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Abstract: Nowadays, in real-world applications, the dimen-

sions of data are generated dynamically, and the traditional

batch feature selection methods are not suitable for stream-

ing data. So, online streaming feature selection methods

gained more attention but the existing methods had demer-

its like low classification accuracy, fails to avoid redundant

and irrelevant features, and a higher number of features

selected. In this paper, we propose a parallel online feature

selectionmethodusingmultiple sliding-windows and fuzzy

fast-mRMR feature selection analysis, which is used for se-

lecting minimum redundant and maximum relevant fea-

tures, and also overcomes the drawbacks of existing online

streaming feature selectionmethods. To increase the perfor-

mance speed of the proposedmethod parallel processing is

used. To evaluate the performance of the proposed online

feature selection method k-NN, SVM, and Decision Tree

Classifiers are used and compared against the state-of-the-

art online feature selection methods. Evaluation metrics

like Accuracy, Precision, Recall, F1-Score are used on bench-

mark datasets for performance analysis. From the experi-

mental analysis, it is proved that the proposed method has

achieved more than 95% accuracy for most of the datasets

and performs well over other existing online streaming fea-

ture selection methods and also, overcomes the drawbacks

of the existing methods.

Keywords: Online Streaming Feature Selection (OSFS),

Fuzzy Rank, Multiple Sliding-Window, Parallel Online Fea-

ture Selection

1 Introduction
In today’s world the size of the datasets increase very

rapidly, which leads to the presence of noisy, irrelevant,
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and redundant features that degrade the performance of

the learning algorithm. So, Feature Selection (FS) is applied

to overcome these problems by discarding irrelevant and

redundant features from the original feature set. Feature se-

lection is the process of selecting a subset of features from

the original feature set which are relevant to the target class.

A variety of feature selection algorithms have been devel-

oped in the literature [4, 10, 19, 20], and it has been shown

that FS improves the performance of the learning algorithm

by increasing the prediction accuracy and thus reducing

the burden for the learning algorithms. However, most of

the existing feature selection algorithms are batch process-

ing only, which means all the features of the datasets are

available before the feature selection process is computed.

These traditional feature selection methods are not

suitable when the features are arriving dynamically. Simi-

larly in case of real-world applications [6, 25], all the fea-

tures are not available before the feature selection process

starts. Some of the examples are remote sensing images

[18], email spam filtering [13, 29], texture-based image seg-

mentation [23], network intrusion detection [32], and be-

havioral changes of hot topics in Weibo. In such cases, the

features are generated dynamically, one after the other or

as a group. It is also not feasible to wait until all the features

have arrived before the learning process starts, and for the

failure to implement traditional selection algorithms. So,

online feature selectionwas introduced to copewith stream-

ing features. In streaming data the features are arriving in

two ways: 1) The number of features is fixed and the in-

stances arrive dynamically, where patterns keep changing,

and 2) different features may arrive dynamically at a given

point in time. Some of the online feature selection meth-

ods available are Grafting [15], Alpha-Investing [34], Online

Streaming Feature Selection (OSFS) [26], Online Group Fea-

ture Selection (OGFS) [24], Scalable and Accurate On Line

Approach (SAOLA) [31], and Online Streaming Feature se-

lection Using SlidingWindow (OSFSW) [27]. There are some

drawbacks to the above-mentioned online feature selection

methods. Grafting [15] is good at discarding most of the

redundant features and irrelevant features, but it requires

the number of features in advance for calculating the reg-

ularization parameter (λ). Alpha-Investing [34] is good at
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handling large datasets, but it fails to remove the redundant

features among the selected features. As a result, the error

rate for this method is rather high. OSFSW uses a sliding

window method for selecting the features from the online

streaming data and it needs two stages for selecting the

features. To overcome the drawbacks mentioned above, we

proposed Online Streaming Multi Window Feature Selec-

tion method (OSMWFS) processes in parallel for selecting

the features using the fast-mRMR feature selection method

[17].

The proposed OSMWFS method uses the concept of

multiple sliding windows being processed in parallel. In

this method, instead of crisp values, we use fuzzy data

for feature selection. The fuzzy features collected from the

multiple sliding windows are passed to fuzzy fast-mRMR

analysis for selecting the candidate features and rank the

features. The fast-mRMR feature selection is used to reduce

runtime by processing the redundancy of the candidate

features only for the already selected relevant features, in-

stead of the entire dataset. The process is continuous un-

til some stopping criteria are met. OSMWFS method uses

a fuzzy rank aggregation method for assigning the final

ranks for the features present in the candidate feature sets.

Then we select the top ‘n’ (Here ‘n’ is set to 3 in our pro-

posed method) ranked features from the aggregate ranked

features sets. Rank aggregation helps in discarding the re-

dundant features present in other candidate feature sets.

It also reduces the time needed to select the optimal fea-

tures. To compare the performance of the proposedmethod,

four state-of-the-art online streaming feature selection al-

gorithms, namely Alpha-Investing, OSFS, SAOLA, and OS-

FSW are used over publicly available benchmark datasets.

We use performance measures like classification Accuracy,

Precision, Recall, F1-Score, time taken, and the number of

features selected to validate the performance of the pro-

posed OSMWFS method over the available state-of-the-art

online streaming feature selection methods. The highlights

of the proposed OSMWFS method are as follows:

– No chance of eliminating potential candidate points

of time since we are using ranking aggregation,

– Parallel processing reduces the time required for FS,

and

– Fast mRMR + fuzzy Ranking on multiple windows

enhances performance.

The remainder of the paper is organized as follows.

Section 2 explains the related work. Section 3 explains the

proposed work, section 4 presents the dataset description

and experimental setup, Section 5 contains result analysis,

and finally, section 6 offers the conclusion and future work.

2 Related Work
For the past two decades, feature selection, has been used

as an efficient method to handle large dimensionality and

used for finding an optimal subset of features. In general,

feature selection methods are divided into four methods,

namely: filter, wrapper, embedded, and hybrid methods.

These feature selection methods are suitable and perform

well when all the candidate features are available before a

learning process starts. However, they are not applicable for

real-world applications where the features are arriving one

after the other at a regular interval of time. In the following

paragraphs, we are going to discuss the available online

feature selection methods, their merits, and demerits from

different researchers.

Perkins and Theiler 2003 proposed a streaming feature

selection namely Grafting algorithm [15]. It uses a stage

wise gradient descent approach. The proposed method can

eliminate all the available redundant features. For deter-

mining the value of the tuning parameter (λ), it requires all
the candidate features in advance.

Zhou et al. 2005 proposed Alpha-Investing for stream-

ing feature selection [34]. It overcomes the overfitting prob-

lem by dynamically adjusting the threshold for adding the

feature to themodel and also suitable for handling huge fea-

ture sets. The drawback of this method is that it evaluates

the features only one time and discards to find the redun-

dant features between the selected features. Therefore, the

accuracy of this method is low.

Wu et al. 2010 proposed Online Streaming Feature Se-

lection (OSFS) and Fast-OSFS for streaming feature selec-

tion based on feature relevance [26]. OSFS uses the Fisher

Z-test and G2 test for removing the redundant and irrel-

evant features from the streaming features. OSFS attains

high accuracy with lesser features than Alpha-Investing
and Grafting. It is suitable for high redundant features but,
its runtime increases with the increase of non-redundant

features.

In [11] proposed GFSSF (Group Feature Selection with

Streaming Features) based on group feature selection. It

works at two levels, the group level, and the individual fea-

ture level. It uses the concept of mutual information and

entropy for selecting the features. GFSSF simultaneously

completes the feature selection both at the individual fea-

ture level and group level. When a new feature arrives first,

it invokes a feature selection level for processing in the

present group. The group-level feature selection is invoked

when all the features of a group have arrived. GFSSF per-

forms stream feature selection at the group level, individual

level, or both.
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In [23] proposedOGFS (OnlineGroupFeature Selection)

for streaming features based on the knowledge of group

information. It consists of two stages inter-group and intra-

group feature selection. In intra-group selection, features

are selected based on spectral graph theory. In inter-group

selection, the optimal feature subset is selected based on

global group information by using the Lasso linear regres-

sionmodel. The disadvantage of OGFS is during intra-group

selection; it requires a positive parameter number in ad-

vance and needs to select an optimal value.

In [22] uses sparsity regularization and truncation tech-

niques for the online feature selection method. Jialei Wang

et al. use two different types of inputs for learning; 1) learn-
ing with full input, and 2) learning with partial inputs. The

proposedmethods are not able to address the problemwith

online multiclass classification and regression problems.

In [7] proposed a new online streaming feature selec-

tion algorithm class OS-NRRSAR-SA using rough sets. Any

feature selection require prior knowledge about the feature

space but in case of rough set-based data mining any do-

main knowledge is required other than the available data.

For controlling the unknown feature space in OSFS, the

OS-NRRSAR-SA method uses classical significance analysis

concept available in rough set theory and fails to discard

redundant features.

In [31] proposed SAOLA (Scalable andAccurate On Line

Approach) for online streaming feature selection. It uses

a novel pairwise correlation among the features when fea-

tures are arriving one by one. Yu et al. extend the SAOLA
to group-SAOLA that deals with group features. It selects

the feature groups that are sparse at the feature level and

group level. For increasing the accuracy of the learning

algorithm, it obtains a solution that is sparse at both intra

and inter-groups simultaneously. It eliminates the redun-

dant features fromboth the groups and are sparse at feature

and group levels. The drawback of these methods is that

it is complicated to obtain optimal value for the relevance

threshold.

In [33] proposed online streaming feature selection us-

ing the sampling technique and the correlation between

features (STCF). It improves the performance of OSFS for

high-dimensional data by using sampling techniques. Sam-

pling techniques are used for handling imbalanced data

and increasing the accuracy of the model.

In [12] proposed two streaming feature selection

namely multilabel feature selection with label correlation

(MUCO) and multilabel streaming feature selection (MSFS),

respectively based on fuzzy Mutual Information for Mul-

tilabel learning [12]. There are two steps in MSFS namely

online redundancy analysis and online relevance analy-

sis for finding optimal feature subsets. In addition to this,

the correlation between the label set are also used in this

approach.

In [35] proposed online feature selection for high di-

mensional class imbalanced data. For real world applica-

tions like fraud detection and medical diagnosis, available

data is mostly class imbalanced and has high dimensions.

Existing online feature selection algorithms are discarding

the small class datawhichhas significant role in these appli-

cations. So to overcome these problem Zhou et al. proposed
a new online feature selection algorithm called K-OFSD

based on Dependency in K-nearest neighbors. For selecting

relevant features, the algorithm uses information of nearest

neighbors.

In [16] proposed filter based online feature selection

method calledOnline StreamingFeature Selectionbased on

Mutual Information (OSFSMI) and Online Stream Feature

Selection Based on Mutual Information with fixed number

of features (OSFSMI-k) using mutual information [16]. The

proposed method uses MI in a streaming manner for find-

ing correlation between features. Using this algorithm the

author is able to find relevant features and can also discard

redundant features.

In [27] proposed online streaming feature selection,

namely OSFSW, for high redundant data using sliding win-

dow technique. In OSFSW, the features are added into the

window that is highly relevant with the class label, then

later, it uses this window to find the redundancy between

the selected relevant features and already available candi-

date features. OSFSW uses a fixed-size sliding window size.

In [28] proposed an extension to OSFSW, namely OSFASW

that uses a self-adaption technique for selecting the size of

the window.

In [36] proposed online streaming feature selection for

high dimensional data using adapted neighborhood rough

set. Adapted neighbours are detected using rough set neigh-

borhood relation. Using this approach Zhou et al. is able to
select maximal-relevant and maximal significant features.

In [3] proposed Dynamic Correlation-based Feature Se-

lection (DCFS) for improving the performance of feature

drifting in data streams. Proposed Correlation based Fea-

ture Selection (CFS) uses heuristic evaluation for scoring

feature subsets. Relevant feature subsets are updated dy-

namically using CFS and also uses adaptive strategy for

drift monitor.

In [7] proposed an extension to OS-NRRSAR-SA algo-

rithm for eliminating redundant features [9]. The author

uses online redundancy analysis for discarding redundant

features and non-significant features are eliminated using

online significance analysis.
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3 Proposed Work
Consider a dataset F with n features F = {f

1
, f

2
, . . . , fn},

themain objective of any feature selectionmethod is to find

an optimal feature subset say (F′) with d feature (where

d << n). The objectives of the optimal feature subset (F′)
are; i) F′ is an optimal solution, ii) f

′

i ∈ F′ are the most rele-

vant features for target class (c), and iii) The error rate for F′

is very low than that of other feature subsets. So, to obtain

an optimal feature set, the proposed OSMWFSmethod uses

fuzzy fast-minimum Redundancy and Maximum Relevance

feature selection method. It uses a greedy approach during

the feature selection process for reducing more number of

MI computations. Also to increase the computational speed

of the feature selection process, we use parallel processing.

To achieve parallel processing the proposed method uses

CUDA programming model.

The primary goal of any feature selection is to select

the features, which has high relevance with the target class

c. So, to find the maximum relevant features the proposed

fast-mRMR method uses Eqn. (1) to find the Max-Relevance

features with the target class c [14].

max R(F, c), R =

1

|F|
∑︁
fi∈F

I(fi; c), (1)

where I(fi; c) is themutual information between the feature

and the target class.

The proposed method uses fuzzy features for feature

selections. The fuzzy mutual information [8] between the

fuzzy features are calculated by using the Eqn. 2.

FI(X, Y) = H(X) + H(Y) − H(X, Y) (2)

where X and Y are two fuzzy variables,H(X),H(Y) are fuzzy
entropy values for X and Y, respectively, and H(X, Y) fuzzy
joint entropy for X and Y. The fuzzy entropy and fuzzy joint
entropy on F can be calculated by using Eqns. (3), (4) and
(5), respectively.

H(A) = −

1

n
∑︁
fi∈F

[︁
µA(fi) log µA(fi) (3)

+ (1 − µA(fi)) log(1 − µA(fi))
]︁

H(B) = −

1

n
∑︁
fi∈F

[︁
µB(fi) log µB(fi) (4)

+ (1 − µB(fi)) log(1 − µB(fi))
]︁

H(A ∪ B) = −

1

n
∑︁
fi∈F

[µA(fi) (5)

∨ µB(fi)] log µA[µA(fi) ∨ µB(fi)]
+ (1 − [µA(fi) ∨ µB(fi)]) log(1 − [µA(fi) ∨ µB(fi)])

From the literature, it is a known fact that features se-

lected according to maximum relevance may have more

redundant features, which means the dependency among

the selected features may be large. The class discriminate

power will not be affectedmuchwhen one of the two highly

dependent features are removed. Therefore, Maximum-

relevance is combinedwithminimum-Redundancy [5]. And

the minimum redundancy between the selected features

are calculated by using Eqn. (6).

min mR(F), mR =

1

|F|2
∑︁
fi ,fj∈F

FI(fi , fj). (6)

The mRMR score for the feature set F is obtained by

using the Eqn. (7)

max Θ(R,mR), Θ(R − mR). (7)

The fuzzy ranks (Rankf ) are assigned by using Eqn. (8),
i.e., the ratio between R and mR

Rankf = argmax

(︂
R
mR

)︂
(8)

3.1 Fuzzification

Fuzzification is the process of converting the crisp values

into fuzzy values with the help of a fuzzy membership func-

tion. The proposed work uses the Gaussian membership

function for the fuzzification of given features into fuzzy

features. The Gaussian membership function is defined as

in Eqn. (9).

µfi (fij) = exp

(︃
−

(fij − ¯fi)2

2σ2fi

)︃
(9)

where fi is ith feature set in the dataset (D), fij represents
ith feature set jth element,

¯fi represents the mean of the fi
feature set and σ2fi represents the standard deviation of fi
feature set.

3.2 fast-mRMR Analysis

In the proposed OSMWFSmethod for selecting the features,

we use fast-mRMR feature selection method. These fast-

mRMR feature selection method is an extension of mRMR

feature selection method. Ramírez-Gallego et al. [17] first
uses this fast-mRMR feature selection method to overcome

the problems with mRMR feature selection method and
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computational burden. In mRMR, the main drawback is

related to more number of MI computation between a given

feature with class label or a pair of input features. So, fast-

mRMR uses greedy approach during feature selection and

also limits the number of comparisons between the fea-

tures.

In the fast-mRMR analysis, candidate features are se-

lected from the set of available features. It uses Mutual

Information (MI) for selecting strongly relevant and non-

redundant features. First, it selects the features that are

maximum relevance with the class label using the Eqn. (1).

It finds the mutual information between the available fea-

ture set and the class label plus features that have maxi-

mumMI with the class label are selected. In our proposed

work, we use the fuzzy feature as input to the maximum rel-

evant calculation, and also, the method uses fuzzy mutual

information for the selection. Then we calculate minimum

redundancy using Eqn. (6) for the features that have maxi-

mum relevance with the class label.

From the literature, we came to know that maximum

relevant features tend to have redundant features and the

classification accuracy will not be affected more when one

of the redundant features is removed. So, with this knowl-

edge, we are selecting minimum redundant features from

the available max relevant features. The final mRMR score

is calculated by using Eqn. (7). It is the difference between

minimum redundancy and maximum relevance score. The

feature that is having maximummRMR scores are selected

as candidate features. Finally, it assigns a fuzzy ranking for

the selected features using the Eqn. (8).

3.3 Parallel processing

In the proposed work to attain the parallelism, we use the

GPU-CUDA (Compute unified device architecture) parallel

version. The algorithms that run Parallel on GPUs (Graph-

ics Processing Unit) achieve up to 100 times speed over

the traditional CPU (Central Processing Unit) algorithms. It

is recommended to use a parallel environment, especially

when the size of data exceeds the computational power of

the CPU. So, in our proposed OSMWFS method to achieve

fast computation of feature selection, we adapted the par-

allel environment.

In our OSMWFS work, we use the parallel computing

platform and programmingmodel called CUDA, introduced

by NVIDIA [1]. CUDA provides direct access to the parallel

memory in GPUs and the virtual instruction set. For commu-

nicationwith other threads, the kernel uses sharedmemory,

global memory, and registers. Accessing data from registers

and sharedmemory is very fast, but their availability is very

low. Many processing units may keep idle during kernel ex-

ecution if the program uses toomany of these resources. So,

care must be taken during the kernel design to balance the

use of registers and shared memory. Generally, any CUDA

program of stages like 1) GPU global memory allocation, 2)

Swapping data from RAM (Random Access Memory) and

global memory, 3) execution of GPU kernels, 4) Moving the

results from Global memory to RAM, and 5) Deallocating

the GPU global memory.

In our proposed method, all the features from the RAM

are transferred to GPU global memory, then execute the

kernel, then finally, the results are transferred back to RAM.

3.4 Framework of OSMWFS Method

Figure 1 explains the OSMWFS method framework for on-

line streaming features usingmultiple slidingwindows that

are processed in parallel. In Figure 1 W_1, W_2, W_3, . . . ,

W_N represents ‘N’ Sliding windows and CF_1, CF_2, CF_3,

..., CF_N represents the candidate features obtained by us-

ing fast-mRMR feature selection. In this proposed method,

the features are arriving one by one at regular intervals of

time. Features are added to the sliding windows in parallel

one after another upon arriving until the windows are full.

When the windows are full, it stops adding the feature to

the current sliding windows, and it starts adding the fea-

tures into other windows. Now the features that are present

in the full windows are processed in parallel into fuzzy

features using the Gaussian membership function. These

fuzzy features are taken as input for fast-mRMR analysis

and final candidate features are selected and are assigned

Figure 1: Framework of proposed OSMWFS Method.
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with fuzzy rankings by using Eqn. (8) based upon the mini-

mum redundancy and maximum relevance values of the

features. By using fast-mRMR feature selection method we

are able to remove the redundant and irrelevant features

from the available features. Finally, the selected ranked

features from the fast-mRMR feature selection method are

added to the candidate feature sets (CF).

The relevant features that are selected into one candi-

date feature set may go to irrelevant with the features that

are selected in another candidate feature set in due course

and vice versa. So to overcome this, the ranked features

presented in each candidate feature set are aggregated with

previously selected feature sets (SF) using fuzzy Gaussian

rank aggregation method [2, 21]. Top ‘n’ ranked features

are selected from the aggregate ranked features. These top

features are then assigned to the selected feature set. The

process continues as new features are streaming, and the

candidate feature sets continue to change. The process is

not stopped until some stopping criteria are met. Finally,

at the end the features that are available in the selected

feature set are considered as the optimal feature subset.

3.4.1 Algorithm

Algorithm 1 explains how the OSMWFS method is works.

Line no 5–8 the reading of streaming features into the slid-

ing windows (Buffer_i). Line no 9–13 represents the paral-

lel execution of each sliding window for the selection of

optimal features using fast-mRMR analysis. Algorithm 2

represents the fast_mRMR analysis and returns candidate

features as output. The ranked candidate features from

each sliding window of fast-mRMR analysis are assigned

with final ranking by aggregating the feature ranks present

in the candidate feature sets and the ranked features that

are selected from the previous step. Fuzzy rank aggregation

is done by using Eqn. (10). Here fuzzy rank aggregation is

used for selecting the top ‘n’ features. In algorithm 1, line

13 represents the rank aggregation process. The optimal

features are selected from line 13 of algorithm 1.

µfi (x) =
1√︁
2πσ2fi

exp
(︃
−

1

2

[︃
(x − x̄fi )

2

σ2fi

]︃)︃
(10)

where x̄fi mean and σ̄2fi variance position of features fi.

Algorithm 1: OSMWFS Method Algorithm

Input : ‘c’ Target Class; ‘sws’ sliding-window
size, ‘N’ Number of Sliding windows.

Output : SF= {} selected features;
1 Initialize:

2 CF_1, CF_2, . . . , CF_N /* candidate feature
sets */

3 Buffer_1, Buffer_2, . . . , Buffer_N: ‘N’ sliding
windows each of size (sws)

4 repeat
5 for i=0; i < N; i ++ do
6 f ← new feature arrivers at time t
7 Buffer_i=read(f )
8 end

/* Parallelize lines 9 to 12 */
9 for i=0; i < N; i ++ do
10 CF_i = fast_mRMR (Buffer_i)

11 CF_i = Rank (CF_i) // Rank the Candidate

Features Using Eqn. (8).

12 end
/* Rank Aggregation */

13 SF= merge_rank{SF, CF_1,CF_2, ..., CF_N}

14 until stopping criteria are met;

Algorithm 2: fast_mRMR (Buffer_i)

Input : Buffer_i
Output :CF_i= {} // Candidate feature sets;

1 for ∀, x ∈ Buffer_i do
2 Convert the crisp value (x) into fuzzy value

using Gaussian membership function

3 Find the max relevance features using Eqn. (1)

4 Find the min redundant features using Eqn. (6)

5 Final candidate features (CFi) are selected
using Eqn. (7)

6 end
7 return CFi

4 Dataset Description

4.1 Dataset

In the proposed work, we use eight publicly available

benchmark datasets. These datasets are collected from the

websites LIBSVM¹ and UCI ² machine learning repository.

1 www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html

2 https://archive.ics.uci.edu/ml/index.php

www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/index.php
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Table 1: Dataset Description

Dataset No. of Features No. of Instances
Ionosphere 34 351
Madelon 500 4400
Lymphoma 4026 62
Gisette 5000 7000
Prostate 6033 102
Leukemia 7129 72
Real-sim 20958 30000
rcv1 47236 30000

Table 1 describes the datasets in terms of features and num-

ber of instances present in the dataset. All the datasets are

2 class classification datasets.

4.2 Experimental Setup

For the implementation of the proposed OSMWFS method,

all the experiments are conducted on a computer with an

Intel Core i7 7th Generation, NVIDIA GeForce RTX 2080 (8

GB) GPU and 32 GB RAM. For evaluating the performance

of the proposed OSMWFS method we use performance

measures like Accuracy, Recall, Precision, F1-Score, and

ROC curve. The experimental results are compared with

four state-of-the-art online streaming feature selection algo-

rithms, namely Alpha-Investing, OSFS, SAOLA, and OSFSW

for eight benchmark datasets as described in Table 1.

OSMWFS method is compared with the other state-of-

the-art online streaming feature selection that are imple-

mented using LOFS (Library of Online streaming Feature

Selection) [30], an open-source library for streaming fea-

tures implemented using MATLAB software. As evaluation

measures, we use the number of features selected, Accu-

racy, Precision, Recall, F1-Score, and runtime. We use 10-

fold cross-validation for training the model. To allow a fair

comparison, all algorithms use the same experimental set-

tings. All experiments were performed more than 15 times,

with a random permutation of features for each dataset.

For evaluating the performance of the proposed

method, we use three classification algorithms namely k-

nn, SVM and Decision Tree. These learning algorithms are

integrated into MATLAB 2016’s App tool. We use classifica-

tion measures obtained from each learning algorithm for

comparing with other state-of-the-art online feature selec-

tion methods. For the statistical tests, we use G2 test and
Fisher z-test for discrete and continuous data respectively
at a significance level of (λ = 0.01). Finally, we need to

set the size of the sliding window. We compare the time

taken by these streaming feature selections for finding the

optimal feature for different sliding window sizes (sws) that
vary from 5, 10, 20, 30, 40, 50.

5 Result Analysis
The proposedOSMWFSmethod is comparedwith four state-

of-the-art streaming feature selection methods, namely

Alpha-Investing, OSFS, SAOLA, and OSFSW, over eight pub-

licly available benchmark datasets. We use classification

measures for comparing the performance of the proposed

method with four state-of-the-art streaming feature selec-

tion methods. The measures are namely Accuracy, time

taken, and number of features selected. First, we analyze

the time taken for different window sizes (sws) to find the
optimal number of features. Table 2 describes in detail the

time taken and the number of features selected by the pro-

posed algorithm for different sliding window sizes.

From Table 2, we observe that the time taken and the

number of features selected is comparatively less and con-

sistent for sws size 20. So, from this observation, the sliding

window size is set to 20 in further experimental setups.

When the window size increases, the running time and

number of selected features also increases.

Table 3 represents the classification accuracy obtained

by the state-of-the-art streaming feature selection meth-

ods like Alpha-Investing, OSFS, SAOLA, OSFSW, and pro-

posed OSMWFS method using a k-NN classifier. Here the k

value is taken as 5 in our experiments. The bolded values

indicate the highest accuracy obtained by the OSMWFS

method over other streaming feature selection methods.

The italic values represent the second-highest accuracy

obtained by the OSMWFS method. It is inferred from Ta-

ble 3 that, for lymphoma and leukemia datasets proposed

OSMWFS method gives nearly equivalent accuracy to that

of the SAOLA method. We can observe that the prediction

accuracy of the Madelon dataset is very low nearly 60 %

for all the methods because it is a synthetic dataset so it

includes more noisy and redundant features.

Table 4 represents the classification accuracy obtained

by the state-of-the-art streaming feature selection methods

like Alpha-Investing, OSFS, SAOLA, OSFSW, and proposed

OSMWFS method using an SVM classifier. The bolded val-

ues indicate the highest accuracy obtained by the proposed

method over other streaming feature selection methods.

The italic values represent the second-highest accuracy ob-

tained by the proposed method. However, for lymphoma

and leukemia datasets proposedmethod gives nearly equiv-

alent accuracy to that of the SAOLAmethod.We can observe
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Table 2: Time taken and No. of features selected (#) for different sliding window

Sliding Window Sizes

Dataset sws=5 sws=10 sws=20 sws=30 sws=40 sws=50
Time # Time # Time # Time # Time # Time #

Ionosphere 0.5±0.03 5 0.4±0.05 5 0.4±0.08 4 0.3±0.05 4 0.3±0.03 3 0.5±0.001 3
Madelon 10±0.2 13 08±0.6 14 07±0.3 12 07±0.01 13 08±0.25 14 10±0.9 13
Lymphoma 65±0.2 10 70±0.35 8 55 ±0.6 5 75±0.4 6 85±0.1 5 78±0.25 5
Gisette 72±0.15 13 75±0.3 10 66±0.55 6 83±0.6 8 88±0.4 6 94±0.35 6
Prostate 70±0.05 4 73±0.5 5 68±0.05 4 75±0.35 4 80±0.55 5 85±0.5 4
Leukemia 73±0.7 8 77±0.15 6 70±0.5 4 70±0.15 5 84±0.2 5 90±0.55 4
real-sim 120±0.05 72 110±0.25 64 105±0.05 43 125±0.15 40 130±0.75 51 140±0.5 42
rcv1 150±0.05 86 160±0.5 65 148±0.45 48 165±0.85 45 170±0.03 45 170±0.15 47

Time : seconds; #: No. of Features Selected; sws: Sliding Window Size.

Table 3: Accuracy of algorithms with k-NN Classifier

Dataset Alpha- Investing OSFS SAOLA OSFSW OSMWFS
Ionosphere 86.40 86.20 87.50 87.20 87.65
madelon 49.30 54.20 55.50 56.10 58.40
Lymphoma 96.30 95.50 99.80 98.30 99.20
gisette 76.40 80.50 87.90 88.10 90.70
Prostate 85.40 95.60 92.70 93.10 96.20
leukemia 96.80 95.60 98.80 96.00 98.20
real-sim 68.10 74.20 75.60 78.50 82.50
rcv1 72.20 75.60 78.50 80.50 83.10

Table 4: Accuracy of algorithms with SVM Classifier

Dataset Alpha- Investing OSFS SAOLA OSFSW OSMWFS
Ionosphere 90.50 92.30 92.30 92.30 92.80
madelon 55.20 61.40 62.10 61.50 62.50
Lymphoma 96.80 95.20 100.00 96.50 99.50
gisette 80.50 83.40 85.40 86.30 88.70
Prostate 91.00 95.80 93.00 95.20 96.40
leukemia 97.00 97.10 100.00 97.20 99.50
real-sim 58.20 65.25 68.50 72.40 78.50
rcv1 74.20 76.40 78.50 82.25 85.10

Table 5: Accuracy of algorithms with Decision Tree Classifier

Dataset Alpha- Investing OSFS SAOLA OSFSW OSMWFS
Ionosphere 90.10 89.50 86.50 90.20 91.40
madelon 50.20 58.10 57.20 58.20 58.50
Lymphoma 93.50 80.40 95.20 96.60 96.20
gisette 82.40 83.45 82.25 84.50 85.75
Prostate 88.00 90.50 87.10 91.30 92.10
leukemia 95.60 96.20 94.40 97.20 98.10
real-sim 60.50 68.50 71.50 75.00 78.40
rcv1 78.90 76.50 77.40 81.40 82.60
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Table 6: Time taken and No. of features selected by different algorithms

Algorithms
Alpha- Investing OSFS SAOLA OSFSW OSMWFS

Dataset Time # Time # Time # Time # Time #
Ionosphere 0.050±0.005 10 0.15±0.005 4 0.98±0.05 4 0.9±0.05 4 0.4±0.05 4
madelon 0.025±0.003 13 10.25±0.15 16 0.15±0.05 18 4.5±0.4 14 3±0.40 12
Lymphoma 30.12±0.03 5 45.25±0.15 8 52.85±0.05 39 35.65±0.07 15 15±0.1 11
gisette 35.25±0.02 15 38.45±0.04 24 30.70±0.30 40 45.50±0.25 16 25±0.15 10
Prostate 55.35±0.55 5 55.5±0.2 12 110±6 15 70±3 14 40±0.15 10
leukemia 72.25±0.15 10 45.45±0.15 28 90±5 35 83±2 17 62±0.55 12
real-sim 130.25±0.03 80 130.00±10 54 210±15 60 140±5 52 90±0.85 43
rcv1 135.35±0.04 73 150.00±15 90 280±20 55 200±15 57 100±0.5 48

Time: seconds; #: No. of Features Selected;

that the prediction accuracy of the Madelon dataset is very

low nearly 60% for all themethods because it is a synthetic

dataset so it includes more noisy and redundant features.

Table 5 represents the classification accuracy obtained

by the state-of-the-art streaming features selection meth-

ods like Alpha-Investing, OSFS, SAOLA, OSFSW, and pro-

posed OSMWFS method using Decision Tree classifier. The

bolded values indicate the highest accuracy obtained by

theOSMWFSmethod over other streaming feature selection

methods. The italic values represent the second-highest ac-

curacy obtained by the OSMWFS method. We can observe

that the prediction accuracy of the Madelon dataset is very

low nearly 60% for all themethods because it is a synthetic

dataset, so it includes more noisy and redundant features.

We further analyze the performance of the proposed

OSMWFS method over other online streaming feature se-

lection methods. Table 6 shows the run time and number

of features selected by the state-of-the-art streaming fea-

ture selection methods and the proposed OSMWFSmethod.

The run time for the datasets like the ionosphere, Made-

lon, is less for Alpha-Investing than the other methods and

proposed method. This is because Alpha –Investing only

considers the newly added features and the discarded fea-

tures are never considered again. However, the number of

features selected for the OSMWFSmethod is very low when

compared with the Alpha-Investing method. Moreover, the

prediction accuracy is low for Alpha-Investing when com-

pared with OSMWFS method (as observed from Tables 3-5).

From Table 6, we inferred that the OSMWFS method out-

performs for most of the datasets over the other streaming

feature selection methods.

Table 7 represents the precision, recall, and F1-Score

for ‘k-NN,’ SVM, andDecision Tree classifier for eight bench-

mark datasets over four state-of-the-art online feature selec-

tion (OFS) methods and proposed OSFSWFS method. Preci-

sion measures the probability of data predicted as positive

to be positive. It is the measure of the ratio of True Positive

by true positive plus false positive (i.e., TP/(TP+FP)).

A recall is referred to as True Positive Rate or sensitiv-

ity, and it is the measure of the ratio of True Positive by

True Positive plus False Negative (i.e., TP/(TP+FN)). The

columns represent measures like Precision, Recall and F1-

Score over the three classifiers, whereas the rows represent

the datasets and online feature selectionmethods. From Ta-

ble 7, we infer that the performance of the proposedmethod

is good when compared to the other OFS methods.

Receiver Operating Characteristic Curve (ROC Curve)

is used to show how good a given learning model. It uses

sensitivity and Specificity values for the representation. The

Area Under The ROC Curve (AUC) is used to measure how

best a given model varies between the classes. If the area is

high, then the model is best and vice versa.

Figure 2: ROC Curve for Ionosphere Dataset
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Table 7: Precision, Recall and F1-Score for Classifiers

Classifiers
Dataset OFS k-NN SVM Decision Tree

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Ionosphere

Alpha Investing 75.47 74.07 74.77 75.76 83.33 79.37 76.92 78.13 77.52
OSFS 75.00 71.43 73.17 77.50 72.09 74.70 75.71 79.10 77.37
SAOLA 76.36 75.00 75.68 79.52 81.48 80.49 80.26 81.33 80.79
OSFSW 76.19 77.94 77.42 77.61 78.79 78.20 77.27 85.42 82.83
OSMWFS 79.10 78.69 78.52 80.58 87.37 83.84 80.39 87.93 82.26

Madelon

Alpha Investing 79.17 79.17 79.17 78.95 77.69 76.67 81.89 85.54 72.73
OSFS 81.48 83.54 82.50 80.00 81.36 80.67 83.65 87.00 85.29
SAOLA 77.50 73.47 79.12 80.36 76.27 78.26 80.41 85.76 85.71
OSFSW 76.47 82.54 79.39 85.71 76.67 75.00 81.25 89.04 84.97
OSMWFS 85.71 84.93 81.05 88.87 82.35 81.58 88.82 89.51 88.26

Lymphoma

Alpha Investing 85.19 83.53 82.77 84.71 93.51 88.89 85.69 89.89 89.89
OSFS 84.04 87.78 85.87 80.00 84.21 85.05 87.18 87.18 87.18
SAOLA 81.65 88.12 84.76 86.36 86.48 88.37 83.78 83.78 83.78
OSFSW 80.95 88.31 84.47 87.41 86.84 88.59 88.19 81.67 86.41
OSMWFS 88.05 89.91 86.34 90.50 88.89 91.85 89.89 91.59 90.69

gisette

Alpha Investing 84.71 93.51 88.89 80.95 88.31 84.47 83.16 84.04 83.60
OSFS 80.00 84.21 82.05 83.05 89.91 86.34 86.49 78.09 82.19
SAOLA 86.36 90.48 88.37 75.34 83.33 79.14 82.52 85.86 84.16
OSFSW 90.41 86.84 88.59 84.48 77.78 80.99 83.16 84.04 83.60
OSMWFS 87.50 88.89 87.85 82.83 86.32 84.54 87.49 88.19 86.69

Prostate

Alpha Investing 77.78 80.77 79.25 77.78 80.77 79.25 77.27 76.44 81.60
OSFS 83.12 86.49 84.77 83.12 86.49 84.77 80.46 79.74 84.85
SAOLA 80.65 91.46 85.71 80.65 91.46 85.71 79.10 84.48 82.17
OSFSW 82.91 87.39 85.09 82.91 87.39 85.09 80.95 79.39 74.73
OSMWFS 84.21 88.07 86.10 77.27 86.44 81.60 89.55 83.20 84.51

leukemia

Alpha Investing 77.97 82.14 80.00 76.79 78.48 84.31 80.95 92.73 86.44
OSFS 79.38 93.90 86.03 78.13 71.43 84.63 84.29 88.06 86.13
SAOLA 81.33 83.56 82.43 76.62 80.77 83.10 84.31 97.73 90.53
OSFSW 83.33 82.35 82.84 80.26 80.92 82.99 84.75 95.24 89.69
OSMWFS 81.44 92.94 86.81 86.89 80.30 83.46 85.55 97.63 90.44

real-sim

Alpha Investing 92.98 98.15 95.50 94.12 97.96 96.00 96.43 93.10 94.74
OSFS 94.29 97.06 95.65 95.24 98.77 96.97 97.98 97.98 97.98
SAOLA 94.34 96.15 95.24 97.62 95.35 96.47 97.37 97.37 97.37
OSFSW 95.65 98.88 97.24 97.30 94.74 96.00 97.44 98.70 98.06
OSMWFS 95.65 95.65 95.65 95.83 95.83 95.83 97.10 98.53 97.81

rcv1

Alpha Investing 93.33 97.67 95.45 95.77 94.44 95.10 94.34 96.15 95.24
OSFS 93.98 98.73 96.30 97.06 92.96 94.96 92.06 93.55 92.80
SAOLA 86.67 96.30 91.23 94.34 96.15 95.24 93.75 94.94 94.34
OSFSW 93.98 97.50 95.71 97.22 92.11 94.59 97.03 94.23 95.61
OSMWFS 97.92 92.16 94.95 96.25 95.06 95.65 97.50 86.67 91.76

Figures 2 – 9 represent the Receiver Operating Charac-

teristic (ROC) curve given by SVM classification over the

proposed method and other state-of-the-art online feature

selection methods for eight benchmark datasets. On X-axis

False Positive Rate and Y-axis True Positive Rate values are

represented.

From Figures 2 – 9, it is observed that the area under

the ROC curve is low for most of the online feature selec-

tion method over the proposed OSMWFS method. From

Figures 2 – 9, we observe that the AUC is more for datasets

like Ionosphere, Madelon, leukemia, rc1and real-sim data.

However, for other datasets, the AUC is not high for the

proposed OSMWFS method but is nearby the top online

feature selection method.
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Figure 3: ROC Curve for Madelon Dataset

Figure 4: ROC Curve for Lymphoma Dataset

Figure 5: ROC Curve for Gisette Dataset

Figure 6: ROC Curve for Leukemia Dataset

Figure 7: ROC Curve for Prostate Dataset

Figure 8: ROC Curve for rcv1 Dataset
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Figure 9: ROC Curve for real-sim Dataset

6 Conclusion and Future Scope
In this paper, we proposed the OSMWFSmethod using mul-

tiple sliding-windows that are processed in parallel, and

the fuzzy fast-mRMR feature selection method is used for

selecting features withminimum redundant andmaximum

relevant. The use of fuzzy fast-mRMR feature selection is

to reduce the number of MI computations between the fea-

tures and the class labels. The use of multiple sliding win-

dows is to speedup the process of retrieving the streaming

features. In this digital era, data keeps on changing rapidly

and dynamically to cope up with this we need parallel pro-

cessing. And finally the fuzzy rank aggregation is used to

eliminated the redundant features between the previously

selected feature and present selected feature set during

the feature selection process. The selected features have

minimum redundancy and maximum relevance with the

class variable. The proposed method has a low number of

features and high classification accuracy. The experimental

results show that the OSMWFS method outperforms other

online streaming feature selection methods. Our empirical

study demonstrated that; 1) OSMWFS method is best suit-

able for high dimensional streaming data, 2) Parallel pro-

cessing reduces the time required for FS, and 3) OSMWFS

enhances the performance of the model.

Even though the OSMWFS method outperforms other

online streaming features selection methods, the selection

of sliding window size is static. In future, we will extend

this work to fix the window size dynamically based on the

data flow.
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