shows the distribution of
eight sorted frogs into two memeplexes.

memeplex(f) = pos(f) mod m. (11)

4.5 Sub-memeplex arrangements

Each memeplex is further broken down into j sub-meme-
plexes. Value for j is randomly selected from factors of
memeplex size. Memeplex size is the count of frogs pre-
sent in a memeplex. In Figure 8, memeplex size is 4.
Factorials of 4 are 1, 2 and 4. So, the number of sub-
memeplexes can be chosen from number 1, 2 or 4.
Figure 9 shows partition of each memeplex from Figure 8
into two sub-memeplexes. The total number of sub-mem-
eplexes is four, i.e., (i1, j;,), (i, o), (i, J1)s (i25 Jo)-

444 —— Amol Adamuthe and Abdulhameed Pathan

1 3|4 6 9 |10
3(2|a4|1(3]4 2 (4|1
(f1)

2 4(5|6|7|8|9]10
42134 3(4|4
(f3)

1 4(5|6|7[8]9]10
2 3(4(3|1]|2]4]1
(f5)
1|2|3|4|5]|6 9 |10
14344 2 (4|1

(f7)

DE GRUYTER

2 4|5 7|/8|9]10

242|343 |1|a]|a]1
(f2)

1|2(3[4]5 8|9 |10

3(1|4a|3|4a|3|2|a|a]1
(f4)

1|23 5/6/7|8[9]10

2(4|1[3|4|2|3]|4]|4
(f6)

3|4 7(8[9]10

2(2|a|1|3[3|1|a]|4a]1
(f8)

Figure 7: Sample feasible frogs (solutions) generated in initialization step.

Memeplex 1 f1 3 5 7

Memeplex 2 f2 f4 6 8

Figure 8: Example of partitioning step (partitioning of frogs into
memeplexes).

Submemeplex (N1) Submemeplex (N2)
Memeplex (M1) | f1 3 5 7
Memeplex (M2) | f2 f4 f6 8

Figure 9: Example of partitioning of two memeplex into two sub-
memeplexes.

4.6 Local exploration phase

This stage performs evolution of each sub-memeplex
with information exchange between selected frogs. In
ISFLA, the evolution of each sub-memeplex is performed
with information exchange from best to the worst frog.
We present three approaches to choose source and target
frogs to contribute to the sub-memeplex evolution phase.
Instead of selecting the best and worst frogs for informa-
tion exchange, the presented approaches focus on giving
scope to other frogs to take part in the exchange process.
After information exchange, a novel energy-biased load
reduction phase is introduced to increase the lifetime of
gateways in WSNs. In this phase, residual energy of

gateways is taken into consideration and a necessary
biased decision is made to save the dying gateway.

4.6.1 ESFLA with global guided

This modified version of ISFLA is termed as Enhanced
Shuffled Frog Leaping Algorithm-Global Guided (ESFLA-
GG). Figure 10 shows a flowchart of this approach. In
ESFLA-GG approach, the worst frog of the sub-memeplex
is replaced by the global best frog. Replacing the worst frog
with the global best frog in all the sub-memeplexes does
not provide randomness. To maintain a diversity of frogs,
this replacement is carried out only in half of trailing sub-
memeplexes before the evolution process is started. We
denote TS as a set that contains only half of the trail-
ing sub-memeplexes as expressed in equation (12). After
replacement, the new best frog in the sub-memeplex is
appointed as a source frog and the worst frog is appointed

as a target frog for information exchange.
TS = {s|s belongs to trailing half sub-memeplexes}, (12)

where s — individual sub-memeplex.

4.6.2 ESFLA with stochastic universal sampling
(ESFLA-SS)

Baker [60] presented a zero-bias sampling algorithm
termed as stochastic universal sampling (SUS). Basically,

DE GRUYTER

[(Select individual sub-memplex]

S;) from set of (ssu)b-memep exes

1

Find Pg,
Pw, Px and Pg for (Sl)

No

Yes

[Replace Py with Pg J
|

Find new Pg, Py, Px and Pg for
sub-memeplex (S;)

Offspring generation with Pg and
Pw

Offspring generation with Py and
Pw

IS Py
Yes improved 2
No

Offspring generation with P¢ and
Pw

[Generate a new random frog]

) [Replace Py,]

Figure 10: ESFLA with global guided.

SUS is employed to select N equally spaced samples from
a given population. All the individuals in the population

Repeat
times

Enhanced SFLA for gateways load balancing in WSNs =—— 445

are mapped on a line segment ranging from O to 1, such
that the area occupied by the individual is equal to its
fitness proportion (in ratio to sum of all individual’s fit-
ness). Greater the fitness more the area allocated to the
individual on the segment. To place the N pointers, a
random value r is generated within range (0, 1/N), the
first pointer is placed on the generated value r, the
remaining pointers are placed with a space of 1/N.

Algorithm 1: Generating fitness probability scale

Input: Array of solutions with its Fitness values Fitness|[]
Output: Fitness Probability Scale within range 0 to 1
1 Procedure
getFitnessProbabilityScale(Fitness(]):
2 N = number of frogs = len(Fitness);
/ * Use exponential fitness for minimization problem =/
for index = 1to N do
ExpFitness[index]:=exponential (-1 =
Fitness[index])

3 end

6 F:=sum of ExpFitness

7 Scale:=0

8 for index = 1to N do

Scale:=Scale + ExpFitness(index)/F
2 ScaleFitness[index] := Scale

end
11 ScaleFitness < Sorted (ScaleFitness)
12| return ScaleFitness

Algorithm 2: Choose the source and target frog by stochastic
universal sampling

Input: Population P, Fitness of Population Fitness[], Number of
Frogs to be selected S.
Output: Selected Source and Target Frogs
1 Procedure getStochasticFrogs(P, Fitness[], S):
2 S:=Number of samples to be selected
//Number of samples are 2 in this case
N := number of frogs:=len(P)
Scale := getFitnessProbabilityScale(Fitness)
Ri:=random (0, 1/S)
Pointer to source frog
6 R2:=R1+ 185
Pointer to target frog
7 Frogs|]« Initialize Empty Array
fori=1to N do
if R1 < = Scale(i) then
| Frogs[‘sourceFrog’] := P[i]

end
11 if R2 < = Scale(i) then
12 | Frogs|‘targetFrog’] := P[i]
13 end

end

14 return Frogs
15
16

446 —— Amol Adamuthe and Abdulhameed Pathan

We employed the SUS technique to select the source
and target frog from the sub-memeplex, i.e., N = 2. The
frogs are sorted in increasing order of their fitness values
and are mapped to a line segment of range (0, 1). Since
N = 2, arandom value r is generated within (0, 0.5). Frog

[Select individual sub-memplex |
(S;) from set of(ssl;b-memep exes

\, J
|

Find Py and Pg for sub-memeplex

(S)

\ J

s \

Choose Pg and Pt using
Stochastic Sampling Logic

Offspring generation with
Psand PT

Offspring generation with
Py and PT

|
) Is PT
Yes improved ?2
No

Offspring generation with
Pg and PT

Repeat &
times

[Generate a new random frog]

[Replace PT]

Figure 11: ESFLA with SUS.

DE GRUYTER

at r is selected as source frog and frog at r + 0.5 is
selected as target frog. The selected target frog will
obviously be weaker than the source frog. Figure 11
shows the flowchart of this approach.

4.6.3 ESFLA with roulette wheel (RW) selection
(ESFLA-RW)

Pencheva et al. [61] used an RW-based selection approach
for a genetic algorithm. In the RW approach, the circular
wheel is partitioned among probabilities of all solutions
just like a line segment in SUS. Contrary to SUS, RW could
choose only one item at a time. A pointer is pointing
toward the fixed position when the wheel is rotated. The
solution is selected whose region is pointed by a pointer
after the wheel is stopped. In RW, fitness values of all the
solutions are converted into roulette probabilities. Better
fitness frog is more likely to get selected. In this approach,
a probabilistic RW is created for each sub-memeplex. Each
frog in the sub-memeplex is assigned with probability
values within the range O to 1. Better the fitness of the
frog, the more the probability range allocated to the frog.
This increases the probability of a better frog getting
selected for information exchange. One frog from the
sub-memeplex is selected using an RW rotation. This
selected frog is considered as a source of information
exchange. The worst frog from the sub-memeplex is con-
sidered as the target of information exchange. Figure 12
shows the flowchart of this approach.

Algorithm 3: Choose the source frog by RW selection

Input: Population P, Fitness of Population
Fitness[], Target frog Tf.
Output: Selected Source Frog for information exchange
1 Procedure getRouletteFrog(P, Fitness(], Tf):
2 | N := number of frogs=len(P)
3 Scale:=getFitnessProbabilityScale(Fitness)
/+ Generate Random number R such that it does not
4 returns already select target frog Tf %/
R = random (0, 1)
> Frogs|]« Initialize Empty Array
6 fori:=1to N do
7 if R < = Scale(i)then
8 | sourceFrog := P[i]
9 end

end
return sourceFrog

Once the source and target frogs are selected from
any of the above specified local exploration approaches,
the information exchange is performed and new offspring

DE GRUYTER

[(Select individual sub-memplex]

S;) from set of (ssu)b-memep exes

1

Find Pg,
Pw, Px and Pg for (Sl)

No

Yes

[Replace Py with Pg J
|

Find new Pg, Py, Px and Pg for
sub-memeplex (S;)

Offspring generation with Pg and
Pw

Offspring generation with Py and
Pw

IS Py
Yes improved 2
No

Offspring generation with P¢ and
Pw

Repeat
times

[Generate a new random frog]

) [Replace Py,]

Figure 12: ESFLA with roulette wheel (ESFLA-RW) selection.

is generated to replace the existing target frog. The infor-
mation exchange is a single point crossover operator. For
information exchange, a random point p is selected such

Enhanced SFLA for gateways load balancing in WSNs =—— 447

Figure 13: Offspring generated using roulette wheel (RW) selection.

that1 < p < n, in which n is the count of sensor nodes. All
the gateway bits from p to n of source frog are copied to
the target frog. Each sub-memeplex will go through the
same process. Taking as an example, let us consider we
get (f6) as source frog in local exploration and (f8) as
target frog. Figure 13 shows newly generated offspring
assuming random point p = 4 for single point crossover
operation.

To improve the solution quality, we proposed a novel
energy-biased load reduction phase for gateway. In this
phase, the residual energy of gateways is taken into con-
sideration in order to increase the lifetime of gateways in
WSNs. The energy consumption of gateways is estimated
using equation (6) for the newly generated offspring in
the above phase. Residual energy of gateways is initial
energy minus estimated energy consumption. The gateway
with lowest estimated residual energy is selected to reduce
the load so that its lifetime is increased.

Algorithm 4: Proposed energy-biased load reduction phase

Input: Solution S, Gateways available energies GE, Gateways in
Range of
sensors R
Output: Improved Solution
1 Procedure ProposedLoadReduction(S, GE):
2 energyConsumed « Energy consumed by
gateways for solutionS
foreach gateway in Gateways do
GE[gateway] = GE[gateway]
— energyConsumed[gateway]
end
6 Gpin=min(gatewayEnergies)
//Find gateway with minimum residual energy
7 /= Find farthest distance sensor S; that is allocated

8 to G, but can be allocated to another gateway =/
S; = getFarthestSensor (Gyy,)
2 choose randomly Gy, € R(Sy) such that
10 Grew !'= Gpin
SISf] = Gpey
//Allocate new gateway to the farthest sensor
return S

To reduce the load of the dying gateway, the farthest
sensor node from this selected gateway in terms of Eucli-
dean distance is deallocated. The deallocation reduces
the energy consumption of this gateway. This deallocated

448 —— Amol Adamuthe and Abdulhameed Pathan

314|567]18]9]10
2 2 4 1 3 4 2 314 4
Before

DE GRUYTER
314(5]|6 9|10
2 1 (3|4 4

Figure 14: Solution modified after energy-biased load reduction phase.

sensor is allocated to another gateway that lies within its
range. As the allocation of gateway is performed consid-
ering the range constraint, it can be stated that the off-
spring generated in the proposed energy-biased load
reduction phase is a feasible solution. Carrying forward
the sample offspring in Figure 13, let us assume that the
gateway g, has the lowest residual energy and sensor
node s; is farthest in terms of Euclidean distance from
8. To reduce the load from g,, sensor node s; is deal-
located from gateway g, and s; is allocated to another
gateway within its range. Taking reference to Table 2, s;
is allocated to gateway g,. Figure 14 shows the effect of
these operations.

5 Experimental details, results and
discussion

5.1 Simulation details

A program is created to generate input datasets ran-
domly. Number of sensor nodes, number of gateways,

Table 3: Experimental scenario

distribution area size and threshold communication range
of sensors with gateways are passed as input to this pro-
gram. The data generator creates input by random distri-
bution of a specified number of sensors and gateways
within a given area. Total 15 input datasets are created
using the dataset generator program. Generated input
datasets are categorized into three categories, namely
small, medium and large, based on the count of sensors
and gateways. A set of 15 inputs are shown in Table 3.
Input 1-5 belongs to a small dataset category, input 6-10
belongs to a medium dataset and input 11-15 belongs to a
large dataset. Input datasets have various parameters.
Maximum threshold distance (m) is the maximum dis-
tance up to which sensors can transmit data, area of
deployment (m x m) is the spread of a network in a
geographical area, base station location is the x and y
coordinates of the base station in geographical location
with reference to area of deployment. Number of sensor
nodes and number of gateways available in the network
are given to the algorithm with their respective coordinates.

For experimentation, each dataset is considered with
equal and unequal load on sensors. Equal load means
each sensor node transmits the same amount of data

Input number Max threshold Area of Base station Count of sensor Count of gateways
distance (m) deployment (m x m) location (x, y) nodes

1 10 50 x 50 (48, 25) 50 10
2 10 50 x 50 (48, 25) 100 20
3 10 50 x 50 (48, 25) 200 30
4 10 100 x 100 (96, 50) 500 50
5 10 100 x 100 (96, 50) 750 65
6 10 100 x 100 (96, 50) 1000 80
7 15 200 x 200 (196, 100) 1200 100
8 15 200 x 200 (196, 100) 1400 120
9 15 200 x 200 (196, 100) 1600 140
10 15 200 x 200 (196, 100) 1800 160
11 15 300 x 300 (296, 150) 2000 150
12 15 300 x 300 (296, 150) 2250 175
13 15 300 x 300 (296, 150) 2500 200
14 15 300 x 300 (296, 150) 2750 225
15 15 300 x 300 (296, 150) 3000 250

DE GRUYTER

50 1 .

o

304 *°

20 . *

10 .

04

0 10 20 30 40 50

(a) x

Enhanced SFLA for gateways load balancing in WSNs —— 449

100 A -e .. : . ..‘..-;.: -, «® ...::
. -. e 0" ’; R tey
. . * . '.’.'-.p. * .
80 1) . e o o oo .
° L ., ® . L4
o D L I I LIS .
° : 2 e o e’
-..:.. -.o.. '.f' . ’..: e * e® o oc® ®
60 e T R
o
o2 PR 4y -,
> P S e ed e e e e
e % o . i PR .
40 . o ce®™ e - A .
o, . . . o LM ..' .
o o o too .
B S TN I P 1o o1%
*. % o0’ 4 ". ”:o o-:o oo
204 *°* P - : N * .
I S T .
. N Y el e o ® e
- * .0 ** . °
A A . Voo o
o] .) o, ® L
(b) 0 20 40 60 80 100
X

Figure 15: Deployment of sensor nodes and gateways. (a) Deployment of 50 sensor nodes in 50 x 50 m? area. (b) Deployment of 500 sensor

nodes in 100 x 100 m? area.

bits while unequal load means that sensor nodes transmit
data of varying length. Unequal load is chosen randomly
for each sensor node from a given set of load sizes. Two
sample inputs generated with the program are shown in
Figure 15. Red dots indicate gateways, green dots indicate
sensor nodes and a blue dot indicates base station.

Table 4 presents simulation parameters used in experi-
ments. Default Ejiia is the initial energy in the gateways at
the start of the first round; however, this value changes after
the end of each round depending on gateway’s energy con-
sumption. The sensor data length is the number of bits
transmitted by sensor nodes. The number of memeplexes
and sub-memeplexes are chosen randomly as explained in
Sections 4.4 and 4.5, respectively.

Table 4: Simulation parameters

10,000,000 n)J
8 bits
rand(4, 6, 8, 10, 12, 14) bits

Initial gateway energy (Einitial)
Data transfer length (equal load)
Sensor data length

(unequal load)

Energy required by circuit (Eelec)
Energy required by free

space (Egs)

Energy required by MP (Ey;)

50 n)/bit
10 p)/bit/m?

0.001 p)/bit/m*

Frog population size (PopSize) 100
Memeplex count rand(factorialSet
(PopSize))

Sub-memeplex count rand(factorialSet(PopSize/
MemeplexCount))

Max convergence iterations (a) 50

Max roulette iterations 5

(maxRoulettelterations)

5.2 Results of ESFLA variations

Experiments are conducted for all the 15 input datasets
described in Section 5.1. The results of the proposed
ESFLA are compared with ISFLA presented by Edla et al.
[19]. SFLA is an evolutionary algorithm. Evolutionary algo-
rithms are probabilistic in nature. Traditional algorithmic
analysis is not applicable to these algorithms. The measure
performance of evolutionary algorithms best value, mean
value and standard deviation is used. Suganthan et al.
[62] presented six metrics for evaluating the performance
of these algorithms for mathematical benchmark func-
tion. These six parameters are namely convergence graph,
average number of function evaluations (NFEs), success
rate, acceleration rate and improvement. This article pre-
sents the SFLA for application in WSN. Following metrics
are used for performance analysis. Algorithmic metrics
used are successful local explorations, best fitness values,
average fitness values and convergence graph. Applica-
tion-specific metrics used are network energy consump-
tion, load balancing and first gateway die.

5.2.1 Average best fitness value

Load balancing is derived from the fitness value of the
best solution obtained at the last iteration. Better fitness
value indicates better load balancing. The best fitness
value obtained from the algorithm at last iteration is mea-
sured. For each dataset, the program is executed ten
times and an average of all ten best results are taken
into consideration to neutralize the randomness effect.
Figure 16a and b shows comparison of proposed ESFLA-
GG approach with ISFLA for equal and unequal load,

450 —— Amol Adamuthe and Abdulhameed Pathan

W ISFLA W ESFLA-GG
16

12
10
08
06

Fitness Value

04
02
0.0

&
2 >

¢ & f L & L O DL P
LS EE S TS M SR S

N N
& & & & &S S
FEEEFEE @

(a) Inputs

W ISFLA W ESFLA-SS
16

12
10
08
06

Fitness Value

04
02
00
S HELSE

SR I IR TR]
Y & F NS S SN
& S S
FTEET I PTLELEE

(c) Inputs

W ISFLA W ESFLARW
16

12
10
08
06

Fitness Value

04
02

0
Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
1 2 3 4 5 6 T 8 9 10 2 13 14 15

(e) Inputs

DE GRUYTER

W ISFLA W ESFLA-GG

Fitness Value
o
o

S I R R 3
N N3 » o N N N
T

(b) Inputs

TS FTIL S
T

W ISFLA W ESFLA-SS

Fitness Value

ORI IR R R R R QR - T O N I]
Y S NS TS PP
\,\\@ TELLE L& \éz" \g§ \(\Qo \@o \(\Qo \\\Qc

(d) Inputs

W ISFLA W ESFLA-RW

Fitness Value

Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input
1 2 3 4 5 6 7 8 9 10

12 13 14 15
(f) Inputs

Figure 16: Comparison of proposed ESFLAs using average best fitness value. (a) ESFLA-GG equal load, (b) ESFLA-GG unequal load, (c) ESFLA-
SS equal load, (d) ESFLA-SS unequal load, (e) ESFLA-RW equal load and (f) ESFLA-RW unequal load.

respectively. For a few datasets, ESFLA-GG is found slightly
better than ISFLA. Results show that ESFLA-GG does not
guarantee performance improvement over ISFLA for all
cases. ESFLA-GG presents a deterministic approach by
replacing the worst frog with the global best frog in half
of the trailing sub-memeplexes. Results show that the pro-
posed deterministic approach does not guarantee improve-
ment in local exploration every time due to reduction in
population diversity.

Figure 16c and d shows comparison of proposed
ESFLA-SS approach with ISFLA for equal and unequal
load, respectively. For a few datasets, ESFLA-SS is found
slightly better than ISFLA. Results from Figure 16 show
that ESFLA-SS provides slight improvement over ISFLA
for the majority of the datasets. Figure 16e and f shows

comparison of proposed ESFLA-RW approach with ISFLA
for equal and unequal load, respectively. ESLFA-RW is
found better for all small, medium and large datasets
with equal and unequal load. The performance improve-
ment of ESFLA-RW is significant over ISFLA since in
ESFLA-RW the improvement is always done in the worst
frog contrary to ESFLA-SS where the target frog is ran-
domly selected for improvement. In the literature, it is
reported that the performance of many heuristic algo-
rithms is subjected to problem instances. Change in the
problem instance size and complexity affected the algo-
rithm performance. The proposed local exploration stra-
tegies of ISFLA are not instance specific. The ESFLA-RW
shows significant performance improvement for small,
medium and large instances with equal and unequal load.

DE GRUYTER

5.2.2 Success of local exploration

To verify the improvement of proposed ESFLA approaches
over ISFLA, we calculated the percentage of successful
local exploration for all sub-memeplexes. A local explora-
tion is said to be successful if a better frog is obtained by
information exchange within the sub-memeplex itself.
Figure 17 shows the results for local exploration perfor-
mance of ISFLA and ESFLA for equal and unequal load
for input 15. Results show that the proposed three local
exploration strategies are better than ISFLA. The suc-
cessful local exploration percentage of ISFLA and ESFLA
variations increases with an increase in the number of
frogs. It is observed that ESFLA-RW has improved its local
exploration capability as compared to all other algorithms.
This improvement is due to the increased exposure to
choose frog within the sub-memeplex rather than always
exchanging information from best frog to worst frog.
Successful local exploration demonstrates how pro-
posed variations improved the local exploration capability
of the algorithm, which means how many times the

W ISFLA W ESFLA-GG ESFLA-SS W ESFLARW

100

_ 1|
*

50 100 1

-~
o

Successful Local Exploration (in %)
N o
o o
B

300

(a) Number of Frogs

Enhanced SFLA for gateways load balancing in WSNs =—— 451

information exchange within sub memeplex itself has
improved the fitness of target frog. In proposed ESFLA-
RW, the information is exchanged within the best and
random frog selected from the RW, which improved the
exploration capability of the algorithm and led to achieve
better results. Figure 18 shows the performance of ISFLA,
ESFLA-GG, ESFLA-SS and ESFLA-RW (from left to right)
for input 15. The graphs in Figure 18a and b show the
distribution of fitness values of the entire population.
The boxplot representation of the population shows
minimum, maximum, median, first quartile and third
quartile. Results indicate that the proposed ESFLA is
better than ISFLA with respect to minimum and median
values. Population diversity is greatly reduced in ESFLA-
GG due to partial exchange of the worst frogs with the
global best frog. ESFLA-SS shows the highest population
diversity compared to all other approaches since high
randomness is introduced in selecting source and target
frogs. ESFLA-RW provides the best fit frog (minimum value)
over all other approaches. ESFLA-RW shows improvement
in overall population compared to ISFLA.

W ISFLA W ESFLA-GG ESFLA-SS M ESFLA-RW

100

75

Successful Local Exploration (in %)
w
o

0
50 100 150 200 250 300

(b) Number of Frogs

Figure 17: Comparison of proposed ESFLAs using success of local exploration: (a) equal load and (b) unequal load.

1.400 1

1.375 4

1.350 4

1.325 4

Fitness Values

1.300 4

-

1.275 1

+++

1.250 4

%

ESFLA-RW

T T T
(a) ISFLA ESFLA-GG ESFLA-SS

1.50 +

1.48

1.46

1.44

Fitness Values

1.42 A ;

=
1.40 *

_f’g
:

T
ESFLA-SS

+
+
1.38 4 t

(b) ISFLA ESFLA-GG ESFLA-RW

Figure 18: Performance analysis of proposed ESFLAs. (a) Equal load, (b) unequal load.

452 —— Amol Adamuthe and Abdulhameed Pathan

0.08
ISFLA M ESFLARW

0.06

) | l

0.00 —
\,\\Q

Standard Deviation

o

LLLLLng}}

N

O
& 0‘
® &

>

l l_
\)
\QQ &

\QQ \QQ N & & \QQ &

(a) Inputs

DE GRUYTER

0.06
ISFLA W ESFLA-RW

Standard Deviation
o

0.04
) | | \, l
oo lllllLLL Lh
Q> > ®
O 8L
\QQ \«\Q \«\Q \«\Q \QQ \QQ \«\Q & \.\Q" & & & & &

(b) Inputs

Figure 19: Comparison of proposed enhanced SFLAs using standard deviation. (a) Equal load, (b) unequal load.

ESFLA-RW performed better than ESFLA-GG and
ESFLA-SS. In the next subsections, comparisons are pre-
sented in ISFLA and ESFLA-RW. Figure 19 shows the
standard deviation of population fitness at the last itera-
tion. It is observed that standard deviation of ESFLA-RW
is better than ISFLA. It indicates the progress of the entire
population towards the best region.

Population diversity has a strong impact on perfor-
mance of population-based nature-inspired/bio-inspired
algorithms. Good population diversity is necessary to
explore the search space. In the literature, it is reported
that poor population diversity leads to premature conver-
gence of many evolutionary algorithms such as genetic
algorithms. Due to premature convergence, the algorithm
faces difficulties or fails to reach a global optimal solu-
tion. SFLA forced the information exchange between best
frog and worst frog. The proposed local exploration stra-
tegies changed this restrictive selective process of frog
selection. Results show that the proposed methodology
improved the performance of SFLA.

5.2.3 Execution time

We compared the execution time of the proposed ESFLA-
RW with ISFLA. The obtained results are shown in Figure 20
for small, medium and large datasets with equal load.
Results show that the proposed ESFLA-RW takes slightly
more time than ISFLA. This lag is due to the introduction of
additional RW selection phase. Similar results are obtained
for unequal load datasets.

5.2.4 Energy consumption

Total energy consumed by WSNs is the sum of energy
consumed by gateways and sensors. The energy is required

to send and receive data among sensors, gateways and base
stations. Energy consumption (in Nanojoules) is calculated
using the best solution generated by algorithms. Table 5
shows the results for energy consumption of ESFLA-RW
and ISFLA. Energy consumption specifies what amount of
energy is consumed by the network when the sensor to
gateway assignments is made on the basis of the best solu-
tion obtained by these algorithms. We can see that the best
solution obtained from ESFLA-RW consumes less energy as
compared to ISFLA. The proposed ESFLA-RW consumes
less energy than the ISFLA.

5.2.5 Results of proposed energy-biased load reduction
phase

To demonstrate the effect of the energy-biased load reduc-
tion, we introduced the proposed load reduction phase into
ISFLA and termed it as ISFLA — enhanced load reduction
(ISFLA ELR). Nodes and gateways in WSN operates in bat-
tery power. The network lifetime depends on the battery.
In the literature, different methods are investigated to
increase the network lifetime. This article presents load
balancing of gateways to minimize the energy require-
ments in WSN. Network life of WSN is defined as the
time until the first gateway dies. To verify the improvement
in gateway lifetime, we recorded the round number where
the first gateway dies. Gateway is said to be dead when
there is no residual energy in gateway. We have compared
the results among ISFLA, ISFLA-ELR and ESFLA-RW.
Experiments are performed for one dataset from each cate-
gory of small, medium and large datasets. Input 1, from
small dataset, input 6 from medium dataset and input 11
from large dataset are used. A violin plot representation is
used to show the residual energies of gateways before and
after the load reduction phase in Figure 21 for input 15. A
violin plot is similar to boxplot but gives a better idea

DE GRUYTER

ISFLA == ESFLA-RW

Enhanced SFLA for gateways load balancing in WSNs =—— 453
ISFLA == ESFLA-RW

125

100
%
g 715
3
&
£
S 50
E
E

25

Input 6 Input7 Input 8 Input9 Input 10

(b)

ISFLA == ESFLA-RW

E]
13
S
=3
£
L
8
E
B 5
Input 1 Input 2 Input 3 Input 4 Input5
(a)
300
200
2}
°
=
=
o
@
L
8
E
& 100
(<)
Input 11 Input 12

Input 13

Input 14 Input 15

Figure 20: Comparison of ISFLA and proposed ESFLA-RW using execution time. (a) Small dataset, (b) medium dataset, (c) large dataset.

about the state of population. The minimum value in the
graph shows the lowest residual energy in the gateway. It

Table 5: Comparison of ISFLA and ESFLA-RW using energy con-
sumption (in Nanojoules)

Equal load Unequal load

Inputs ISFLA ESFLA-RW ISFLA ESFLA-RW
Input 1 60,707 60,595 70,128 64,056
Input 2 121,178 121,135 135,710 131,736
Input 3 242,635 242,474 271,522 262,315
Input 4 685,200 683,397 786,166 751,549
Input 5 989,371 986,837 1,127,377 1,064,412
Input 6 1,360,238 1,357,708 1,543,514 1,530,097
Input 7 7,442,817 7,405,117 8,417,233 8,283,581
Input 8 13,524,798 13,452,526 15,290,417 15,037,068
Input 9 19,606,859 19,499,935 22,163,759 21,790,554
Input 10 25,688,760 25,547,345 29,037,112 28,544,040
Input 11 31,770,313 31,594,754 35,909,979 35,297,526
Input 12 34,615,050 34,285,233 39,426,381 38,836,686
Input 13 39,115,236 38,751,823 43,399,021 42,878,173
Input 14 41,688,951 41,410,116 47,550,268 46,645,722
Input 15 46,493,802 46,187,884 52,914,409 52,009,816

can be observed that the minimum gateway energy is
increased after applying load reduction phase leading to
increase in network lifetime. Table 6 shows the obtained
results. It is observed that the lifetime of a gateway is
increased from 9 to 15%.

les

1.000 - T T T T T T T T g e

o

©

©

®
L

Residual Gateway Energy (in Nanojoules)

<) o =} <) <) =]
0 0 © © © 13
<3 3 © © © ©
o ®© o N & o
L L L N L L
I
I
I
L
1
r
I
I

L —— Before Load Reduction Phase
L —— After Load Reduction Phase

0.984

T T T

10 20 30 40 50
Number of iterations

Figure 21: Residual energies of gateways before and after the load
reduction phase.

454 —— Amol Adamuthe and Abdulhameed Pathan

DE GRUYTER

Table 6: Comparison of ISFLA, ISFLA-ELR and ESFLA-RW using first gateway die measure

Inputs ISFLA ISFLA-ELR ESFLA-RW % improvement in ISFLA-ELR % improvement in ESFLA-RW
Input 1 21,420 23,268 23,331 9

Input 6 4802 5436 5498 13 14

Input 11 136 157 155 15 14

5.2.6 Convergence of algorithms

Convergence demonstrates how rapidly fitness is improved
with respect to algorithm iterations. Experiments are
performed for two datasets from each category of small,
medium and large datasets. Input 1 and input 5 from
a small dataset, input 6 and input 10 from medium
dataset, while input 11 and input 15 from large dataset
are used. The best fitness value obtained at each iteration
is measured. Figure 22 shows that the convergence
of proposed ESFLA-RW is better than ISFLA. Average
NFEs and number of iterations required for convergence
are proportional. Enhanced versions of SFLA required
less NFEs.

5.3 Effect of algorithm-specific parameters
on ISFLA and ESFLA-RW

5.3.1 Effect of frog population size

Experiments are performed for three input datasets, one
from each category of small, medium and large. The best
fitness value obtained from ESFLA-RW by varying the frog
population sizes is measured with equal and unequal load
on sensors. Results from Figure 23 indicates that better
fitness value is obtained with increase in the number of
frogs.

Experiments are conducted to test the effect of the
frog population size on convergence performance of

w= |SFLA (Input1) == ESFLA-RW (Input 1) ISFLA (Input5) == ESFLA-RW (Input5) w= |SFLA (Input6) == ESFLA-RW (Input6) ISFLA (Input 10) == ESFLA-RW (Input 10)
15
\ 16
15
1
H E
; ; 14
w 0
g g
bt 05 Z 13
12
0 11
0 10 20 30 40 50 0 10 20 30 40 50
(a) Number of Iterations (b) Number of Iterations
== |SFLA (Input11) == ESFLA-RW (Input 11) ISFLA (Input 15) == ESFLA-RW (Input 15)
2
18
2
d
>
> 16
@
2
=
w
14
12
0 10 20 30 40 50
(C) Number of Iterations

Figure 22: Convergence of ISFLA and proposed ESFLA-RW. (a) Small dataset, (b) medium dataset, (c) large dataset.

DE GRUYTER Enhanced SFLA for gateways load balancing in WSNs =—— 455

@ Input5 @ Input10 Input 15 @ Input5 @ Input10 Input 15

N

14 14
2 2
s . . . s
1] "
0 0
£ £
o 12 w 13

10 12

10 20 50 100 200 10 20 50 100 200
Number of Frogs Number of Frogs
(a) (b)
@ Input5 @ Input10 Input 15 @ Input5 @ Input10 Input 15

16 16

14 14
2 2 RS
S s
" "
; —— . . . ;
E 12 E 12 ‘\‘—\.\‘\.

10 10

10 20 50 100 200 10 20 50 100 200
(c) Number of Frogs (d) Number of Frogs

Figure 23: Effect of frog population size on performance of ISFLA and proposed ESFLA-RW. (a) ISFLA - equal Load, (b) ISFLA - unequal load,
(c) ESFLA-RW - equal load, (d) ESFLA-RW - unequal load.

Frog Sizes Frog Sizes
® 10 ®20 50 @ 100 @ 200 ® 10 ®20 50 @ 100 @ 200
1.9 1.9
18 18
8 a7 8 a7
s s
@ @
2 16 2 16
£ E
" * \
14 14
10 20 50 100 200 10 20 50 100 200
(a) Number of Iterations (b) Number of Iterations
Frog Sizes Frog Sizes
® 10 ®20 50 @ 100 @ 200 ® 10 ®20 50 @ 100 @ 200
18 18

Fitness Value
5 5 o
Fitness Value
5 5 &

h\

10 20 50 100 200 10 20 50 100 200

(C) Number of Iterations (d) Number of Iterations

Figure 24: Effect of frog population size on convergence of ISFLA and proposed ESFLA-RW. (a) ISFLA — equal load, (b) ISFLA - unequal load,
(c) ESFLA-RW - equal load, (d) ESFLA-RW - unequal load.

456 —— Amol Adamuthe and Abdulhameed Pathan

algorithms. Experiments are performed on large input
dataset (input 15). The best fitness value obtained from
ESFLA-RW by varying the frog population sizes is mea-
sured. The obtained results, shown in Figure 24, indicates
that frog population size has an impact on the conver-
gence rate of algorithms. Performance of population-
based heuristic algorithms depends on the population
diversity. Large population diversity leads to better
exploration of search space. The obtained results vali-
date the impact of frog population size on performance
of SFLA.

5.3.2 Effect of probability of information exchange

This section presents the impact of probability of infor-
mation exchange on performance of ISFLA and ESFLA-
RW. A random value between O to 1 is generated for
each local exploration, if the generated value is less
than probability of information exchange then informa-
tion exchange is carried out to improve frog, otherwise
the worst frog improvement is skipped. This concept is
similar to crossover rate in genetic algorithms.

== Inputt (ISFLA) == Input1 (ESFLA-RW) Input5 (ISFLA) == Input5 (ESFLA-RW)

15

—

1

02 04 06 08 10

Fitness Value

(a) Probability of information exchange

== Inputt (ISFLA) == Input1 (ESFLA-RW)
15

DE GRUYTER

Experiments are performed for two input datasets
from each category of small, medium and large datasets.
Input 1 and input 5 from a small dataset, input 6 and
input 10 from medium dataset, while input 11 and input
15 from large dataset are taken. The probability of infor-
mation exchange is tuned from 0.1 to 1.0 with a step size
of 0.1. The best fitness values obtained for various prob-
ability of information exchange are noted down. The
obtained results are shown in Figure 25. It is observed
from the graphs that to achieve better fitness, probability
of information exchange should be 1, which means infor-
mation exchange should always be carried out to improve
local exploration and improve the final results.

5.3.3 Effect of probability of energy-biased load
reduction phase

This section presents the impact of probability of energy-
biased load reduction phase on performance of ISFLA
and ESFLA-RW. A random value between 0 and 1 is gene-
rated for each local exploration; if the generated value is
less than the probability of energy-biased load reduction,

== Input6 (ISFLA) == Input6 (ESFLA-RW) Input10 (ISFLA) == Input10 (ESFLA-RW)
17
16
g 15
K
»
»
a
2 14
=
'S
13
12
02 04 06 08 10
(b) Pr ity of information
Input5 (ISFLA) == Input5 (ESFLA-RW)

—

1

2

3

s

ry

2

g \\
[05

0
02 04 06 08 1.0

(c) Probability of information exchange

Figure 25: Effect of probability of information exchange on performance of ISFLA and ESFLA-RW. (a) Small dataset, (b) medium dataset, (c)

large dataset.

DE GRUYTER

== Inputt (ISFLA) == Input1 (ESFLA-RW) Input5 (ISFLA) == Input5 (ESFLA-RW)

15

125

0.75

P —— e N R
S e S [S B ——

025

Fitness Value

02 04 06 08 10
(a) Probability of energy biased load reduction
== |nput11 (ISFLA) == Input11 (ESFLA-RW)

155

02 04

Enhanced SFLA for gateways load balancing in WSNs =—— 457

== Input6 (ISFLA) == Input6 (ESFLA-RW) Input10 (ISFLA) == Input10 (ESFLA-RW)

16

Fitness Value

02 04 06 08 10

(b) Probability of energy biased load reduction

Input15 (ISFLA) == Input15 (ESFLA-RW)

Fitness Value
g

06 08 10

(c) Probability of energy biased load reduction

Figure 26: Effect of probability of energy-biased load reduction phase. (a) Small dataset, (b) medium dataset, (c) large dataset.

then load reduction phase is carried out to improve frog,
otherwise the phase is skipped. This concept is similar to
mutation rate in genetic algorithms.

Experiments are performed for two input datasets
from each category of small, medium and large datasets.
Input 1 and input 5 are small datasets, input 6 and input
10 are medium datasets and input 11 and input 15 are
large datasets. The probability of energy-biased load
reduction phase is tuned from 0.1 to 1.0 with a step size
of 0.1. The best fitness values obtained for various prob-
ability of energy-biased load reduction phases are noted
down. The obtained results are shown in Figure 26. It is
observed from the graphs that the effect of probability of
energy-biased load reduction phase is small as compared
to the effect of probability of information exchange on
these algorithms.

6 Conclusions

This article presented an ESFLA, which is an extension
of the ISFLA presented by Edla et al. [19] for load balan-
cing of gateways in WSNs. This article presented three

variations to improve the local exploration of the SFLA.
First variation (ESFLA-GG) replaces the worst frogs of
trailing half sub-memeplexes with the global best frog.
Second variation (ESFLA-SS) used a probability-based
stochastic sampling operator to select source and target
frogs. Third variation (ESFLA-RW) used a probabilistic
RW operator to select source frog, and the worst frog of
sub-memeplex is a default target frog. RW operator in the
local exploration phase gives wide exposure to choose
the frog for information exchange rather than always
sticking to the best frog. Also, the article presented a
novel energy-biased load reduction phase. This phase
focuses on improving the survival of gateways with
lowest residual energy by reducing its load. This leads
to load balancing and increase in the lifetime of the gate-
ways. We have compared the proposed variations of
ESFLA with ISFLA presented by Edla et al. [19] for mul-
tiple datasets of varying scenarios of WSNs. The experi-
mental results show that the proposed ESFLA-RW performs
better than ISFLA in terms of load balancing, best solu-
tion, standard deviation, network energy consumption,
network lifetime and convergence rate. Effect of algo-
rithmic parameters on performance of ISFLA and ESFLA-
RW is investigated. Large frog population size improves

458 —— Amol Adamuthe and Abdulhameed Pathan

the chances of diversity and exploration, which lead to
better results and fast convergence. Results show that
higher probability of information exchange and energy-
biased load reduction phase gives better solution for ISFLA
and ESFLA-RW.

Edla et al. [19] reported that the ISFLA algorithm is
better when compared with other load balancing techni-
ques, namely NLDLB, SBLB, SGA and NGA. Results show
that the proposed ESFLA-RW is better than ISFLA for load
balancing of gateways in WSNs in terms of the several
parameters. Although there is one potential limitation
that the execution time of ESFLA-RW is slightly higher
than ISFLA due to the introduction of an additional RW
selection phase. There is scope to investigate the perfor-
mance of proposed variations to mathematical bench-
mark functions with higher dimensions. The future work
is to improve the fitness function considering the energy
required by gateways to aggregate data before sending
them to the base station.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: All data generated or ana-
lysed during this study are included in this published
article.

References

[1] I F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer networks,
vol. 38, no. 4, pp. 393-422, 2002.

[2]). L.Burbank, P. F. Chimento, B. K. Haberman, and W. T. Kasch,
“Key challenges of military tactical networking and the elusive
promise of MANET technology,” IEEE Commun. Mag., vol. 44,
no. 11, pp. 39-45, 2006.

[3]). Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, M.
Welsh, “Wireless sensor networks for healthcare,” Proc. IEEE,
vol. 98, no. 11, pp. 1947-1960, November 2010.

[4] H.]J. Korber, H. Wattar, and G. Scholl, “Modular wireless real-
time sensor/actuator network for factory automation applica-
tions,” IEEE Trans. Indust. Inform., vol. 3, no. 2,
pp. 111-119, 2007.

[5] O. Palagin, V. Romanov, I. Galelyuka, O. Voronenko, D.

Artemenko, O. Kovyrova, and Y. Sarakhan, “Computer devices

and mobile information technology for precision farming,” In:

2013 IEEE 7th International Conference on Intelligent Data

Acquisition and Advanced Computing Systems (IDAACS), |EEE,

vol. 1, September 2013, pp. 47-51.

G. Anastasi, M. Conti, M. DiFrancesco, and A. Passarella,

“Energy conservation in wireless sensor networks: A survey,”

Ad hoc networks, vol. 7, no. 3, pp. 537-568, 2009.

(7]

(8]

(10]

(11]

(12]

(13]

(16]

(17]

(18]

(20]

(21]

(22]

DE GRUYTER

C.Y. Chong and S. P. Kumar, “Sensor networks: evolution,
opportunities, and challenges,” Proc. IEEE, vol. 91, no. 8,

pp. 1247-1256, 2003.

Y. K. Yousif, R. Badlishah, N. Yaakob, and A. Amir, “An energy
efficient and load balancing clustering scheme for wireless
sensor network (WSN) based on distributed approach,”

J. Phys.: Conf. Ser., vol. 1019, no. 1, p. 012007, June 2018,
10P Publishing.

C. P. Low, C. Fang, J. M. Ng, and Y. H. Ang, “Efficient load-
balanced clustering algorithms for wireless sensor networks,”
Comput. Commun., vol. 31, no. 4, pp. 750-759, 2008.

P. Kuila and P. K. Jana, “A novel differential evolution based
clustering algorithm for wireless sensor networks,” Appl. Soft
Comput., vol. 25, pp. 414-425, 2014.

S. Mor and M. V. Saroha, “Load balancing in wireless sensor
networks,” Int. J. Softw. Web Sci., vol. 4, no. 2,

pp. 116-119, 2013.

G. Gupta and M. Younis, “Load-balanced clustering of wireless
sensor networks,” In: IEEE International Conference on
Communications, 2003. ICC’03. (Vol. 3), IEEE, May 2003,

pp. 1848-1852.

P. Kuila and P. K. Jana, “Energy efficient clustering and routing
algorithms for wireless sensor networks: Particle swarm opti-
mization approach,” Eng. Appl. Artif. Intel., vol. 33,

pp. 127-140, 2014.

P. Kuila and P. K. Jana, “Energy efficient load-balanced clus-
tering algorithm for wireless sensor networks,” Proc. Tech.,
vol. 6, pp. 771-777, 2012.

F. Fanian and M. K. Rafsanjani, “Memetic fuzzy clustering
protocol for wireless sensor networks: Shuffled frog leaping
algorithm,” Appl. Soft Comput., vol. 71, 568-590, 2018.

Y. Liao, H. Qi, and W. Li, “Load-balanced clustering algorithm
with distributed self-organization for wireless sensor net-
works,” IEEE Sensors J., vol. 13, no. 5, pp. 1498-1506, 2012.
J. S Leu, T. H. Chiang, M. C. Yu, and K. W. Su, “Energy efficient
clustering scheme for prolonging the lifetime of wireless
sensor network with isolated nodes,” IEEE Commun. Lett.,
vol. 19, no. 2, pp. 259-262, 2014.

V. S. Gattani and S. H.)afri, “Data collection using score-based
load balancing algorithm in wireless sensor networks,” In:
2016 International Conference on Computing Technologies and
Intelligent Data Engineering (ICCTIDE’16), IEEE, January 2016,
pp. 1-3.

D. R. Edla, A. Lipare, R. Cheruku, and V. Kuppili, “An efficient
load balancing of gateways using improved shuffled frog
leaping algorithm and novel fitness function for WSNs,” IEEE
Sensors J., vol. 17, no. 20, pp. 6724-6733, 2017.

P. S. Rao and H. Banka, “Energy efficient clustering algorithms
for wireless sensor networks: novel chemical reaction opti-
mization approach,” Wirel. Netw., vol. 23, no. 2,

pp. 433-452, 2017.

D. R. Edla, V. Deshmukh, R. Cheruku, S. D. Saheeka, and B.
Yadav, “A novel green stable evolutionary routing algorithm
for energy efficiency in WSNS,” In: 2017 International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), IEEE, September 2017, pp. 724-728.

P. K. Agarwal and C. M. Procopiuc, “Exact and approximation
algorithms for clustering,” Algorithmica, vol. 33, no. 2,

pp. 201-226, 2002.

DE GRUYTER

[23] M. Rout and K. M. Koudjonou, “An evolutionary algorithm
based hybrid parallel framework for Asia foreign exchange

rate prediction,” Nature Inspired Computing for Data Science,

Cham: Springer, 2020, pp. 279-295.

[24]). R. S Iruela, L. G. B. Ruiz, M. C. Pegalajar, and M. I. Capel,

“A parallel solution with GPU technology to predict energy

consumption in spatially distributed buildings using evolu-
tionary optimization and artificial neural networks,” Energy

Convers. Manag., vol. 207, p. 112535, 2020.

[25] S. Pulipati and M. Ramakrishnan, “Topological and Attribute
Link Prediction using Firefly algorithm,” Open Comput. Sci.,

vol. 10, no. 1, pp. 33-41, 2020.

[26] P. Kaur and M. Sharma, “Diagnosis of human psychological

disorders using supervised learning and nature-inspired

computing techniques: a meta-analysis,” J. Med. Syst., vol. 43,

no. 7, pp. 204, 2019.

[27] M. Sharma, G. Singh, R. Singh, and G. Singh, “Analysis
of DSS queries using entropy based restricted genetic
algorithm,” Appl. Math. Inform. Sci., vol. 9, no. 5,
pp. 2599, 2015.

[28] M. Sharma and P. Kaur, “A comprehensive analysis of nature-
inspired meta-heuristic techniques for feature selection pro-

blem,” Arch. Comput. Methods Eng., pp. 1-25, 2020.
[29] S. C. Satapathy, A. Naik, and K. Parvathi, “Rough set and

teaching learning based optimization technique for optimal

features selection,” Cent. Eur. J. Comput. Sci., vol. 3, no. 1,
pp. 27-42, 2013.

[30] A. Alarifi, A. Tolba, Z. Al-Makhadmeh, and W. Said, “A big data
approach to sentiment analysis using greedy feature selection
with cat swarm optimization-based long short-term memory

neural networks,” J. Supercomputing, vol. 76, no. 6,
pp. 4414—4429, 2020.
[31] S. Salcedo-Sanz, B. Saavedra-Moreno, A. Paniagua-Tineo,

L. Prieto, and A. Portilla-Figueras, “A review of recent evolu-
tionary computation-based techniques in wind turbines layout

optimization problems,” Open Comput. Sci., vol. 1, no. 1,
pp. 101-107, 2011.

[32] D. R. Edla, M. C. Kongara, and R. Cheruku, “SCE-PSO based
clustering approach for load balancing of gateways in wireless

sensor networks,” Wirel. Netw., vol. 25, no. 3,
pp. 1067-1081, 2019.

[33] N.A. Latiff, C. C. Tsimenidis, and B. S. Sharif, “Energy-aware
clustering for wireless sensor networks using particle swarm
optimization,” In: 2007 IEEE 18th International Symposium on

Personal, Indoor and Mobile Radio Communications, |EEE,
September 2007, pp. 1-5.

[34] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-leaping
algorithm: a memetic meta-heuristic for discrete optimiza-
tion,” Eng. Optim., vol. 38, no. 2, pp. 129-154, 2006.

[35] G.Y.Zhuand W. B. Zhang, “An improved shuffled frog-leaping
algorithm to optimize component pick-and-place sequencing

optimization problem,” Expert Syst. Appl., vol. 41, no. 15,
pp. 6818-6829, 2014.

[36] K. K. Bhattacharjee and S. P. Sarmah, “Shuffled frog leaping
algorithm and its application to 0/1 knapsack problem,” Appl.

Soft Comput., vol. 19, pp. 252-263, 2014.

[37] X. H. Luo, Y. Yang, and X. Li, “Solving TSP with shuffled frog-
leaping algorithm,” In: 2008 Eighth International Conference
on Intelligent Systems Design and Applications, |EEE, vol. 3,

November 2008, pp. 228-232.

Enhanced SFLA for gateways load balancing in WSNs

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

— 459

C. Fang and L. Wang, “An effective shuffled frog-leaping
algorithm for resource-constrained project scheduling pro-
blem,” Comput. Operat. Res., vol. 39, no. 5, pp.

890-901, 2012.

D. Lei and X. Guo, “A shuffled frog-leaping algorithm for hybrid
flow shop scheduling with two agents,” Expert Syst. Appl.,
vol. 42, no. 23, pp. 9333-9339, 2015.

J. Cai, R. Zhou, and D. Lei, “Dynamic shuffled frog-leaping
algorithm for distributed hybrid flow shop scheduling with
multiprocessor tasks,” Eng. Appl. Artif. Intel., vol. 90,
103540, 2020.

P. Kaur and S. Mehta, “Resource provisioning and work flow
scheduling in clouds using augmented shuffled frog

leaping algorithm,” J. Parallel Distr. Comput., vol. 101,

pp. 41-50, 2017.

J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, and X. Liu,

“A discrete shuffled frog-leaping algorithm to identify influ-
ential nodes for influence maximization in social networks,”
Knowledge-Based Syst., vol. 187, p. 104833, 2020.

J. Luo and M. R. Chen, “Improved shuffled frog leaping algo-
rithm and its multi-phase model for multi-depot vehicle
routing problem,” Expert Syst. Appl., vol. 41, no. 5,

pp. 2535-2545, 2014.

P. Roy, P. Roy, and A. Chakrabarti, “Modified shuffled frog
leaping algorithm with genetic algorithm crossover for solving
economic load dispatch problem with valve-point effect,”
Appl. Soft Comput., vol. 13, no. 11, pp. 4244-4252, 2013.

S. Sharma, T. K. Sharma, M. Pant,). Rajpurohit, and B. Naruka,
“Centroid mutation-embedded shuffled frog-leaping algo-
rithm,” Proc. Comput. Sci., vol. 46, pp. 127-134, 2015.

P. Sharma, N. Sharma, and H. Sharma, “Binomial crossover-
embedded shuffled frog leaping algorithm,” In: 2016
International Conference on Computing, Communication and
Automation (ICCCA), IEEE, April 2016, pp. 321-326.

P. Sharma, N. Sharma, and H. Sharma, “Elitism based shuffled
frog leaping algorithm,” In: 2016 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI), IEEE, September 2016, pp. 788-794.

H. Wang, X. Zhen, and X. Tu, “SFDE: Shuffled frog-leaping
differential evolution and its application on cognitive radio
throughput,” Wirel. Commun. Mob. Comput., vol. 2019, 2019.
J. Zhang and T. Yang, “Clustering model based on node local
density load balancing of wireless sensor network,” In 2013
Fourth International Conference on Emerging Intelligent

Data and Web Technologies, IEEE, September 2013,

pp. 273-276.

S. Hussain, A. W. Matin, and O. Islam, “Genetic algorithm for
hierarchical wireless sensor networks,” J. Netw., vol. 2, no. 5,
pp. 87-97, 2007.

P. Kuila, S. K. Gupta, and P. K. Jana, “A novel evolutionary
approach for load balanced clustering problem for wireless
sensor networks,” Swarm Evolut. Comput., vol. 12,

pp. 48-56, 2013.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless micro-
sensor networks,” In: Proceedings of the 33rd annual Hawaii
International Conference on System Sciences, |IEEE, January
2000, p. 10.

W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless

460 —— Amol Adamuthe and Abdulhameed Pathan

(54]

(55]

(56]

(571

(58]

microsensor networks,” IEEE Trans. Wirel. Commun., vol. 1,
no. 4, pp. 660-670, 2002.

S. Lindsey and C. S. Raghavendra, “PEGASIS: Power-efficient
gathering in sensor information systems,” In: Proceedings,
IEEE Aerospace Conference, IEEE, vol. 3, March 2002, p. 33.
0. Younis and S. Fahmy, “Distributed clustering in ad-hoc
sensor networks: A hybrid, energy-efficient approach,” In: I[EEE
INFOCOM 2004, IEEE, vol. 1, 2004.

J. Tillett, R. Rao, and F. Sahin, “Cluster-head identification in
ad hoc sensor networks using particle swarm optimization,”
In: 2002 IEEE International Conference on Personal Wireless
Communications, |IEEE, December 2002, pp. 201-205.

S. M. Guru, S. K. Halgamuge, and S. Fernando, “Particle swarm
optimisers for cluster formation in wireless sensor networks,”
In: 2005 International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, |EEE, December
2005, pp. 319-324.

B. Singh and D. K. Lobiyal, “A novel energy-aware cluster head
selection based on particle swarm optimization for wireless

(59]

(60]

[61]

[62]

DE GRUYTER

sensor networks,” Human-Centric Comput. Inform. Sci., vol. 2,
no. 1, pp. 13, 2012.

M. M. Eusuff and K. E. Lansey, “Optimization of water distri-
bution network design using the shuffled frog leaping algo-
rithm,” J. Water Resour. Plan. Manag., vol. 129, no. 3,

pp. 210-225, 2003.

J. E. Baker, “Reducing bias and inefficiency in the selection
algorithm,” In: Proceedings of the Second International
Conference on Genetic Algorithms, vol. 206, July 1987,

pp. 14-21.

T. Pencheva, K. Atanassov, and A. Shannon, “Modelling of a
roulette wheel selection operator in genetic algorithms using
generalized nets,” Int. J. Bioautomation, vol. 13, no. 4,

pp. 257-264, 2009.

P. N. Suganthan, N. Hansen,). J. Liang, K. Deb, Y. P. Chen,
A. Auger, and S. Tiwari, “Problem definitions and evalua-
tion criteria for the CEC 2005 special session on real-
parameter optimization,” KanGAL Report,

2005005(2005), 2005.

	1 Introduction
	2 Related work
	3 Background
	3.1 Network energy model
	3.2 SFLA

	4 ESFLA variations to balance the gateways, load in WSNs
	4.1 Frog (solution) representation
	4.2 Generation of initial populations
	4.3 Fitness calculation
	4.4 Memeplex arrangements
	4.5 Sub-memeplex arrangements
	4.6 Local exploration phase
	4.6.1 ESFLA with global guided
	4.6.2 ESFLA with stochastic universal sampling (ESFLA-SS)
	4.6.3 ESFLA with roulette wheel (RW) selection (ESFLA-RW)

	5 Experimental details, results and discussion
	5.1 Simulation details
	5.2 Results of ESFLA variations
	5.2.1 Average best fitness value
	5.2.2 Success of local exploration
	5.2.3 Execution time
	5.2.4 Energy consumption
	5.2.5 Results of proposed energy-biased load reduction phase
	5.2.6 Convergence of algorithms

	5.3 Effect of algorithm-specific parameters on ISFLA and ESFLA-RW
	5.3.1 Effect of frog population size
	5.3.2 Effect of probability of information exchange
	5.3.3 Effect of probability of energy-biased load reduction phase

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

