
Open Access. © 2021 T. Dobravec, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
License

Open Comput. Sci. 2021; 11:43–50

Research Article

Tomaž Dobravec*

Selected tools for Java class and bytecode
inspection in the educational environment
https://doi.org/10.1515/comp-2020-0170
Received Feb 28, 2020; accepted Apr 30, 2020

Abstract: Java is not only a modern, powerful, and fre-
quently used programming language, but together with
Java Virtual Machine it represents a novel dynamic ap-
proach of writing and executing computer programs. The
fact that Java programs are executed in a controlled en-
vironment has several important implications that define
the nature of the language and makes it different from the
traditional C-like languages. Knowing the detailed differ-
ences between the two types of languages and execution
environments is a part of the holistic education of a com-
puter engineer.
In this paper, we present some behind-the-scene details
about the Java Virtual Machine and we show how these
details could be used in the educational process to demon-
strate the differences and to emphasise the advantages of
the dynamic programming approach when compared to
the static one. After presenting some information about
class files and about the internal structure and operation
of the Java Virtual Machine we demonstrate the usage of
public domain programs that could be used in the educa-
tional process to put these theoretical concepts into prac-
tice.

Keywords: java class file, JVM behind-the-scenes, byte-
code execution, Java educational tools

1 Introduction
Java is a modern, powerful, robust, secure and frequently
used programming language. Its popularity reflects in
several different-purpose programming language indices
which place Java at the very top of the scoreboard [1, 2, 12].
Considering these facts it is not surprising that Java has
became a very popular programming language in the in-

*Corresponding Author: Tomaž Dobravec: Faculty of Computer
and Information Science, University of Ljubljana, Slovenia; Email:
tomaz.dobravec@fri.uni-lj.si

dustrial environment. Aside from the practical usage in in-
dustry, Java possesses several properties that makes it in-
teresting from an educational point of view [4]. Its most
significant pedagogical strength is in the fact that Java pro-
grams [7] are executed in a virtual environment (inside
Java Virtual Machine [9]) and are therefore protected and
controlled. The logic that is used in the Java Virtual Ma-
chine (JVM) is similar to the logic that it is used on a typi-
cal computer at the hardware level, that is, executing the
bytecode on the Java Virtual Machine is similar to execut-
ing amachine code on a processor except that Java Virtual
Machine has a great advantage in that it controls the pro-
grams on-the-fly and it can select which operations will be
executed on the hosting hardware. From an educational
point of view Java Virtual Machine can be considered as a
software emulation of a powerful hardware machine and
as such a great tool to present the challenges and the
solutions in the computer building process. In order to
be able to write efficient and reliable Java programs, it is
very important to understand the whole life cycle of a pro-
gram, which encompasses writing Java programs, trans-
lating from Java to bytecode and executing prepared byte-
code in JavaVirtualMachine environment. Inmost courses
that teach Java as a programming language only the first
part of this cycle is presented to the students, while the de-
tails about the behind-the-scenes behaviour of translated
program inside the JVM are omitted. Since we think that
these details are very important for a comprehensive un-
derstanding of the Java world, we introduce them in some
of our courses. In this paper wewill describe some of these
mechanisms and logic there and present tools that can be
used both by teachers to support the educational process
and later by trained professionals to write efficient pro-
grams.

The rest of this paper is organized as follows. In
Sections. 2 and 3 we present some details on the orga-
nization of the Java class file and provide some infor-
mation about the internal structure and behaviour of
the Java Virtual Machine. In Section 4 we list selected
tools, namely, javap, hexdump, ClassEditor, Bytecode
Visualizer and PyJVMGUI, that could be used to demon-
strate previously presented mechanisms and concepts in

https://doi.org/10.1515/comp-2020-0170

44 | T. Dobravec

real (running) programs. In Section 5 we provide some
thoughts onusing thepresented tools in the classroomand
we conclude the paper with final remarks in Section 6.

2 Java class files
In a traditional C-oriented static computer world the
program-manufacturing process consists of the following
steps: write the program source modules, compile each
source module into the object module and finally to link
all the object modules into an executable program. When
sucha simplifiedprogram (that doesnot use shared library
objects) is executed the operating system expects that it is
complete with all of its parts being linked and all the cross-
usages being resolved. The only task to beperformed in the
loading stage is to relocate the direct addresses according
to the given program load address and to start the execu-
tion. In JVMworld his process is a bit different. To support
the logic of dynamic program execution the demand that
only completely linked and prepared programs can be ex-
ecuted was relaxed. Instead, JVM treats a program as a set
of independent classes that are connected together on-the-
fly in runtime only if andwhen this is really necessary. This
means that theprogram-manufacturingprocess in the JVM
world consists only of writing and compiling modules (i.e.
classes), while the linking part of the process is postponed
every time the program executes. This gives JVM an impor-
tant role and makes the linking process very vulnerable
and time consuming. To facilitate this process, additional
data, packed in the so called constant pool, was added to
a class file. A constant pool contains information about
methods, fields and other types that are used in the link-
ing process. Since the linking is performed only by using
the symbol names, the content of a constant pool is vital
in the class’s living cycle.

Comparing the format of Java class file with the Ex-
ecutable and Linkable Format (ELF) object file format
(which is used here as a representative of a standard object
format in the static world) one can find several similarities
and also some differences. Both formats provide headers
with important information regarding the further content
at the beginning. In both formats the content is written in
chunks (arrays of data in Java class and sections or seg-
ments in ELF), but the file organization is different. While
in the ELF format the section table reveals the location of
each chunk, in the Java class file the chunks are encoded
in such a way that one has to read the whole content of
the previous chunk to find the beginning of the next one.
Besides the constant pool, Java class file also contains in-

formation about interfaces, fields, methods and attributes.
These parts of a class file could be comparedwith a symbol
table and with sections (like .bss, .data, .txt) in the ELF ob-
ject file.When talking about themethods section in a class
file it is worth to mention that this section does not con-
tain the machine code for a specific computer (as it is the
case with ELF object files) but rather it contains bytecode,
which is a machine language for the Java Virtual Machine.

Figure 1: Schematic representation of the Java Virtual Machine stack
organization

3 Inside the JVM
JVM is a stack-based virtualmachine,whichmeans that all
the instructions are performed with the usage of the build-
in stack – before the execution of an instruction the stack
is used to store operands, after the execution it holds the
value of the result. Besides the stack, which is for obvious
reasons its most important part, JVM consists of three ma-
jor components: the heap, the method area, and the regis-
ters [14]. The heap is a part of the virtual machine’s mem-
ory where the space for object is allocated during the pro-
gram execution. This part of the memory is controlled by
the garbage collector which actively follows the references
to allocated objects and occasionally clears-up all unused
memory. The method area is a part of the memory, where
the bytecode (compiled Java or other code) is stored. Dur-
ing the execution of the program, the JVM reads instruc-

Teaching with the JVM | 45

tions from this area. A special thread-based counter, called
the program counter, points to the location where the next
instruction to be executed is stored. Although there are sev-
eral objects of the same class active in a running program,
the bytecode of their methods is written only once in the
method area.

The JVM stack is a complex data structure used to
store the information about the running program. To pre-
vent misusage of this information and to ensure even dis-
tribution of memory usage, each thread gets its own inde-
pendent stack. For each method that is executed within a
thread, a frame is created on a top of the thread’s stack.
This frame is divided into three parts: execution environ-
ment, local variable array, and operand stack, as depicted
in Figure 1.

To manipulate a running thread of a program, JVM
uses only four registers, namely the PC, frame, vars, and
optop, which point to the next instruction to be executed,
to the execution environment of the current frame, to the
array of local variables, and to the top of the operand stack,
respectively. On the stack frame of a method being exe-
cuted, there is a storage for local copies of these regis-
ters. The values of registers are stored when a sub-method
is called (see Listings 1) and restored on return (see List-
ings 2).

Listings 1: Preparing the execution environment to support the call
of a method b() from a method a()

1. create a b_frame on the top of the a_frame
2. save the values of the parameters passed to the

method
b() into the local variable array on b_stack

3. save PC, optop, vars to a.PC, a.optop and a.vars
4. set b.pframe = frame
5. optop = b.optop
6. vars = b.vars
7. frame = b.frame
8. PC = address of the first instr.

of the method b()

Listings 2: Restoring the execution environment just before the
return from the method b()

1. b.local_var_0 = result
2. frame = b.pframe
3. vars = frame.vars
4. PC = frame.PC
5. optop = frame.optop++

Note that the result of the execution of themethod b()
is stored in the b()’s first local variable, which resides on
the bottom of the b() stack. Since the b_framewas placed
on the top of the a_frame, the result is actually stored
on the top of the a()’s operand stack and it can be sim-
ply poped to a local variable after the flow is returned to
method a().

Listings 3: A demo Java program

public c lass Sum {
s t a t i c int mu l t i p l i e r = 42 ;
s t a t i c f ina l int d i v i de r = 2 1 ;

in t sumEven (in t [] tab) {
in t s = 0;
for (in t i = 0; i < tab . length ; i ++)

i f (tab [i] \% 2 == 0)
s += tab [i] ;

return s ;
}

public s t a t i c void main (S t r i ng [] args) {
in t [] numbers = { 5 , 10 , 20 1 , 3 2 769 } ;
Sum sum = new Sum () ;
in t c = sum . sumEven (numbers) ;
c = c * mu l t i p l i e r / d i v i d e r ;

System . out . p r i n t l n (c) ;
}

}

The JVM logic of preparing and restoring the execution
environment (especially the parameter- and result-passing
part of it) very much resembles the mechanism that has
been frequently and for a very long time used in the IA-32-
like computers, where the ESP and EBP registers play the
role of the frame pointers in a sense. But JVM didn’t just
adopt this logic, it has made a major step forward. Since
the bytecode instructions are aware of the local variable
array, they fetch their operands directly from there. For ex-
ample, to push the integer value of the first local variable
on the stack or to pop a float value from the stack and store
it to the second local variable, the instructions iload_0
and fstore_1 are used, respectively. This simplification of
the local variable usage not only makes the programmore
readable and concise but it also has a great impact on the
execution efficiency.

46 | T. Dobravec

4 The tools
In the following we present different tools that could be
used to reflect, inspect, debug and/or manipulate Java
bytecode. All the tools are publicly available and can freely
be used in both the industrial and educational environ-
ment. To demonstrate the features of the program we will
use a simple Java program (see Listings 3) that contains
two static fields (multiplier and divider), a method
sumEven() and a static method main().

The first two of the presented programs, namely
hexdump and javap, are simple command-line programs
and are used mainly to browse the content of the class
files, while the others (Class Editor [10], Bytecode Visu-
alizer [3] and PyJVMGUI [6]) are programs with graphical
user interface (GUI) that allow you to modify the class file
and/or provide an interaction with a Java program during
the execution of a bytecode.

4.1 The hexdump program

The hexdump program is used to present the pure binary
content of a class file displayed as hexadecimal values. By
combining the hexadecimal contentwith theASCII charac-
ter representation of a file (e.g. hexdump -C Sum.class),
one can observe that a large part of a class file contains
symbols and other textually represented data (constant
pool table). The hexdump program can also be used to ob-
tain some useful information about the class file. For ex-
ample, since the 6th and 7th byte of a class file contain
the major version of the javac compiler that was used to
compile the source file, this information can be printed out
by executing the following command: hexdump -s 6 -n
2 Sum.class.

Figure 2: A part of the Sum.class file as printed by hexdump

An example of output produced by hexdump is pre-
sented in Figure 2. The colored parts of the output repre-
sent magic number (red), minor javac version (blue), ma-
jor javac version (green), number of entries in the con-

stant pool (yellow) and a part of the constant pool table
(purple).

4.2 The javap program

Another quick but a little bit deeper inspection of the class
file content canbeperformedby thejavapprogram,which
is a part of the standard Java Development Kit (JDK) distri-
bution. By executing javap -c -v ClassName, a plethora
of information about the class file, i.e., the versionofjavac
that was used to compile the class (major and minor ver-
sion),MD5 checksum, the nameof the source file, constant
pool values and program bytecode listings are obtained.
Figure 3 shows a selected part of a constant pool of the
Sum class. The usage of constant pool can be seen in the
bytecode that is also listed by javap.

Constant Pool
−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−
idx | tag | i n fo

−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−
1 | C lass | name=2
2 | Utf8 | len =3; "Sum"
. . .
5 | Utf8 | len =10; " mu l t i p l i e r "
6 | Utf8 | len =1 ; " I "
7 | Utf8 | len =7; " d i v i d e r "
8 | Utf8 | len =13 ; " Constant "
9 | In t ege r | bytes =21
. . .
22 | Utf8 | len =7; "sumEven"
23 | Utf8 | len =5; bytes = " ([I) I "
. . .
31 | I n t ege r | bytes =32769
32 | Method | c l a s s =1 ; nat =33
33 | NAT | name=22 ; desc =23
. . .

Figure 3: Selected parts of the constant pool for the Sum class

For example, the bytecode that is generated from the
line 16 of Listings 3 (int c = sum.sumEven(numbers);)
contains four instructions, namely aload_2, aload_1,
invokevirtual 32 and istore_3. The first two instruc-
tions load the reference values of the local variables 2 and
1 (i.e. sum and numbers) on the stack, the third instruc-
tion calls method 32 and the last instruction stores the re-
sult to the local variable number 3 (i.e. c). To decode the

Teaching with the JVM | 47

meaning of the constant 32 (i.e. to find out which method
is called by the third instruction), we could use the con-
stant pool presented in Figure 3. The 32nd entry in the
constant pool is a MethodReference that points to the 1st

and the 33rd entry, which are the class name (i.e. Sum) and
the NameAndType reference. The latter points again to the
constant pool to the 22nd and 23rd entry, which contain the
method’s name anddescriptor. Using the constant poolwe
found out that instruction invokevirtual 32 will invoke
the method Sum.sumEven, which receives an array of inte-
gers and returns an integer.

Another interesting piece of information that can be
derived from the bytecode is that JVM uses three different
instructions to store the values in a newly created array,
where the instruction used depends on the value of the in-
teger being stored in array. In particular, to store the values
10, 210 and 32769 to the numbers array, JVM uses instruc-
tions bipush 10, sipush 210 and ldc 31, where 31 is an
index to a constant pool entry, where the constant 32769
is stored. The difference between the first and the second
instruction is that the first is encodedwith two and the sec-
ond with three bytes.

The listed bytecode and constant pool also reveals the
difference betweenfinal andnon-final static variables. The
multiplication with a non-final static variable is compiled

into bytecode as getstatic 13; imul (i.e., load the value
of an static field 13 (multiplier) to the stack andmultiply
with the other value on the stack), while the division with
final static variable is compiled as bipush 21; idiv. It is
obvious that the usage of final variables gives the compiler
the opportunity to create more optimized code.

4.3 Class Editor

Class Editor is a program written by K. M. Tanmay that
enables you to viewor edit strings, attributes,methods and
generate readable reports about the class files [10]. The
main advantage of the Class Editor comparing to the
javapprogram is in the interactivity and in ability not only
to view but also to change the content of the class file. The
interface of the program is simple but intuitive and there-
fore very easy to learn.

With its rich user interface program offers lots of pos-
sibilities to play with a class file, which include: searching
for a string (in symbols, names, literals, ...), viewing the
constant pool table as a tree structure (which gives a fine
and transparent overview of the table), changing the con-
tent of the class file, and the like. Since the Class Editor
understands the internal structure of the class file and it al-
ways tries tomaintain the validity of the content, one could

Figure 4: The Class Editor program in action with a part of the constant pool table of the Sum.class presented in the center

48 | T. Dobravec

use this program to inspect the impact of selected changes
to the content of the so generated file. For example, since
the constants of types int and long differ in the number
of slots used in the constant pool (the former needs only
one slot, while the latest requires two), one can inspect the
changes made in the constant pool after the change of a
type of the constant as depicted in Figure 4.

4.4 Dr. Garbage’s Bytecode Visualizer

Java Bytecode Visualizer (JBV) [3] is a tool used for visu-
alizing and debugging Java bytecode. It is implemented
as an Eclipse plugin which means that it can be used
as additional view for the source files of the Java Eclipse
project. JBV offers two additional windows (see Figure 5)
in which it displays bytecode listings accompanied by la-
bels of source code lines and an outline of a flowchart of
the entire program. Using all the information provided by
JBV, a user can debug a program and simultaneously com-

Figure 5: Bytecode Visualizer view to the sumEven() method

pare source codewith generated bytecode and observe the
position of a program counter inside the flowchart.

4.5 PyJVMGUI

Another very useful program used to demonstrate
the dynamics of execution of Java programs is called
PyJVMGUI [5, 6]. The program which is based on PyJVM
framework [13] was designed by Matevž Fabjančič at Fac-
ulty of Computer and Information Science, University of
Ljubljana, as an educational tool to be used at the Sys-
tem Software course. The main intent of the program is to
show the three main components of the JVM that are used
during the execution of the program. Namely, the main
window of PyJVMGUI shows the following information:
Java bytecode of the program (method) being executed,
local variable array, operand stack and basic frame infor-
mation. As an usage example of PyJVMGUI program let us
observe the method sumEven of the Sum program. Figure 6
shows the content of PyJVMGUI window during the execu-
tion of thismethod.More precisely, in the left-sidewindow,
the bytecode of sumEven method is presented. The flow of
the program is stopped in line 14 just after the instruction
irem was fetched. This line of bytecode is a part of the if
(tab[i] % 2 == 0) Java clause in which we check if the
array element is even.

The irem takes the top and the next-to-top elements
from the operand stack and calculates the remainder of
dividing the former with the later. In our case the stack
contains elements 2 and 32769 (see the Operand stack win-
dow in Figure 6), which were pushed there by previous in-
structions iaload (which pushed an array element) and
iconst_2 (which pushed number 2). The if clause being
observed is a part of a for loop, which is driven by the
counter i. The method sumEven has one formal parameter
(tab) and two local variables (s and i). Since sumEven is
not a static method, the first element of the local variable
array represents a reference to the current object (this)
followed by the formal parameters and the local variables
(see the Locals & Args window in Figure 6). This makes the
variable i the fourth element (i.e., the element with the in-
dex 3) in this table. Current value of i is 3, which means
that the program in our example is stopped in the last it-
eration of the for loop. Note that this observation is also
compliant with the fact that the stack contains the num-
ber 32769, which is the last element of the tab array. After
the execution of the irem the stack will contain the result
of the operation (in this case 1, since the reminder of di-
viding 32769 by 2 is 1), which will be used by the follow-
ing instruction (ifne) in line 15, which performs a 9 bytes

Teaching with the JVM | 49

Figure 6: The main window of the PyJVMGUI program during execution of the sumEven() method

long jump (to line 27) if the first element on the stack is
not zero. On the other hand, if the value is zero (i.e. if the
division by 2 returned 0 as reminder, that is, if the num-
ber on stack is even), the instructions in line 18-24 will be
executed. These instruction add the element value to the
local variable with index 2. This short example shows how
the information provided by PyJVMGUI can answer many
question about the internal structure of the JVM. In our ex-
perience, the use of this program in the teaching process
could greatly improve the understanding of the JVMs oper-
ation and virtual machines in general.

5 Java from a pedagogical point of
view

For the last ten years, we have been teaching the back-
grounds of the program’s execution process as a part of the
System Software course at the Faculty of Computer and In-
formation Science in Ljubljana. Besides the extensive pre-
sentation of the static world (in which the programs to be
executed are first compiled/assembled, then linked and fi-
nally loaded into the memory) we also present a more re-
cent dynamic approach in which the linking phase is done

just before the usage of the entity concerned. A very good
example of this concept is used in the JavaVirtualMachine,
where the linking is performed on-the-fly by using the loca-
tion valueswritten in the Runtime Constant Pool. This JVM
mechanism enables the usage of the programs in which
not all the functionality is already present and it might be
added later. To make the learning process more interest-
ing and instructive, we have been using some dedicated
tools [8, 11] for several years. These tools were developed
especially for the needs of the System Software course
and they help to present the behaviour of static world pro-
graxms in the educational process. Our experiences show
that the usage of these tools is a great encouragement for
students that not only makes the learning process faster
and more interesting but it also inspires and motivates
students to dig into the lowest levels of computer archi-
tecture. Based on good experiences with the static world
behaviour we wanted to provide a similar environment
in the dynamic JVM world. Unfortunately, we found out
that there are very few tools that could be used to present
the dynamic execution of the bytecode in the virtual ma-
chine. The programs, that enable most of the desired func-
tionality, are the javap and Bytecode Visualizer. They
both present the bytecode of a given program and some
accompanying parameters (like constant pool, method ta-

50 | T. Dobravec

ble and the like). Even though the latest also enables dy-
namic monitoring of a program being executed (in debug
mode), it does not show the internal JVM structure with
the linking mechanisms. To bridge this gap, we have de-
veloped our own program (PyJVMGUI) that shows the be-
haviour of the JVMwhile executing the bytecode of a given
program (e.g. the usage of methods stack, operand stack,
local variable array, and JVM internal registers). Since this
programwas developed recently,wehave not used it in the
classroom yet, sowe can not report the results on its usage.
But according to our experiences with the SicSim [11] tool
and based on the opinion of selected students that have
already tested and evaluated the program, we can reason-
ably expect that the usage of this program in the educa-
tional processwill encourage students to delve deeper into
a very interesting world of the JVM and thus to gain and
expand the knowledge of the computer logic at the lowest
level.

6 Conclusions
In this paper, we present some behind-the-scenes informa-
tion about the JavaVirtualMachinewith accompanyingdy-
namic mechanisms and concepts, with the ultimate goal
of impressing the reader with the usefulness of JVM as an
educational tool. In the first part we present the structure
of the class file and compare this structure with the ELF
format from the static world. Next we present the internal
functioning of the Java virtual Machine during the byte-
code execution. Both, the content of the class file and the
internal logic of the JVM, are very important in understand-
ing the dynamic program execution process. In the second
part of the paperwepresent several tools thatweuse in the
educational process. All these tools are of great help to ed-
ucators in bringing students closer to the inner world of
Java execution and also of the computer operation at the
lowest level.

References
[1] TIOBE Software BV. Tiobe index (june 2019). www.tiobe.com/

tiobe-index, 2019
[2] Pierre Carbonnelle. Pypl popularity of programming language.

pypl.github.io/PYPL.html, 2019
[3] Dr. Garbage Community. Dr. garbage tools. http://

drgarbagetools.sourceforge.net, 2019
[4] Tomaž Dobravec. Java virtual machine educational tools. In

William Steingartner, editor, Proceedings of the Informatics 2019,
Piscataway, IEEE. cop,. Poprad, Slovakia, November 2019, 82–86

[5] Matevž Fabjančič. A GUI for the PyJVM. https://pypi.org/project/
pyjvmgui, 2018

[6] Matevž Fabjančič. Simulating Java bytecode execution (in
Slovene language). diploma thesis (mentor: T. Dobravec), Faculty
of Computer and Information Science, University of Ljubljana,
2018

[7] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buck-
ley. The Java™ Language Specification, Java SE 8 Edition. Oracle
America, Inc., California, USA, 2014

[8] Klemen Kloboves, Jurij Mihelič, Patricio Bulić, and Tomaž Do-
bravec. FPGA-based SIC/XE processor and supporting toolchain.
International journal of engineering education, 2017, A(6), 1927–
1939

[9] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The
Java™ Virtual Machine Specification, Java SE 8 Edition. Oracle
America, Inc., California, USA, 2014

[10] Tanmay K. M. Java class file editor. http://classeditor.
sourceforge.net, 2004

[11] Jurij Mihelič and Tomaž Dobravec. SicSim : a simulator of the
educational SIC/XE computer for a system-software course. Com-
puter applications in engineering education, 2015, 23(1), 137–146

[12] Stephen O’Grady. The redmonk programming language rank-
ings: January 2019. https://redmonk.com/sogrady/2019/03/
20/language-rankings-1-19, 2019

[13] Andrew Romanenco. PyJVM - Java 7 virtual machine implemented
in pure python. https://github.com/andrewromanenco/pyjvm,
2014

[14] Bill Venners. The lean, mean, virtual machine. JavaWorld, 1996

www.tiobe.com/tiobe-index
www.tiobe.com/tiobe-index
http://drgarbagetools.sourceforge.net
http://drgarbagetools.sourceforge.net
https://pypi.org/project/pyjvmgui
https://pypi.org/project/pyjvmgui
http://classeditor.sourceforge.net
http://classeditor.sourceforge.net
https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19
https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19
https://github.com/andrewromanenco/pyjvm

	1 Introduction
	2 Java class files
	3 Inside the JVM
	4 The tools
	4.1 The hexdump program
	4.2 The javap program
	4.3 Class Editor
	4.4 Dr. Garbage's Bytecode Visualizer
	4.5 PyJVMGUI

	5 Java from a pedagogical point of view
	6 Conclusions

