Open Comput. Sci. 2021; 11:146-160

DE GRUYTER

Research Article

Kaushik Mishra and Santosh Kumar Majhi*

A binary Bird Swarm Optimization based load
balancing algorithm for cloud computing

environment

https://doi.org/10.1515/comp-2020-0215
Received Mar 20, 2020; accepted Nov 28, 2020

Abstract: Task scheduling and load balancing are a concern
for service providers in the cloud computing environment.
The problem of scheduling tasks and balancing loads in a
cloud is categorized under an NP-hard problem. Thus, it
needs an efficient load scheduling algorithm that not only
allocates the tasks onto appropriate VMs but also main-
tains the trade-off amidst VMs. It should keep an equilib-
rium among VMs in a way that reduces the makespan while
maximizing the utilization of resources and throughput.
In response to it, the authors propose a load balancing al-
gorithm inspired by the mimicking behavior of a flock of
birds, which is called the Bird Swarm Optimization Load
Balancing (BSO-LB) algorithm that considers tasks as birds
and VMs as destination food patches. In the considered
cloud simulation environment, tasks are assumed to be
independent and non-preemptive. To evaluate the efficacy
of the proposed algorithm under real workloads, the au-
thors consider a dataset (GoCJ) logged by Goggle in 2018 for
the execution of cloudlets. The proposed algorithm aims
to enhance the overall system performance by reducing
response time and keeping the whole system balanced. The
authors have integrated the binary variant of the BSO al-
gorithm with the load balancing method. The proposed
technique is analyzed and compared with other existing
load balancing algorithms such as MAX-MIN, RASA, Im-
proved PSO, and other scheduling algorithms as FCFS, SJF,
and RR. The experimental results show that the proposed
method outperforms when being compared with the differ-
ent algorithms mentioned above. It is noteworthy that the
proposed approach illustrates an improvement in resource
utilization and reduces the makespan of tasks.

Kaushik Mishra: Department of Computer Science and Engineer-
ing, Veer Surendra Sai University of Technology, Burla, Odisha,
India, 768018

*Corresponding Author: Santosh Kumar Majhi: Veer Surendra
Sai University of Technology Sambalpur, Odisha India; Email:
smajhi_cse@vssut.ac.in

Keywords: Binary BSO, Bird Swarm Optimization (BSO),
Cloud Computing, DOI, Load balancing, Makespan, Re-
source utilization, Task scheduling

1 Introduction

Cloud computing is a new, popular technological trend in
terms of computing, utilization of infrastructures, storage,
networking, inclusive access services, and applications at
various domains. The cloud delivers an internet-based scal-
able, elastic, flexible, utility, and metered computing plat-
form based on a significant financial pay-per-use model.
The use of cloud services is often driven by a service-level
agreement (SLA) established between the cloud vendor
and service consumers through negotiation. The physical
resources can be encapsulated as abstract entities that de-
liver different levels of services to customers outside the
cloud [1]. Cloud computing refers to both the applications
delivered as services over the Internet and the hardware
and systems software in the data centers that provide those
services [2]. The applications delivered are often referred to
as Software-as-a-Service (SaaS), and the hardware and sys-
tem software delivered are referred to as Infrastructure-as-
a-service (IaaS) and Platform-as-a-Service (PaaS), respec-
tively [3]. It is considered a cloud when these services are
made available to different domains of people. When cloud
services are delivered to people in a pay-as-you-go pric-
ing model, it is called the public cloud. Private clouds are
made available exclusively for an organization, and com-
munity clouds address the specific needs of a community.
In contrast, hybrid clouds extract the benefits from both
the public and private clouds.

On the flip side, cloud computing is becoming popular
as the number of service consumers increases each day.
The need for storage, capacity, and network are also rising
with the increasing loads in data centers. Therefore, there
is a need for technology to assimilate these rising consumer
demands in the cloud. It could be possible through virtual-
ization technology that enables the creation of an abstract

3 Open Access. © 2021 K. Mishra and S. Kumar Majhi, published by De Gruyter. (cc) This work is licensed under the Creative Commons

Attribution 4.0 License

https://doi.org/10.1515/comp-2020-0215

DE GRUYTER

environment of the physical machine and has an efficient
scheduling and load balancing techniques for distributing
the loads among virtual machines (VMs).

During the scheduling process, tasks could be allo-
cated onto the virtual machines (VMs) beyond their capac-
ity, leading to an imbalance among the VMs. Hence, the
system needs to check to determine whether the system is
balanced. In some cases, resources are heavily loaded with
tasks, but others are lightly loaded. Thus, there is a need to
maintain an equilibrium among resources. This is referred

to as load balancing in the cloud computing environment.

Scheduling tasks and balancing the loads should be done
in a way that ensures the whole system is balanced by uni-
formly dispersing the loads across VMs because it compels
them to efficiently use the resources by diminishing the

makespan and amplify the efficiency of the overall system.

It is believed that a robust load balancing will im-
prove the Quality of Service (QoS) metrics such as through-
put, makespan, reliability, response time, scalability, delay,
and resource utilization [4]. Moreover, the problem of task
scheduling and load balancing in the cloud are catego-
rized under the NP-hard problem [5-7] because numerous
scheduling parameters are involved. Depending on system
situation, load balancing algorithms can be either static or
dynamic [8, 9]. Dynamic algorithms are the most suitable
load balancing algorithm when the requests and VMs are
diverse [10]. Furthermore, static algorithms (i.e., heuristics)
are more problem-specific and dependent on the current
state of the system, whereas dynamic (i.e., meta-heuristics)
are independent problem methods [11]. Others [12] have
suggested that meta-heuristic algorithms are used to avoid
the local optima problem. This algorithm allocates and re-
allocates the workloads to the VMs when there is a load
imbalance. Although cloud computing is dynamic in na-
ture, these algorithms are more suitable because they have
more effective scheduling and load balancing techniques.

This article presents a population-based load balanc-
ing algorithm called the binary bird swarm optimization-
based load balancing (BSO-LB) algorithm. This research
primarily focuses on two problems. First, it runs a load bal-
ancing algorithm to trade-off the imbalance among loads
across VMs. Once the system has found imbalance, the
loads are migrated from heavily-loaded VMs to lightly-
loaded VMs to create a balance among machines. Task
migration is performed using the cosine similarity and
compatibility of VMs with heavily-loaded tasks. The co-
sine similarity and the compatibility between the tasks of

heavily-loaded VMs and lightly-loaded VMs are estimated.

The task is migrated onto respective VMs if the compati-
bility is higher between them. After reaching uniformity

in loads on the system level, task scheduling is initiated.

A binary Bird Swarm Optimization based load balancing algorithm =— 147

The binary BSO algorithm maps tasks onto suitable VMs
by identifying the possible best positions. Finally, the gen-
erated continuous solutions are transformed into discrete
values using a small position value (SPV) rule. In a nutshell,
the contributions of this paper are as follows:

e provides a fair distribution of loads among VMs using
a nature-inspired meta-heuristic binary BSO (Bird
Swarm Optimization) algorithm

¢ surveys related works about load balancing algo-
rithms in cloud computing environments

¢ analyzes task mapping onto underloaded VMs, the
compatibility between the tasks of overloaded VMs,
and the available resources of underloaded VMs

¢ considers the binary position of each particle, a small
position value (SPV) rule has been applied with each
iteration

e provides an effective load balancing technique by
considering a fitness function from the objectives of
the cloud providers and cloud consumers simultane-
ously

¢ measures the efficacy by evaluating the proposed
algorithm against other existing algorithms

The remainder of this paper is organized by section.
Section 2 states the related research in the context of load
balancing and task scheduling. Section 3 briefly introduces
the BSO algorithm by highlighting the proposed load bal-
ancing formulation, followed by a step-by-step insight into
the proposed algorithm. Section 4 demonstrates the simu-
lation results and evaluates the proposed method, followed
by a discussion on the findings. Finally, future research di-
rections and concluding remarks are summed up in Section
5.

2 Related Work

Dynamic algorithms such as metaheuristic algorithms are
efficient in tackling the dynamic nature of task scheduling
in the cloud environment. In this section, related works
in the context of load balancing in cloud computing are
presented.

A proposed QoS-based min-min heuristic algorithm
considers both high and low QoS requests and is processed
separately [13]. Makespan has been taken as the QoS param-
eter, and this algorithm performs well compared to the basic
min-min algorithm. The major drawback of the min-min
algorithm is that it is unable to balance the loads among
machines evenly. Others have proposed three algorithms
for task scheduling in a heterogeneous multi-cloud envi-

148 =— K. Mishraand S. Kumar Majhi

ronment, including MCC, MEMAX, and CMMN [14]. The pro-
posed MCC algorithm is a single-phase, and the other two
algorithms have two-phase scheduling. They have taken
makespan and average utilization as the performance met-
rics and validated their algorithms on benchmark functions
and synthetic datasets as well [14]. Another study shows
that their algorithm performs better than RR, CLS, CMMS,
and CMAXMS. To achieve better utilization and efficiency,
an optimized task scheduling algorithm that adapts to the

advantages of other existing algorithms was proposed [15].

They compared the algorithm with some other well-known
load balancing algorithms and found that it outperforms
other algorithms.

Another study, inspired by the honey bee, presented
a load balancing algorithm based on PSO using a single-
objective function [16]. They evaluated the algorithm by
choosing the VM with the highest compatibility for process-
ing a request. They increased the utilization of resources
by 22% while reducing the makespan by 33%. The current
study is inspired by this approach. A honey bee-inspired
load balancing technique (HBB-LB) is proposed to balance
the loads amidst VMs [17]. They have taken the priorities of
tasks into account for the selection of VM. But the low prior-
ity tasks remain in the queue for the longest time in order to
execute. They used the Round Robin algorithm for assign-
ing the tasks and migration mechanism to transfer tasks
from heavily-loaded VM to underutilized VM. They have
compared their HBB-LB algorithm with the FIFO, WRR, and
DLB algorithms. An Ant Colony optimization-based load-
balancing algorithm has been proposed that considers ho-
mogeneous tasks [18]. Their approach performed well in
reducing makespan and response time but offers low scal-
ability. Another study proposed a natural selection load
balancing strategy using the Genetic Algorithm (GA) [19].
This algorithm tries to create possible solutions by mapping
tasks onto VMs and evolving that solution over and over to
find the solution that best positions onto VMs. The authors
try to eliminate the inappropriate distribution of loads onto
VMs in terms of its execution time.

Their algorithm offers low makespan and high resource
utilization, but it is not reliable and is fault-tolerant. It is
also insufficient for a heterogeneous environment. Aiming
to reduce the total capital and power consumption of the
server while migration, another study proposed a dynamic
well-organized load balancing (DWOLB) algorithm using
the GA [20]. This algorithm is meant for migrating the VMs
at a server level. They claim that their proposed algorithm
reduces the total cost and power consumption by approx-
imately 25% compared to other existing load balancing
techniques. Another multi-objective algorithm based on GA
was proposed to improve the load balance and reduce the

DE GRUYTER

total power consumption in a cloud datacenter [21]. They
effectively improved resource utilization while diminish-
ing the power consumption of the datacenter. However,
they have not considered the makespan, which is one of
the prime factors while balancing the loads among VMs
within a datacenter. By considering a heterogenous envi-
ronment, authors in [22] have proposed a JAYA-based load
balancing approach using the cloud analyst. Their algo-
rithm considerably reduced the service time and response
time but lacks in tackling the dynamically independent
tasks. The algorithm is not validated for makespan and re-
source utilization which are the primary objectives of a load
balancing procedure.

To get rid of sinking into local optima and have a bet-
ter performance, a hybrid load balancing algorithm that
integrates PSO with simulated annealing (SA) was pro-
posed [23]. This algorithm aims to improve the utilization
ratio of resources and convergence speed to the local op-
tima. The algorithm shows better efficiency than SA, GA,
and ACO. The current study compares the proposed algo-
rithm with this algorithm. To improve the scheduling mech-
anism of VMs in cloud-based computing, authors in [24]
have implemented a hybrid approach in combination of an
ABC algorithm with the heuristic approach. The effective-
ness of the algorithm is validated in both homogenous and
heterogeneous environments by considering the makespan
and load-balancing factors. This algorithm significantly
reduced the above considered conflicting factors. This al-
gorithm could have been validated against a real-world
dataset by considering other QoS parameters like resource
utilization, response time, etc. Finally, authors in [25] have
developed a multi-criteria scheduling algorithm in an amal-
gamation of principles of quantum computing with the
nature-inspired gravitational search algorithm for multi-
processor computing systems. In this research, both homo-
geneous and heterogeneous environments are considered
to validate the efficacy of the proposed algorithm. It has
been observed from the results that it outperforms for the
considered scheduling objectives such as makespan, re-
source utilization, load-balancing. This algorithm could
have improved in reducing energy consumption and for a
workflow application.

3 BSO-based Load-balancing
Algorithm

First, the authors explain the standard BSOA (Bird Swarm
Optimization Algorithm) based optimization method, elu-

DE GRUYTER

cidate the proposed load balancing algorithm, and then
provide a detailed insight into the proposed algorithm.

3.1 The standard BSO

BSO is one of the recent inventions in the field of computa-
tional and swarm intelligence to solve the global optimiza-
tion problem. This new population-based meta-heuristic
algorithm was introduced by Meng et al. (2015) [26]. It is a
bio-inspired optimization algorithm that strives to achieve
global optima while getting over the local optima problem.
It is inspired by the social behaviors among a flock of birds
and their social interactions searching for food patches. It is
based on three key mimicking behaviors of birds: foraging,
vigilance, and flight. It is similar to other meta-heuristics
algorithms that use a guided randomization mechanism to
generate solutions with high diversity property [27]. These
behaviors of birds are conceptualized by five rules [26-28].

According to rule one, each bird can either act as a for-
ager or keep vigilance at one time. This process of foraging
and keeping vigilance is modelled as a stochastic process.
In the problem environment, tasks are removed from the
overloaded VMs and are placed onto the underloaded VMs
based on the availability of resources. The idea of foraging
is related to the problem of mapping the tasks (as birds)
onto the required VMs (as a destination food source). The
behavior of keeping vigilance is analogous to the particle of
having the best position. If a uniform random number in (0,
1) is smaller than P, P € (0, 1), a constant value, the bird
will forage for food. Otherwise, the bird would continue
vigilance.

Rule two states that during the foraging process, each
bird searches for a food position based on their previous ex-
perience and the previous experiences of the flock of birds.
The tasks keep updating their position according to their

experience with respect to food position (destination VM).

Figuratively, in the problem environment, particles keep
updating their position with respect to their pj.s; and maps
onto respective VM. This is formulated from Equation 1, and
the initial position is calculated from Equation 2.

XK1 = XKy e xrand; x (pbest,- - X{‘) +sxrand, (1)

x (gbest - X{()

@

XK = Xonin + (Xmax — Xpin) x rand

Note. X} is the initial position of particle O at iteration k,
X nin is the minimum value (-0.4), Xmax is the maximum
value (4.0), X f(is the current position of particle i at iteration

A binary Bird Swarm Optimization based load balancing algorithm = 149

k, X¥*1 is the position vector of a particle i at iteration k,
Dbest, is the best position of particle i, gp; is the global
best position of the particle in the swarm, rand; are the
random numbers between O and 1, i = 1,2 (rand = rand; =
rand, = 0.5), C and S are the cognitive and acceleration
coefficient, which are the two positive constant numbers
(in our paper, C = S = 1.5).

According to rule three, while keeping vigilance, each
bird would inevitably compete with each other to move
closer to the centre of the flock rather than directly going
to the centre. The particle has a lower fitness value and
is considered the best position to move toward the centre
of the swarm. This behavior of keeping vigilance could
be correlated to the problem environment as the particles
(tasks) with the least positions compete to move toward
the forager with the best position. This is formulated from
Equations 3, 4, and 5, respectively.

Xgﬁl = X%‘ +Aq (pmean; - Xf() 3
xranda + A, (pbest, —Xﬁ‘) x randy,
A1 =ay xexp (—M x N))
pbest,-

Ay =a; xexp Pest; ~ Pbest N *Pbest,)
‘pbest, _pbesti’ +€ | Dbest T €

Note. pmean; is the average position of the whole swarm,
Dbest, is the best position of 1™ particle (1 # i, | is chosen
from particle 1 to N), rand, is the random number between
0 and 1, rand,, is the random number between -1and 1, A,
and A are the indirect and direct effects induced by the
surroundings, ai is the two positive constants (i = 1, 2{i €
(0,2)}), Pest, is the best fitness value of the i" particle,
Pbest; is the sum of the swarms’ best fitness value, € is used
to avoid zero-division error, and N is the total number of
particles.

Rule four states that frequently, birds fly to another site
in search of food. While flying, they often switch between
producer and scrounger. The bird with the best fitness value
would be the producer, and the bird with the worst fitness
value would be the scrounger. The birds falling between
the best and worst fitness values would randomly choose
to be producer or scrounger. Producers and scroungers can
be thought of as tasks (birds) having the best and worst
fitness values. As the producers are always in search of a
food source, it could be thought of as the tasks (producer) of
overloaded VMs are always in search of underloaded VMs
(food source). The scroungers are also the tasks (birds) with
the least fitness values of underloaded VM who share the

150 —— K. Mishra and S. Kumar Majhi

same VM (food source) with the producer. The bird would
switch their flight behavior at FQ interval of time. This flight
behavior of birds is modelled in Equations 6 and 7.

Xkt = x4 randy (0, 1) x XX (6)

Xk = x4 (X{(—Xf‘) x FL x rand (0, 1) %)

Note. randn (0, 1) is a random number drawn from Gaus-
sian distribution random number with mean 0 and stan-
dard deviation 1, Xf‘ (1 # 1), lis chosen from particles 1 to N,
and FL denotes the probability that the scrounger would
follow the producer to search for food, where (FL < [0, 2]).

Finally, rule five states that producers actively search
for food sources, and the scroungers follow the producers.
Upon arriving at the newly found food source, producers
forage the food source again, and scroungers feed on the
food source found by the producer. After being placed in
one of the underloaded VMs (food source), the task (pro-
ducer) still finds the best position and forages the food

DE GRUYTER

source again. The scroungers maintain the best position
in one of the underloaded VMs (food source) found by the
producer. This searching and feeding behavior of producer
and scrounger can be separated in Equations 6 and 7.

The flowchart of the BSO based load-balancing algo-
rithm is depicted in Figure 1.

3.2 The proposed load balancing Problem
Formulations

An excellent approach to load balancing can reduce the
request waiting time while maximizing the utilization of
resources. It can prevent the VMs from either getting over-
loaded or underloaded and increases the uniformity in
loads among VMs.

The load balancing approach in this study is inspired
by the improved particle swarm optimization (PSO) based
load balancing [16] and honey-bee inspired load balancing
(HBB-LB) [17]. Distributing loads and searching for food by

Initialize tasks and VMs as
particles. t= 0. tjax— 100

Update the position of particles

—)l Run load balancing algorithm

1

according 1o the mimicking
behavior of birds

FEvaluate Fitness of each particle
using Eq. (11)

1

Search for new Food
source using Eq. (6)

Scrounger: Forge by following

¥

the Producer using Eq. (7)

on Fitness value

Modify the solution based

Accept the solution

1

Keep the previous
solution

i

Transform the solution into discrete
using SPV rule and update it

Figure 1: Flowchart of the BSO-based load balancing

DE GRUYTER

swarm are correlated. Each bird in the swarm resonates as
a particle in the cloud environment. Distributing the tasks

among VMs is similar to how birds explore food sources.

Empty food sources or already explored food sources act
like an overloaded VM. So, there is a need to find another
food source with the available resources and for finding a
new underloaded VM for migrating the tasks. The fitness
value of all particles is evaluated through the fitness func-
tion specified for a given problem to find the best position
of a particle. The best position keeps updating at the end
of every iteration. For instance, each particle in the cloud
has its own fitness value; based on the best fitness value,
tasks are assigned among VMs.

The load balancing problem is formulated using the
following definitions.

Task Set: Consider ataskset T = {Tq, T», IT3,..., Tn} Of
independent and non-preemptive tasks, where T;, 1 <i<n
is the i™" task with a million sets of instructions (MI) in 1;.

VM Set: Let a set of VM = {VMq, VM,, VM3, ..
where VM;, 1 < i <
hosts.

.y VMm}
m is deployed under the number of

QoS Performance Metrics: QoS refers to throughput, re-
sponse time, processing time, latency, availability, reli-
ability, resource utilization, Degree of Imbalance (DOI),
makespan, and power so that tasks can run in time and
without any delay. These play a very vital role in measur-
ing the efficiency of any algorithm. In this paper, we have
considered makespan, response time, resource utilization,
and degree of Imbalance (DOI) as the performance metrics.

Task Completion Time: the time taken to execute a task
T; by a VM; that is computed by the difference between the
start time and finish time [36]. It is denoted in Equation 8.

Ter, =FT (Tj) - ST(Tj) (8)
Makespan: refers to the maximum completion time of a
task T; among the VMs [29]. Tcr, is the completion of a task
T; by VM;, as depicted in Equation 9.

©)

Makespan =

max {Tcr,li=1,2,...,n;j=1,2,...,m}

Utilization: the degree of utilization of VMs [37, 38]. The
objective of load balancing is to maximize the utilization
of resources in order to minimize the makespan. These
two terms are associated with a reverse linear relationship.
The average utilization of all VMs is calculated using Equa-

A binary Bird Swarm Optimization based load balancing algorithm = 151

tion 10 [30], where mis the total number of VMs.

2111 TCTij

_— 10
makespan x m (10)

Average Utilizationyy =
Response Time: is the time taken to respond to the users’
incoming request. The proposed method is taken as effi-
cient if the response time is low and is measured in ms.
Equation 11 calculates the response time where n is the
total number of users’ incoming request [31].

RT = nx Ter, 11)

Fitness Function: the fitness function for our proposed
load balancing algorithm to evaluate the fitness value of
particles. It is a problem specific. Our objective is to maxi-
mize resource utilization while minimizing the makespan
of the tasks and load imbalance among VMs. Therefore, the
authors consider a single objective function by keeping the
aforementioned objective into account. It is worth noting
that smaller the fitness value, so the particle has a better
position. Hence, the fitness function f,,; is defined using
Equation 12.

1

Makespan 12

fval =

x Average Utilizationyy

The load balancing problem is to map the tasks set T on
the VM set V (f,,;: T — V)ina cloud such that the following
objectives must satisfy: (1) the overall makespan should be
minimized; (2) the average utilization of resources should
be maximized by utilizing resources efficiently, and (3)
loads of the system should be uniformly distributed among
VMs to ensure a balanced system. These objectives are for-
mulated using the aforementioned QoS parameter defini-
tions.

3.2.1 LoadsofaVM

The total length of tasks that are assigned to a VM is called
load [17, 29, 32]. The load of every VM at time t is calculated
by the number of tasks assigned to VM at time ¢ divided by
the service rate of VM at time ¢. The load of a VM is denoted
using Equation 13.

NT(T, t)

LM O = st o

(13)

The load of all the VMs is calculated using Equation 14.

L= iL(VMi, t) (14)

i=1

152 = K. Mishra and S. Kumar Majhi

The average load of the system is estimated using Equa-
tion 15, where m is the total number of VMs.

1 m
Average System Load = ;L (VM;,) (15)
i

3.2.2 State of a VM group

To find the state of a VM group, the load of every VM will
be compared against the average system load of the over-
all system. Based on the comparison, the state of the VM
is identified as either underloaded (L (VM;, t) < Average
System Load), overloaded (L (VM;, t) > Average System
Load), or balanced (L (VM;, t) = Average System Load).

3.2.3 Degree of Imbalance (DOI)

The degree of imbalance of VMs is the barometer to find
the imbalances of tasks among VMs [18]. It is measured
using Equations 16 and 17 [4, 30], where Timax and Ty, are
the maximum and minimum completion time of tasks T;
among all VMs. Further, Tavg is the average of all tasks T;
of VMs. L is the length of total instruction, PEnum, is the
number of processing elements in the i VM, and PE MIPS;
are the million instructions per second of the it" VM.

Tmax - Tmin

DOI = (16)

avg

L

Ti= PEnum; x PEpps,

an

The degree of imbalance in the system is gauged by
identifying the lack of deviations in terms of loads at the
system level using the standard deviation (o). To find the
state of the VM group, it is essential to find whether the
system is balanced. If the value of the standard deviation is
less than or equal to the threshold value (TS;,) that ranges
between 0 and 1, then the system is balanced. Otherwise,
the system is either overloaded or underloaded. The value
of the threshold (TS;) depends on the average system load
due to the maximum capacity of the whole system. The load
of the entire system cannot exceed this maximum capacity.
Equation 18 is a barometer to estimate the deviation on the
whole system load and triggers the desired load balancing
operation.

%E:@L—Pﬂz (18)
i=1

DE GRUYTER

Note. PT; and PT is the processing time of all tasks on a
VM and the processing time of the entire VM, respectively.

The processing time of all the tasks on a VM (PT)) is
expressed using Equation 19, and the processing time of
all VMs is denoted using Equation 20.

J~ Average System Load
m
PT=) PT; (20)

3.2.4 Tasks Migration

The authors have adopted the following method, which
is inspired by prior research [33] for the sake of migration
of tasks onto underloaded VMs. CPU, storage, and BW are
the resources usage pattern of each and every task T; de-
noted as vector T;. Vector Tg__, is used to express the con-
sumption of total resources by n tasks and vector TR:W“ is
used to denote the available resources of underloaded VMs.
Whereas Tg expresses the vector of total resources of un-
derloaded VMs. These can be computed using Equations 21
and 22.

n

TRyws = O Ti (21)
i=1

TR:vaiI = TT}‘Q - TR:sed (22)

To estimate the compatibility between tasks of over-
loaded VMs, VMs are represented as a vector Ty, and the
available resources of underloaded VMs are represented
using the cosine similarity [16, 33] in the form of angle. The
value of angle indicates that greater similarity exists be-
tween tasks Ty and Ty if there a smaller value of angle.
Compatibility [16] between task and the VM can be esti-
mated with the help of the value of angle and the resource
utilization of that VM on which task is going to be mapped.
Compatibility is represented as 6, and the value of a is set to
0.5in this paper. The authors need to find the value of angle
at each iteration to formulate the compatibility between
VM tasks and resources. The authors used this method in
the load balancing approach to prevent the overloaded
condition in VM and make an efficient migration of tasks
to suitable underloaded VMs to trade-off the uniformity
amidst VMs. It is based on the task-resource usage pattern
vector and available resource usage pattern vector. angle
and Compatibility(6) are calculated using Equations 23

DE GRUYTER
and 24.
Tox Tg.
angle = cos™! M (23)
TO ‘TRavaiI
6=axangle+(1—a)xL (24)
Makespan

3.2.5 Binary BSO

In this contribution, the Small Position Value (SPV) rule [34,
35] is used to transform the generated continuous solutions
into discrete solutions. Since the basic BSO is a continuous
optimization technique, it will not be able to generate bi-
nary solutions for the problem like load scheduling, which
is a binary in nature. Thus, it needs to be mapped to a bi-
nary version to solve the load assignment problem in the
cloud environment.

The population of each particle of this problem is
initialized with a position and fitness value. For a prob-
lem of n tasks, we represent each particle as an N-
dimensional vector as X{ = (X1,X3,X3,...,X") where
Xi(ie {1,2,3,...,n}) is the number of tasks going to
schedule on X/ G e {1,2,3,...,m}) VMs. The position of
the particle is represented by X¥ = (X}, X?,X7,...,X"),
where X f‘ represents the position of i" particle with respect
to the n dimensions. Applying this SPV rule, a particle’s
continuous position value X = (X}, X, X7, ..., X7') will
be converted into discrete permutation sequences denoted
as Sk = (S}, 82,83, ...,57), where S{‘] is the assignment of
tasks implied by the particle i in the processing order at
iteration k with respect to the j* dimensions. To find the
destination resources, the authors convert sequences Sﬁ‘
into resource vector R¥ = (R}, R?, R}, ..., R}), where R¥
is represented as the n dimensional task processing on the
Rﬁ‘ resources. It is computed using Equation 25.

RF =S¥ mod m, (25)

where m is the total number of VM.
Permutation sequences S¥ is estimated from the val-
ues of particles’ position X¥. Smaller is the X¥ value, so is

Table 1: Completion time of tasks on each scheduling

A binary Bird Swarm Optimization based load balancing algorithm = 153

the first sequence value is assigned to that particle. For in-
stance, among the five particles, particle four has the small-
est position value X{»‘ . So, particle four will be assigned the
value of one as the dimension ranges from 1 to n. Further-
more, the next smallest particle will be assigned the next
smallest position value of two, and so on. Next, the resource
position vector Rﬁ‘ is computed by taking the mod of Sl’-(and
m (total number of VM).

The values of XX, S¥, and R¥ are computed at each
iteration, and the position of particles are updated simulta-
neously. This procedure of load balancing will keep going
until it meets its stopping or termination criteria. In this
paper, the authors have taken up to 100 iterations as the
stopping or termination point (tmax)-

3.2.6 lllustration of general task scheduling

The authors have illustrated a general task scheduling us-
ing the following examples. For illustration, a total of six
tasks are processed on three VMs. To find the completion
time of each task, the CloudSim is used [39, 40]. Table 1
shows the completion time of each task on three consec-
utive runs. On each iteration, tasks were assigned to re-
spective VMs separately. The second column of Tables 2, 3,
and 4 show the assigned tasks on the respective VMs. Based
on the completion time, the maximum completion time is
chosen as a Makespan, and then the resource utilization of
each VM is calculated. Furthermore, the average resource
utilization (ARU) is calculated by taking the average of re-
source utilization of the entire VM. The degree of imbalance
(DOI) is estimated for the whole system using Equations 16
and 17.

In the first scheduling, the makespan is 8.31, and
the ARU is 0.82. In the second and third scheduling, the
makespans are 7.67 and 7.30, whereas the values of ARU
are 0.83 and 0.92, respectively. Therefore, there is a grad-
ual reduction in the makespan while maximizing the ARU.
Hence, an efficient load balancing algorithm can reduce
the makespan while increasing the utilization of resources.
The value of DOI varies based on the algorithms used for
scheduling the tasks and balancing the loads. A consider-
able amount of graphs can be depicted when the number of

TASK1 TASK2 TASK3 TASK4 TASK5 TASK6
1st Run 3.75 4.00 2.29 3.24 2.98 4.31
2nd Run 3.60 3.12 4.18 3.49 2.62 2.28
3rd Run 3.10 4.00 4.22 2.80 4.20 3.00

154

=—— K. Mishra and S. Kumar Majhi

Table 2: The first task scheduling

DE GRUYTER

VMs Assigned Completion Makespan Resource Utilization Average RU (ARU) DOI
Tasks Time (RU)

VM1 13, T4 2.29+43.24=5.53 8.31 5.53 +8.31=0.66 (0.66 +0.80 +1.00) -+ 3=0.82 0.57

VM2 T1,T5 3.75+2.98=6.73 6.73+8.31=0.80

VM3 12,76 4.00+4.31=8.31 8.31+8.31=1.00

Table 3: The second task scheduling

VMs Assigned Completion Time Makespan Resource Utilization Average RU (ARU) DOI
Tasks (RU)

VM1 T2,T6 3.12 +2.28 =5.40 7.67 5.40 +7.67=0.70 (0.70+0.81+1.00) +3=0.83 0.59

VM2 T1, T5 3.60 +2.62 =6.22 6.22 +7.67=0.81

VM3 13, T4 4.18 +3.49=7.67 7.67 +7.67 =1.00

Table 4: The third task scheduling

VMs Assigned Completion Time Makespan Resource Utilization Average RU (ARU) DOI
Tasks (RU)

VM1 T1,T3 3.10+4.20=7.30 7.30 7.30+7.30=1.00 (1.00+0.95+0.95) +3=0.96 0.40

VM2 T2,T6 4.00+3.00=7.00 7.00 +7.30=0.95

VM3 15, T4 4.20+2.80=7.00 7.30=0.95

tasks increases. The above example shows how the reduc-
tion in makespan could lead to better resource utilization
using an effective load balancing technique.

3.3

The proposed Binary BSO-LB algorithm
INPUT: T ={Ty, T, Ts,..., Tn},
VM = {VMy, VM3, VM3, ..., VMn}

OUTPUT: Best possible mapping of tasks onto VMs with a balanced
system

BEGIN

1. Define particle and initialize particles’ position using Equation 2

2. for

for each particle,
Create an N-dimensional vector
VM = {VMy, VM3, VM3, ..., VM } where VM; (j €
{1, 2, ..., m}) represents the number of VM on which
task T; (i € {1, 2, ..., n})is going to be processed,

Calculate Completion time (TTC), makespan, Average re-
source utilization, and Response time using Equa-

tions 8, 9, 10 and 11,
end for;
each particle,
Estimate the load using Equations 13, 14 and 15,

end for;
3. Find state of the VM group based on Equation 15,
4. Task Migration based on VM group

/* initiate migration mechanism from OverloadedVM to Under-

loadedVM */

while (UnderloadedVM! = &)
Calculate the total resources used (TR 50q) and
total resources available (TR ,4i;) of all the Un-
derloadedVM using Equaions 21 and 22,
Find the cosine similarity (angle) and compa-
tibility (6) of tasks of OverloadedVM with Un-
derloadedVM using Equations 23 and 24,
end while
while (OverloadedVM! = & and UnderloadedVM! = &)
Get CloudletList which need to transfer
from OverloadedVM;
for every Cloudlet belongs to Cloudlet-
List does Insert Cloudlet into Unus-
edCloudletList (UUCL);
end for
end while
/* Sorting Cloudlet */
while (UnderloadedVM! = &)
Sort UnderloadedVM in ascending order based
on respective loads,
Rearrange the UnderloadedVM having the same
state of loads in descending order based on
Resource utilization;
Sort OverloadedVM in descending order based
on loads;
end while
/* Assigning Cloudlet to UnderloadedVM */
while (OverloadedVM! = @ and UnderloadedVM! = &)
for i =0 to #(OverloadedVM)
do

DE GRUYTER

Assign T;(OverloadedVM) — Un-
derloadedVM; based on com-

patibility (6) using Equation

24,
Check L (VM;, t) < Average Sys-
tem;
end for
end while
5. for each particle,

do
Calculate fitness value using Equation 12,
if (X015 xb)
Set the current fitness value as the new best position,
end if
Calculate the position using Equations 1, 3, 4, 5, 6 and 7,
end for
6. /* Update Particles’ position */
for each particle,
do
Update their position using Small Position Value (SPV)
rule based on Equation 25;
end for
7. |* Estimate deviation on load */
Calculate the standard deviation on system load using Equa-
tion 18,
if (0 < TSp)
The system is balanced;
else
Trigger load balancing;

Table 5: The algorithmic parameters

A binary Bird Swarm Optimization based load balancing algorithm = 155

8. Repeat steps (3) to (7) until reaching the equilibrium state of the

system.
END

4 Performance Evaluation

In this section, the authors present the simulation setup
and the experimental results conducted by various tests. A
detailed analysis of the results is presented in this section.

4.1 Experimental Setup

The classes of CloudSim [39, 40] toolkit have been extended
to simulate and model the cloud environment. This simu-
lator creates a virtualized environment that supports on-
demand provisioning. This simulator helps to model, sim-
ulate, and experiment with the cloud services and its ap-
plications [39]. For the experiment, the authors defined
ten possible solutions for the algorithm and the maximum
termination (¢max) criterion is set to 100 iterations. The al-
gorithmic parameters for the proposed algorithm are pre-
sented in Table 5.

In the experimental setup, the authors created one dat-
acenter that consists of four hosts, each capable of creating

PARAMETER VALUE
Number of the Candidate solution 10.00
Maximum iteration 100.00
G S 1.50
rand, rand, rand, 0.50
Ximax 4.00
Xmin -0.40
randg Arandom number between 0 and 1
rand,, Arandom number between -1 and 1
ai, a> A random number between 0 and 2
FL A random number between 0 and 2
TSy 0.85
a 0.50
Table 6: Host Technical Details
Host ID Processing Cores Speed, MIPS RAM, GB Storage, GB BW, MIPS
1 1 3500 50 1024 102400
2 2 4000 100 1024 102400
3 3 4500 150 1024 102400
4 4 5500 200 1024 102400

156 —— K. Mishra and S. Kumar Majhi DE GRUYTER
Table 7: VM Technical Details

CPU Number of Cores Speed, MIPS RAM, GB Storage, GB BW, MIPS
Core_i5_Extreme_Edition 1 1000 2 20 1024

instances of physical machines and sharing the resources
among VMs. Each host includes some processing cores,
RAM, storage, bandwidth (BW), and processing speed. The
technical specifications of each host are shown in Table 6.
Thirty-six VMs were considered that run on each host with
distinctive characteristics. The VM technical details are
shown in Table 7. The authors deemed real workloads to
analyze the performance of this algorithm. The authors
used a dataset that is GoCJ: Google cloud jobs dataset for
distributed and cloud computing infrastructures by Google
published in September 2018 [41]. This dataset contains
19 text files with a different number of jobs in a million
instructions (MI) and stored in the Mendeley data repos-
itory. The authors considered one of the text files named
GoCJ_Dataset_100.txt that comprised of 100 jobs, and each
job is taken as a cloudlet regarding its length in MI. The
number of cloudlets (20-100) with varying sizes of instruc-
tions, ranging from 1000 to 5000, is considered for the
execution of respective VMs.

5 Result Analysis

5.1 Experimental Results

The proposed algorithm is simulated through a generalized
framework by extending the classes of CloudSim [39, 40]. In
this section, the authors present the analysis of the results
based on the simulation done using CloudSim. To analyze
the efficacy of the proposed algorithm, different algorithms
such as (1) Round Robin (RR), (2) FCFS, (3) SJF, (4) MAX-
MIN, (5) RASA and (6) Improved PSO have been considered
for comparison. The results were obtained by noting down
the mean values for each performance metrics by running
each algorithm ten times.

In the following series of graphs, the experimental re-
sults are shown in terms of makespan, resource utilization,
response time, and DOI. Figure 2(a) shows the comparison
between makespan before and after load balancing using
BSO-LB. The X-axis represents the number of cloudlets, and
the Y-axis represents the makespan.

The proposed method is compared with other existing
algorithms stated above in terms of makespan. According
to Figure 2(b), the proposed method shows a better result
for evenly balancing the load among nodes. Figure 3 repre-

sents the obtained values of the response time for a number
of cloudlets for the different algorithms with the proposed
algorithm. The results show that the proposed approach
has a better response time compared to other algorithms.
It is observed from the simulation results that the perfor-
mance of other compared algorithms on response time gets
increased with the increasing cloudlets. But the proposed
method achieves a good performance over others. The com-
parison of resource utilization for existing algorithms with
the proposed algorithm is depicted in Figure 4. The pro-
posed BSO-LB algorithm performs better because it has the
ability to efficiently utilize the resources by allocating the
loads onto the respective VMs.

—— Before load balancing After load balancing

30 40 50 60 70 80 90 100
Number of Cloudlets

(a) Comparison of Makespan before and after load balancing

e=te FCFS === RR === MAX-MIN RASA ==#e=IMPROVED-PSO === SJF BSO-LB

35
32
29
~ 26

20 30 40 50 60 70 80 90 100
Number of Cloudlets

(b) Makespan Comparison of existing algorithms with BSO-LB

Figure 2

The authors present a reverse linear relationship be-
tween makespan and resource utilization in Figure 5.
The graph shows that the proposed algorithm accom-
plishes maximum resource utilization while minimizing
makespan. The proposed algorithm can significantly utilize
the resources at maximum and considerably reduces the
makespan.

DE GRUYTER

et SJF il FCFS === RR MAX-MIN === RASA ==#==IMPROVED-PSO «=+=BSO-LB
11

10

Response Time(s)

ORNWARUON®O

20 30 40 50 60 70 80 90
Number of Cloudlets

Figure 3: Comparison of algorithms in Response Time

=== SJF ====RR === MAX-MIN RASA ==4=IMPROVED-PSO ==#-=BSO-LB

0,9
0,8
0,7
0,6
0,5
0,4
0,3

Resource Utilization

20 30 40 50 60 70 80 90 100

Number of Cloudlets

Figure 4: Resource Utilization Comparison

M Makespan(s) M Resource Utilization

14
12
g 10
=
= 8
L2
5 6
g
53] 4
2
0 |
20 40 60 80 100
Number of Cloudlets

Figure 5: Comparison of Makespan and Resource utilization

The DOI between VMs before and after load balancing
using BSO-LB is shown in Figure 6(a). The X-axis repre-
sents the number of cloudlets, and the Y-axis represents
the degree of imbalance. It shows that the proposed algo-
rithm balances the loads among VMs effectively, and the
degree of imbalance is considerably reduced. Figure 6(b)
illustrates the comparison between the DOI and other al-
gorithms with the proposed BSO-LB algorithm. The DOI is
less in the present algorithm compared to other algorithms.

A binary Bird Swarm Optimization based load balancing algorithm = 157

—4—Before load balancing == After load balancing

85

375

2 65

g 55 —

S 45 — —

8 35 /

£ — —

S5 l—" e

Bog ——""

8 20 30 40 50 60 70 80 90 100
Number of Cloudlet

(a) Degree of Imbalance (DOI) before and after load balancing using
BSO-LB
BSO-1B

——SJF _—m—FCFS —+—RR

Degree of Imbalance (DOI)

100

20 30 40 50 60 70 80 90
Number of Cloudlets

(b) Degree of Imbalance (DOI) values obtained using three methods
and proposed BSO-LB algorithm

Figure 6

6 Discussion

The authors propose an algorithm that combines the load
balancing method with the meta-heuristic BSO algorithm.
To analyze the performance of the proposed method, they
compared it to existing algorithms (e.g., FCFS, RR, SJF, MAX-
MIN, RASA, Improved-PSO) for makespan, resource utiliza-
tion, response time, and DOI. Cloudlets are assumed to be
independent and non-preemptive for the simulation. The
proposed method is used for the dynamic scheduling of
independent tasks.

The Bird swarm Optimization (BSO) algorithm is used
for mapping the cloudlets onto respective VMs. The mimick-
ing behavior of birds is the perfect fit for the problem space.
These behaviors divide the birds into two groups: producer
and scrounger. The parameter FL must be chosen meticu-
lously so that the scrounger can be distinguished from the
producer. In the proposed BSO-LB algorithm, this is consid-
ered to be 0.5. The fitness value also plays a trivial role in
the selection of producer and scrounger. The selection of
fitness function and the proper distribution of tasks among
VMs also significantly affect the overall performance of the
system. Authors considered a single-objective fitness func-
tion in terms of makespan and average resource utilization.
So, they considered a task-resource compatibility test to
measure the compatibility of the tasks for the overloaded

158 = K. Mishraand S. Kumar Majhi

VMs with the underutilized VMs based on their available
resources. Thus, resource utilization was enhanced while
also reducing the makespan, which is shown in Figure 5.
Therefore, the proposed method is efficient in distributing
the loads uniformly.

The authors also considered a small position value
(SPV) rule to transform the continuously generated solu-
tions to discrete solutions since the task scheduling prob-
lem is dynamic and requires binary values to represent the
tasks-resources assignment in the problem space. Moreover,
a propet, yet rugged use of the meta-heuristic technique
combined with a load balancing technique, reduces the
makespan. The process of migrating tasks from overloaded
VMs onto underloaded VMs and using an effective load
balancing technique improves the performance and effi-
ciency of the system [42]. Figures 2(a) and 2(b) show that
the makespan is considerably reduced by using the pro-
posed algorithm when compared to other algorithms with
varying cloud lengths. Figure 5 also depicts the relationship
between makespan and resource utilization.

The response time is affected when the length of the
cloudlets increases. The proposed algorithm uses a suitable
allocation of cloudlets onto VMs through an effective load
balancing technique. Hence, according to Figure 3, at some
point, it may reach the level of SJF when the number of
cloudlets is 60 and then eventually start decreasing. The
study used various cloudlet lengths, ranging from 1000
to 5000, to analyze the response time and performance.
Figure 3 also shows that the reduced makespan leads to
better overall response time.

In the case of resource utilization, the efficiency of re-
sources is greatly utilized due to the reduction of makespan
and the fitness function used in the algorithm. The uti-
lization of resources is better than other algorithms and
is shown in Figure 4. The DOI also leads to an increase in
makespan and decrease in resource utilization. Hence, it is
essential to maintain the degree of balance between VMs.
The results in Figures 6(a) and 6(b) depict the degree of
imbalance before and after load balancing, and it is consid-
erably reduced.

The simulation results demonstrate that the proposed
method outperforms other algorithms while increasing the
number of cloudlets. The simulated results show the re-
duced makespan, response time, and DOI while maximiz-
ing resource utilization and throughput.

DE GRUYTER

7 Conclusion and Future Scope

Load balancing plays a crucial and yet significant role in
the cloud computing environment. It often comes before
an effective task scheduling mechanism to balance out the
uneven distribution of loads in the system. An effective load
balancing technique is necessary to utilize resources and re-
duce the makespan efficiently. With respect to the objective
as mentioned above, the authors proposed a binary variant
of the BSO-inspired load balancing technique based on the
three mimicking behaviors of birds (i.e., foraging, vigilance,
and flight). These behaviors are analogous to the problem
of mapping the tasks (as birds) onto the required VMs (as
destination food sources) and the particles with the best po-
sition. Tasks are removed from the overloaded VMs and are
placed onto the underloaded VMs based on the availability
of resources. The flock of birds (tasks) keeps updating their
position according to their experience with respect to food
position (destination VM). The proposed binary BSO-LB
algorithm initially evaluates the position of particles and
keeps updating the position at each iteration. It is capa-
ble of minimizing the makespan and maximizing resource
utilization by using a proper fitness function. To measure
the compatibility between the tasks of overloaded VMs and
resources of underloaded VMs, a task compatibility test has
been carried out. In addition to it, a discrete position value
has been formulated using an SPV rule for positioning the
particles. The BSO-LB method has been compared and an-
alyzed against other existing algorithms. It shows notable
improvements over the compared algorithms for makespan,
response time, and resource utilization. Moreover, the pro-
posed algorithm is capable of handling independent and
both preemptive and non-preemptive tasks in any cloud
environment.

In the future, meta-heuristic based solutions could be
considered for the load balancing problem with hetero-
geneous resources. This problem could be improved by
applying an increasing number of tasks and VMs in het-
erogeneous environment. Other QoS performance metrics
could also be considered to validate the effectiveness of the
algorithm.

References

[1] MishraS. K., Sahoo B., Parida P. P., Load balancing in cloud com-
puting: a big picture, Journal of King Saud University-Computer
and Information Sciences. 2020, 32(2), 149-58.

[2] Josep A. D., Katz R., Konwinski A., Gunho L. E. E., Patterson
D., Rabkin A., A view of cloud computing, Communications of

DE GRUYTER

(3]

[4]

(5]

(6]

[7]

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

the ACM, 2010, 53(4), 50-58. https://doi.org/10.1145/1721654.
1721672

Mell P., Grance T., The NIST definition of cloud computing, Na-
tional Institute of Standards and Technology, 2011.

Milan S. T., Rajabion L., Ranjbar H., Navimipoir N. J., Na-
ture inspired meta-heuristic algorithms for solving the load-
balancing problem in cloud environments, Computers & Oper-
ations Research, 2019, 110, 159-187. https://doi.org/10.1016/].
€0r.2019.05.022

Li W., Tordsson J., Elmroth E., Virtual machine placement for
predictable and time-constrained peak loads, In: International
Workshop on Grid Economics and Business Models. Springer,
Berlin, Heidelberg, 2011, 120-134.

Ibarra O. H., Kim C. E., Heuristic algorithms for scheduling inde-
pendent tasks on nonidentical processors”, Journal of the ACM
(JACM), 1977, 24(2), 280-289.

Ullman J. D., NP-complete scheduling problems, Journal of Com-
puter and System sciences, 1975, 10(3), 384-393.

Shah N., Farik M., Static load balancing algorithms in cloud com-
puting: Challenges & solutions, International Journal of Scientific
& Technology Research, 2015, 4(10), 365-367.

Mishra K., Majhi S. K., A state-of-Art on cloud load balancing al-
gorithms, International Journal of computing and digital systems,
2020, 9(2), 201-220. http://dx.doi.org/10.12785/ijcds/090206
Chaharsooghi S. K., Kermani A. H. M., An effective ant colony opti-
mization algorithm (ACO) for multi-objective resource allocation
problem (MORAP), Applied mathematics and computation, 2008,
200(1), 167-177. https://doi.org/10.1016/j.amc.2007.09.070
Bala A., Chana I., A survey of various workflow scheduling al-
gorithms in cloud environment, In: 2nd National Conference on
Information and Communication Technology (NCICT), 2011, 26-
30.

Kalra M., Singh S., A review of metaheuristic scheduling tech-
niques in cloud computing, Egyptian informatics journal, 2015,
16(3), 275-295. https://doi.org/10.1016/j.€ij.2015.07.001

He X., Sun X., Von Laszewski G., QoS guided min-min heuris-
tic for grid task scheduling, Journal of Computer Science and
Technology, 2003, 18(4), 442-451.

Panda S. K., Jana P. K., Efficient task scheduling algorithms
for heterogeneous multi-cloud environment, The Journal of Su-
percomputing, 2015, 71(4), 1505-1533. https://doi.org/10.1007/
s11227-014-1376-6

Mittal S., Katal A., An optimized task scheduling algorithm in
cloud computing, In: 6! |EEE International Conference on Ad-
vanced Computing (IACC), 2016, 197-202.

Ebadifard F., Babamir S. M., A PSO-based task scheduling al-
gorithm improved using a load-balancing technique for the
cloud computing environment, Concurrency and Computation:
Practice and Experience, 2018, 30(12), 1-16. https://doi.org/10.
1001/cpe.4368

LD D. B., Krishna P. V., Honey bee behavior inspired load bal-
ancing of tasks in cloud computing environments, Applied
Soft Computing, 2013, 13(5), 2292-2303. https://doi.org/10.
1016/j.as0¢.2013.01.025

Li K., Xu G., Zhao G., Dong Y., Wang D., Cloud task scheduling
based on load balancing ant colony optimization, In: IEEE Sixth
Annual ChinaGrid Conference, 2011, 3-9. https://doi.org/%2010.
1109/ChinaGrid.2011.17

Dasgupta K., Mandal B., Dutta P., Mandal). K., Dam S., A genetic
algorithm (ga) based load balancing strategy for cloud comput-

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29

[30]

[31]

[32]

[33]

A binary Bird Swarm Optimization based load balancing algorithm = 159

ing, Procedia Technology, 2013, 10, 340-347. https://doi.org/10.
1016/j.protcy.2013.12.369

Vanitha M., Marikkannu P., Effective resource utilization in cloud
environment through a dynamic well-organized load balancing
algorithm for virtual machines, Computers & Electrical Engi-
neering, 2017, 57, 199-208. https://doi.org/10.1016/j.compelec
eng.2016.11.001

Zhang M., Ren H., Xia C., A Dynamic Placement Policy of Virtual
Machine Based on MOGA in Cloud Environment, In: IEEE Interna-
tional Symposium on Parallel and Distributed Processing with
Applications and IEEE International Conference on Ubiquitous
Computing and Communications (ISPA/IUCC), 2017, 885-891.
https://doi.org/10.1109/ISPA/IUCC.2017.00135

Mohanty S., Patra P. K., Ray M., Mohapatra S., An Approach for
Load Balancing in Cloud Computing Using JAYA Algorithm, Inter-
national Journal of Information Technology and Web Engineering
(IJITWE), 2019, 14(2), 27-41.

Zhan S., Huo H., Improved PSO-based task scheduling algorithm
in cloud computing, Journal of Information & Computational Sci-
ence, 2012, 9(13), 3821-3829.

Kruekaew B, Kimpan W., Enhancing of Artificial Bee Colony Algo-
rithm for Virtual Machine Scheduling and Load Balancing Prob-
lem in Cloud Computing, International Journal of Computational
Intelligence Systems, 2020, 13(1), 496-510.

Thakur AS, Biswas T, Kuila P., Binary quantuminspired gravita-
tional search algorithmbased multicriteria scheduling for multi-
processor computing systems, JOURNAL OF SUPERCOMPUTING,
2020

Meng X. B., Gao X. Z., Lu L., Liu Y., Zhang H., A new bio-inspired
optimization algorithm: Bird Swarm Algorithm, Journal of Experi-
mental & Theoretical Artificial Intelligence, 2016, 28(4), 673-687.
https://doi.org/10.1080/0952813X.2015.1042530

Aljarah I. et al., Evolving neural networks using bird swarm algo-
rithm for data classification and regression applications, Clus-
ter Computing, 2019, 1-29. https://doi.org/10.1007/s10586-019-
02913-5

Lin M., Zhong Y., Lin J., Lin X., Discrete Bird Swarm Algorithm
Based on Information Entropy Matrix for Traveling Salesman
Problem, Mathematical Problems in Engineering, 2018, 1-15.
https://doi.org/10.1155/2018/9461861

Ebadifard F., Babamir S. M., Barani S., A dynamic task scheduling
algorithm improved by load balancingin cloud computing, In: 6th
International Conference on Web Research (ICWR), IEEE, 2020,
177-183

Mapetu J. P, Chen Z., Kong L., Low-time complexity and low-cost
binary particle swarm optimization algorithm for task scheduling
and load balancing in cloud computing, Applied Intelligence,
2019, 49(9), 3308-3330.

Priya V., Kumar C. S., Kannan R., Resource scheduling algorithm
with load balancing for cloud service provisioning, Applied Soft
Computing. 2019, 76, 416-424.

Polepally V., Chatrapati K. S., Dragonfly optimization and con-
straint measure-based load balancing in cloud computing, Clus-
ter Computing. 2019, 1-13.

Nanduri R., Maheshwari N., Reddyraja A., Varma V., Job aware
scheduling algorithm for mapreduce framework, In: IEEE Third
International Conference on Cloud Computing Technology and
Science, 2011, 724-729. https://doi.org/10.1109/CloudCom.20
11.112

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1016/j.cor.2019.05.022
https://doi.org/10.1016/j.cor.2019.05.022
http://dx.doi.org/10.12785/ijcds/090206
https://doi.org/10.1016/j.amc.2007.09.070
https://doi.org/10.1016/j.eij.2015.07.001
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1001/cpe.4368
https://doi.org/10.1001/cpe.4368
https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/%2010.1109/ChinaGrid.2011.17
https://doi.org/%2010.1109/ChinaGrid.2011.17
https://doi.org/10.1016/j.protcy.2013.12.369
https://doi.org/10.1016/j.protcy.2013.12.369
https://doi.org/10.1016/j.compeleceng.2016.11.001
https://doi.org/10.1016/j.compeleceng.2016.11.001
https://doi.org/10.1109/ISPA/IUCC.2017.00135
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1007/s10586-019-02913-5
https://doi.org/10.1007/s10586-019-02913-5
https://doi.org/10.1155/2018/9461861
https://doi.org/10.1109/CloudCom.2011.112
https://doi.org/10.1109/CloudCom.2011.112

160 —— K. Mishraand S. Kumar Majhi

[34]

[35]

[36]

[37]

(38]

Tasgetiren M. F., Sevkli M., Liang Y. C., Gencyilmaz G., Particle
swarm optimization algorithm for single machine total weighted
tardiness problem, In: Proceedings of the 2004 Congress on
Evolutionary Computation, IEEE, 2004, 2, 1412-1419.

Zhang L., Chen Y., Yang B., Task scheduling based on PSO algo-
rithm in computational grid, In: Sixth International Conference
on Intelligent Systems Design and Applications, IEEE, 2006, 2,
696-704.

Chakravarthi K. K., Shyamala L., Vaidehi V., TOPSIS inspired cost-
efficient concurrent workflow scheduling algorithm in cloud, Jour-
nal of King Saud University-Computer and Information Sciences,
2020. https://doi.org/10.1016/j.jksuci.2020.02.006

Khorsand R., Ghobaei-Arani M., Ramezanpour M. A., Self-
learning fuzzy approach for proactive resource provisioning in
cloud environment, Software: Practice and Experience, 2019,
49(11), 1618-1642.

Rafieyan E., Khorsand R., Ramezanpour M., An adaptive schedul-
ing approach based on integrated best-worst and VIKOR for
cloud computing, Computers & Industrial Engineering, 2020,140,
106272.

[39]

[40]

[41]

[42]

DE GRUYTER

Buyya R., Ranjan R., Calheiros R. N., Modeling and simulation
of scalable Cloud computing environments and the CloudSim
toolkit: Challenges and opportunities, In: international confer-
ence on high performance computing & simulation, IEEE, 2009,
1-11.

Calheiros R. N., Ranjan R., Beloglazov A., De Rose C. A., BuyyaR.,
CloudSim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning
algorithms, Software: Practice and experience, 2011, 41(1), 23-50.
https://doi.org/10.1002/spe.995

Hussain A., Aleem M., GoCJ: Google cloud jobs dataset for dis-
tributed and cloud computing infrastructures, Data, 2018, 3(4),
38. https://doi.org/10.3390/data3040038

Jena U. K., Das P. K., Kabat M. R., Hybridization of meta-heuristic
algorithm for load balancing in cloud computing environment,
Journal of King Saud University-Computer and Information Sci-
ences, 2020. https://doi.org/10.1016/j.jksuci.2020.01.012

https://doi.org/10.1016/j.jksuci.2020.02.006
https://doi.org/10.1002/spe.995
https://doi.org/10.3390/data3040038
https://doi.org/10.1016/j.jksuci.2020.01.012

	1 Introduction
	2 Related Work
	3 BSO-based Load-balancing Algorithm
	3.1 The standard BSO
	3.2 The proposed load balancing Problem Formulations
	3.2.1 Loads of a VM
	3.2.2 State of a VM group
	3.2.3 Degree of Imbalance (DOI)
	3.2.4 Tasks Migration
	3.2.5 Binary BSO
	3.2.6 Illustration of general task scheduling

	3.3 The proposed Binary BSO-LB algorithm

	4 Performance Evaluation
	4.1 Experimental Setup

	5 Result Analysis
	5.1 Experimental Results

	6 Discussion
	7 Conclusion and Future Scope

