Open Comput. Sci. 2021; 11:70-79

DE GRUYTER

Research Article

Daniel Lukacs*, Gergely Pongracz, and Maté Tejfel

Control flow based cost analysis for P4

https://doi.org/10.1515/comp-2020-0131
Received Feb 29, 2020; accepted Mar 31, 2020

Abstract: The networking industry is currently undergo-
ing a steady trend of softwarization. Yet, network engi-
neers suffer from the lack of software development tools
that support programming of new protocols. We are cre-
ating a cost analysis tool for the P4 programming lan-
guage, that automatically verifies whether the developed
program meets soft deadline requirements imposed by the
network. In this paper, we present an approach to estimate
the average execution time of P4 program based on con-
trol flow graphs. Our approach takes into consideration
that many of the parts of P4 are implementation-defined:
required information can be added in through incremen-
tal refinement, while missing information is handled by
falling back to less precise defaults. We illustrate applica-
tion of this approach to a P4 protocol in two case studies:
we use it to examine the effect of a compiler optimization
in the deparse stage, and to show how it enables cost mod-
elling complex lookup table implementations. Finally, we
assess future research tasks to be completed before the
tool is ready for real-world usage.

Keywords: data plane, control flow graph, static profiling,
refinement, soft real-time

1 Introduction

In modern network engineering, network scalability is be-
coming more and more important than raw throughput
numbers. This has resulted in the ongoing industry trend
known as network softwarization: flexible software nodes
and network virtualization are preferred over rigid hard-

*Corresponding Author: Daniel Lukacs: Faculty of Informatics,
E6tvos Lorand University, Budapest, Hungary;

ORCID: 0000-0001-9738-1134; Email: dlukacs@inf.elte.hu

Gergely Pongracz: Ericsson Hungary Ltd., Budapest, Hungary;
ORCID: 0000-0002-5115-9973; Email:
Gergely.Pongracz@ericsson.com

Maté Tejfel: Faculty of Informatics, E6tv6s Lorand University, Bu-
dapest, Hungary; 3in Research Group, Martonvasar, Hungary;
ORCID: 0000-0001-8982-1398; Email: matej@inf.elte.hu

ware, even at the price of lower packet processing speed.
This trend gave birth to a new class of networks called soft-
ware defined networks (SDN): agile, dynamically reconfig-
urable networks automatically controlled by software.

An emerging new technology supporting SDN is the
P4 programming language [1]. Programs written in P4 are
network protocols, executed by smart network switches:
P4 programs describe how the switch should manipu-
late and forward the packet that it receives. Thus, P4-
enabled switches can be dynamically reprogrammed (pos-
sibly even after deployment) to accommodate changes in
network configuration.

An important selling point of P4 is that it alleges to be
as fast as fixed protocol set switches (e.g. OpenFlow), and
at the same time being capable of expressing custom (arbi-
trary) protocols. And switch performance is important for
networks, even if high end-to-end throughput is less val-
ued these days: when an individual switch repeatedly fails
to process incoming packets in time, the delay will cause
buffer overflows and network congestions, which in turn
can ultimately lead the switch into failing out, or worse,
lead the whole network into a breakdown. To paraphrase,
switches are real time systems with soft deadlines.

1.1 Motivation

Unlike in the case of hardware switches, where there are
well-established methodologies for verifying such require-
ments, P4 still lacks tooling that could provide informa-
tion to developers about whether the developed protocol
will meet said deadlines or not. Unfortunately, the underly-
ing complexity of software systems, — that makes analysis
difficult or even NP-hard in some cases —, is an additional
trade-off of softwarization.

Our current work is part of our ongoing effort to tackle
this problem: our intention is to develop a cost analysis
tool for P4. In our plans, this tool will make it possible to es-
timate the execution time (and possibly other factors, such
as energy efficiency) of a P4 program, enabling verifica-
tion of soft network deadlines and other requirements. In
the future, we also hope to enable other operations, such
as proposals of program optimizations, and automatic in-
ference of execution environment parameters required to
meet known deadlines.

3 Open Access. © 2021 D. Lukacs et al., published by De Gruyter. ‘ (cc) This work is licensed under the Creative Commons Attribution

4.0 License

https://doi.org/10.1515/comp-2020-0131

DE GRUYTER

In this work, we present an approach for automatic
P4 cost analysis, that can be incrementally refined with
new information to improve its precision, and we illustrate
this approach and refinement in two case studies. In Sec-
tion 2, we enumerate related topics in the literature, includ-
ing our earlier results on this subject. Also in that section,
we highlight and describe the most important parts of the
P4 language through a code example. In Section 3, we de-
tail our refinable, CFG-based probabilistic representation
of P4 programs, and provide an algorithm for performing
cost analysis on this representation. Section 4 houses our
first, introductory case study: we refine and estimate the
cost of the deparsing stage of a P4 program. Section 5 de-
tails our second, more involved case study: refinement and
analysis of P4 table lookups. We conclude our paper in Sec-
tion 6.

2 Related work

In our earlier approach to P4 cost analysis [2], we syntacti-
cally transformed the code of P4 parsers into cost expres-
sions. In the current paper, we utilized our earlier insights
and continued this analysis with deparsing and lookup ta-
bles, but our current algorithm is based on CFG traversal.
Our main issue with the transformational approach was
that syntax-level analysis is more resource-intensive and
computational costs of symbolic rewriting are hard to pre-
dict: even though it is important for exponential use cases
such as ours.

As we noted earlier, P4-enabled switches can be con-
sidered soft real-time systems as there are timing require-
ments in addition to functional requirements. Davis et. al.
[3] offers a classification and current survey of approaches
for analysing timing requirements. In this classification,
our work is considered static probabilistic timing analysis
(SPTA).

A mature example of general SPTA theory can be
found in Baier et. al [4]. Here, the authors use various
Markov-chains for probabilistic analysis of semantic prop-
erties (such as state reachability), but also for calculating
expected reward. While our work is more focused on appli-
cation, in the future, we plan to discover the possibilities
for improving fundamentals in this work.

A current example for dynamic timing analysis is Iyer
et. al [5]. The authors developed Bolt, a tool based on
dynamic instrumentation, that generates performance ex-
pressions from the C code of network functions. Perfor-
mance expressions are terms (similar to the expected value
formulas in our current work), containing performance

Control flow based cost analysis for P4 = 71

critical variables (variables describing factors of hardware,
implementation and execution environment that have
high influence on performance). While we cannot directly
compare this work to our work because of the difference in
approach, the capabilities of the tool are astounding and
serve as a goal for future improvement.

2.1 About the P4 language

Programs written in the P4 programming language [1] are
high-level descriptions of packet pipelines: a sequence of
packet processing operations every packet will go through.
An example P4 code we will use here and in later sections
(discussing cost analysis of deparsing and table lookups)
is displayed by Listing 1. This code excerpt is was extracted
from the basic_routing-bmv?2 test case of the official P4
reference compiler [6]. It specifies a simple protocol de-
scribing basic IP4 forwarding.

Before we proceed to explain this example, it is impor-
tant to highlight, that in P4 the bulk of packet forwarding
work is performed by match-action tables. As a generaliza-
tion of routing tables, these can be envisioned as key-value
stores, where keys are patterns and values are actions.
When the table is applied to a packet, the table is searched
for the first entry whose pattern matches the packet, and
the action of this entry is executed. P4 control flow can also
depend on the executed action. Note that P4 does not de-
fine the implementation of match-action tables: choosing
the optimal data structures and search algorithms is the
responsibility of compiler developers. Moreover, P4 pro-
grams do not describe the contents of the match-action ta-
bles: they are filled by the SDN controller switch during
runtime. P4 programs only describe the table schema.

The elements of the forwarding pipeline are specified
in the call to ViSwitch. First, headers of the incoming
packet are parsed by ParserImpl into the structure named
headers. Then the ingress block specifies that in case the
packet was successfully parsed as an IP4 packet, we ap-
ply the fib match-action table (exact lookup, requiring
full match) to the packet. If this fails, we apply the more
lenient fib_1pm table (LPM lookup). The table block fib
declares a table schema: the dstAddr field of the packet is
matched to table entries, which can be either one of the ac-
tions nexthop and on_miss and their arguments (e.g. the
destination port). Action nexthop sets the egress_port
metadata field that is read, in turn, by the switch imple-
mentation to forward the packet to the nexthop gateway.
Then, nexthop decreases the IP4 time-to-live field by the
8-bit unsigned integer 1. The final step of the pipeline
is DeparserImpl, selecting which headers should be in-

72 —— D.Llukacsetal

Listing 1: P4 code specifying a simple IP4 switch

DE GRUYTER

1 #include <core.p4> 25 inout headers h, 49 switch (fib.apply().action_run) {
2 #include <vlmodel.p4> 26 out standard_metadata_t sm) { 50 on_miss: { fib_lpm.apply(); }
3 27 51 ¥

4 struct headers { ethernet_t eth; 28 action on_miss(O) { } 52 ¥

5 ipv4_t ipvé; 29 53 }

6) 30 action nexthop(bit<9> port) { 54}

7 31 Sm.egress_port = port; 55 // end of control ingress
8 header ethernet_t { 32 h.ipv4.ttl = h.ipv4.ttl - 8wl; 56

9 bit<48> dstAddr; 33 } 57

10 bit<48> srcAddr; 34 58 control DeparserImpl(

11 bit<16> etherType; 35 table fib { 59 packet_out packet,

12 3 36 actions = { on_miss; nexthop; } 60 in headers hdrs) {

13 37 key = { h.ipv4.dstAddr : exact; } 61

14 header ipv4_t { bit<8> ttl; 38 size = 131072; 62 apply {

15 bit<32> dstAddr; 39 } 63 packet.emit (hdrs.eth);
16 [...] 40 64 packet.emit (hdrs.ipv4);
17 41 table fib_lpm { 65 3

18 42 actions = { on_miss; nexthop; } 66)

19 ViSwitch(p = ParserImpl(), 43 key = { h.ipv4.dstAddr : lpm; 67
20 ig = ingressQ), 44 size = 16384; 68

21 dep = DeparserImpl()) main; 45 } 69

22 46

23 parser ParserImpl [...] { [...] } 47 apply {

24 control ingress(48 if (h.ipv4.isValid()) {

cluded in the outgoing packet. After this step, these head-
ers are copied in front of the payload and the switch sends
out the packet.

3 A probabilistic model of acyclic
program flow

One factor posing considerable difficulty in cost analysis
of P4 is that many elements in the language are undefined
in the language specification, by design. This is one of the
key features enabling highly abstract P4 programs to be
competitive performance-wise with lower-level switches:
P4 compiler developers can choose the best implementa-
tion of these undefined elements for their target switch-
platform.

We handle this analysis problem through an incre-
mental refinement approach. We treat P4 programs as ab-
stract descriptions (specifications or models) of what kind
of packet processing behavior is expected from the switch.
To perform cost analysis, parts of this abstract description
must be refined or concretized by including more infor-
mation, e.g. about the executing hardware, the language
implementation, and the runtime environment. The more
concrete the description is, the more precise our estima-
tions will be. On the other hand, adding concrete informa-
tion will restrict the range of targets to which our model
can be applied.

In the following section, we provide a probabilistic
model of program execution. We then give an algorithm
for calculating the expected execution cost of a program
given its control flow graph (CFG). For now, we will assume

that the modelled programs have no explicit loops. We ex-
clude looping constructs from the current discussion, be-
cause (a) in the general case, the expected value of aloop is
not computable, and (b) because unstructured loops (such
as those constructed using jump instructions) would make
analysis more involved. As we will also see in Section 5,
special cases of structured loops can be easily included
into the model, and this is sufficient for P4. We also omit er-
ror statements from our discussion: defining the meaning
of execution cost of a program resulting in error is out of
the scope of this paper. Moreover, the P4 language lacks ex-
ception handling control structures, so this omission only
affects a small class of P4 programs.

3.1 The model

In the following, we informally assign to CFGs a seman-
tics similar to the semantics of Bayesian networks. Dur-
ing this discussion, we will use the CFG in Figure 2 of Sec-
tion 5 as an example. Nodes of the CFG, called blocks (de-
noted as n), correspond to a value of the random variable
called program counter: each one of these values has an
associated execution cost. We treat CFGs as hierarchical,
so we allow blocks to be mapped to lower level CFGs. A di-
rected edge e; between two blocks corresponds to the pos-
sible event (also denoted as e;) of updating the program
counter. Conventionally, we denote the probability of this
event as P(e;). A finite program execution (denoted by)
is any directed path (i.e. sequence of events) selected from
the CFG starting at the entry point and terminating in the
exit point. Each prefix of a program execution has an as-
sociated program state. Each e; edge has a special condi-

DE GRUYTER

tion label cond(e;). If a node has multiple outgoing edges,
the control always chooses the edge with the condition
satisfied in the current program state. As a consequence:
P(e;) = P(cond(e;)). As such, we use P(e;) and P(cond(e;))
interchangeably in this paper.

We define the expected value of a g CFG as the sum
of the execution costs of each execution path, weighted by
the probability of that execution:

E@= X

nepaths(g)

P(mr)cost(m) 6]

Since conditions depend on the program state, not all con-
ditions are independent from each other. In other words,
the probability of a condition being satisfied is a condi-
tional probability. By the definition of conditional proba-
bility, the probability of a length-2 execution path eq, e;
can be calculated using the individual probabilities of the
constituent elements: P(e;Ne1) = P(e,|e1)P(eq). For paths
longer than that, we can decompose the probability of a
path using the chain rule of conditional probability:

P(en, en-1,...,€2,e1) =Plenlen-1,...,€2,€1)
-Plep-1len-z...,e2,€1)
@
- P(ez|e1)
- P(e1)
When we talk about the cost of some 7 = eq, ey, ..., €

path, we mean the sum cost of the blocks on that path. As
before, we need to take into account that the execution cost
of block n; may be dependent on the path it is on:

cost(m)= > 3)

n;enodes(m)

cost(n;|m)

In most cases, we expect expressions in the form of
cost(n|m) to be directly translated to known constants (ele-
mentary operational costs), or to conditional expectations
in the form of E(n|m).

Conditional expectation provides us with composi-
tionality, which is important for efficiently computing ex-
pectation. Let g be CFG, and n be a component (a block
which is mapped to a sub-CFG) of g. Let us consider ran-
dom variables X : Q — paths(g)and Y : Q — paths(n) U
{€}. Assuming n is deterministic, each m, value of Y cor-
responds to a class of inputs of n. Inputs are generated
by values of X, and so rng(Y) determines a partitioning of
rng(X).

We should also notice that the component has no cost
on those paths that do not execute it: E(n|Y = €) = 0. More
over, path my is only executed on my if and only if 7y gen-

Control flow based cost analysis for P4 == 73

erates an input inducing my:

1, if nx induces my
P(Y = ﬂy|X = ﬂx) =
0, otherwise

Then, by the law of total expectation,
E(n|X = my) =
E(E(n|Y = my)|X = mx) =
> EMmY=m)P(Y=mny|X=mx) =
nyerng(Y)

>. Em|Y=my)
nyEpaths(n)
This means, we can calculate E(n|m,) independent of y,
and use these to calculate E(n|my). The law in the form of
E(n) = E(E(n|my)) also justifies our handling of the top-
level component in Equation 1. Simple examples (assum-
ing independence of component cost and preceding exe-
cution) of utilizing such expressions will be demonstrated
in Section 4 and Section 5.

3.2 Algorithms for computing expected
value

Algorithm 1 enumerates all paths and computes the prob-
abilities and costs for each. Unfortunately, we cannot

Algorithm 1: A revisiting BFS, calculating the expected
value of an acyclic CFG G from source node r

Input: G
Input: r
Output: A list containing for each path in the CFG a
(n, 7, p, s) tuple characterizing the path, where
— nis the last block on the path
— mis the path itself, i.e. a sequence of CFG edges
— pis the probability of the path

// an acyclic CFG
// starting node for traversing the CFG

— sis the cost of the path

1 Function ExpectedValueg (1):

2 out :=0

3 q:=1[(r,11,1,0)]

4 while g # [/ do

5 (n, m, p, s) := Dequeuey()

6 foreach e in OutEdgesgs(n) do
7 m := Dstg(e)

8 data := (m, [e] +m, p - P(e|m), s+ c(m))
9 if OutEdgess(m) = () then
10 ‘ out := out U {data}
1 else

12 ‘ Enqueuegy(data)

13 end

14 end

15 end
16 return out

74 =—— D.Lukicsetal

W
—
W
4

w
—_
(=}

505

Execution cost (cycles)
g

—*= Unoptimized resizing

-#- Optimized resizing

e

0 0.1 0.2 03 04 05 06 07 08 09 1
P(hdrs.size = packet.emittedSize)

I
©
G

Figure 1: Cost of resize and resizex

avoid enumerating all (exponentially many) execution
paths induced by the CFG: if two paths merge (e.g. as
in an Y-shaped component), we still need to record the
different histories of the suffix in the probability condi-
tions. On the other hand, we could take advantage of
the fact that paths share some prefixes with each other
in order to avoid redundantly computing probabilities
and cost sums for the same prefixes. That is, given the
weighted costs (p;pi+1 . - - PnP1)c1 and (pipis1 - . - PnP2)C>
of two paths, we can calculate the expected value as
(DiDis1 -+ - Pn)(P1c1 + PyC)).

The algorithm can be optimized further by e.g. prun-
ing low-probability branches, and selectively reversing the
direction of traversal (starting from the exit).

3.3 Datarequirements

In P4, implementation of certain language elements is
intentionally left undefined by the specification, so the
implementors can maximize efficiency on very different
executing hardware targets. Moreover, some input data
is naturally only available at runtime (e.g. packets, and
match-action table contents). This missing information is
required to calculate the elementary costs and conditional
probabilities in the expected value formula of Equation 1.
But this is also the exact reason we chose this approach:
new information regarding costs and probabilities can be
easily added by the time and in the quality it becomes
available. Until then, we can utilize sane, but far less pre-
cise defaults: we may treat all conditionals independent
from each other (thus taking advantage of the fact that
ANB=0 = P(A|B) = P(4)).

This is consistent with the meaning of independence
stating that any value of each variable contains no informa-
tion regarding values of the other variable. We can also as-
sign mathematical (e.g. uniform) probability distribution
for each conditional. Or we may decide to calculate con-

DE GRUYTER

ditional probabilities using static analysis techniques, or
infer them with data mining on existing usage data.

We can also refine the abstraction level of the CFG
(and achieve more precise results) by expanding a node
into the CFG of its implementation (or a selected abstrac-
tion of its implementation). We illustrate this refinement
in the following sections. In Section 4, we discuss the rel-
atively straightforward packet deparsing, and analyze the
cost trade-off introduced here by a possible compiler opti-
mization step. In Section 5, we analyze the costs of (unde-
fined) P4 table lookups by assuming that the target imple-
ments lookups using a specific algorithm, called DIR-24-8.

4 Case study: Packet deparsing

Deparsing is the final step of the packet processing
pipeline, the “inverse” operation of parsing (which we al-
ready discussed in [2]). In DeparseImpl in Listings 1, we
select the headers to be included in the outgoing packet.
These headers, together with the payload, are then copied
to a location from where the packet will be finally trans-
ported outside the machine by the NIC.

Implementation of P4 deparsing is not specified by the
P4 specification: P4 compiler developers can choose the
approach that runs the fastest on the target switch hard-
ware. As a result, this information is specific to each com-
piler, and thus it is simply not available to us. To mitigate
this problem, we have to refine the deparsing stage, by pro-
viding a more concrete model of the implementation (i.e.
the runtime code generated by the compiler).

We model compiler generated implementations of the
deparser with the function deparse in the pseudocode
in Listings 2. In the code, we assume that maximal size
of packet.emitted is known compile-time and is allo-
cated before deparsing (in P4, all sizes have a known up-
per bounded, by design). We also assume there is enough
space allocated for adjusting packet.cursor back and
forth. For now, we also assume the payload is already in
place, and we do not model the transmission.

In function deparse, the involved structures are read
from the main memory, the two emit statements in
DeparserImpl (selecting headers for the outgoing packet)
are executed, the size of the store storing the outgoing
packet is actualized, and finally the headers are copied
to this store. The implementation of emit stores a pointer
(pointing to header instance, residing already at some tem-
porary store) in an array and keeps count of the size in
bytes. Function resize calculates the difference between

DE GRUYTER

Listing 2: Pseudocode illustrating compiler generated deparser code

void deparse (PacketOut packet,
Headers hdrs){
cache.ensure (packet, hdrs);
hdrs.ethernet) ;
hdrs.ipvéd);

emit (packet,

resize (packet, hdrs.size);

1

2

3

4

5 emit (packet,
6

7

8 memcpy (packet.cursor,
9

packet.emitted,

10 packet.emittedSize) ;
13

12 void emit (PacketOut packet,

13 Header hdrRef){

14 packet.emitted [packet.numEmitted] =
hdrRef .raw;

size of the headers of the incoming packet, and size of the
now emitted headers. The cursor pointer (where the emit-
ted headers will be copied) is adjusted forward or back-
ward so that the headers fit tightly before the payload.

It is important to note that compilers may generate
code that diverges from this model. Here, we assumed that
the packet headers are extracted into temporary stores in
Headers during parsing (as is done by our model in [2], and
also by the P4 reference switch [6]). As such, in the depars-
ing stage we only had to move around pointers without
copying larger data (except in the last line). On the other
hand, for example, the T4P4S compiler [7] sets pointers
during the parsing (without copying anything), and thus it
has to introduce a temporary store to perform the depars-
ing. This means that we need to use a slightly different de-
parsing model to estimate costs in P4 reference switch, and
in T4P4S.

Using the pseudocode, we can now easily generate a
cost formula per Equation 1, characterizing the average ex-
ecution cost of function deparse. Using the data in Table
2 of Section 5.2 (partly utilized also in our earlier work [2]),
we map the statements to elementary instructions whose
costs are known, and sum up the results. As the control
flow is linear, there is only one path and it is sure to be ex-
ecuted. During cost analysis, we purposefully avoid con-
sidering the cost of function calls: as these can be inlined,
calls to separate function definitions can be treated as no-
tation.

Equation 4 depicts the derived cost formulas for each
function. We parameterized memcpy with the size 34: this
is the size (in bytes) of the headers structure in Listings 1,
and we emit both of its fields. This information can also be
inferred using simple static analysis. We included no un-
knowns in the model, and the execution cost of deparse

Control flow based cost analysis for P4 == 75

15 ++packet.numEmitted;
16 packet.emittedSize =
hdrRef .size;

packet.emittedSize +

17 ¥

18

19

20 void resize(PacketOut packet,
21 int oldSize){

22 //if (oldSize==packet.emittedSize){
23 //
24 //%
25 int diff =
26 packet.cursor += diff;
27

return;

oldSize - packet.emittedSize;

can be easily calculated by substituting in the known con-
stants: it is 514 CPU cycles.

Note that resize in Listings 2 includes a commented
section. This is a compiler optimization we found in the
T4P4S source code: comparison is usually cheaper than
arithmetic operations, so — in case outgoing packets are
often the same size as the incoming ones — avoiding super-
fluous calculations may pay off.

Yet, it is not evident where is the point at where
the extra overhead of the comparison operation starts
yielding better performance. This is a question for cost
analysis. The last formula in Equation 4 is the cost of
resize with the commented section uncommented. As
the control flow is branching, we now have to weigh each
path with its probability. Variable p is the probability
P[size(incoming packet) = size(outgoing packet)], i.e. the
probability of early return. (By looking at the P4 code, we
can deduce that now this is always 1. But, for the sake of
illustration, and since the programmatic deduction of this
is still something we have to research in depth, we keep
treating p as an unknown.)

We plotted the execution costs of resize and resize*
against various values of p on Figure 1. By solving equation
31(1 - p) + 11p = 30 for the intersection of the two lines,
we can see that it is as early as p = 1%. So even if just 6
out 100 packets leaves with the same size as which with it
came, we are already better off with the optimization.

Eldeparse] = cy.c + 2 - E[emit] + E[resize]
+ cost(memcpys,)
Elemit] =5 - cc,gp +3 - Capp + CMov + 3 * CRsC
E[resize] =3 - cc.r + CDEC + CADD + CR»>C “)
E[resize,] =2 - cc.g + Coup

+(1-p)-(cc.r + CpEC + CADD + CRsC)

76 —— D.Lukacsetal.

5 Case study: Lookup tables

We now proceed with another case study on a more re-
alistic scale. We demonstrate an application of the cost
analysis procedure outlined earlier by examining how the
cost of one LPM lookup changes for different parametri-
sations given data extracted from P4 source code. Specif-
ically, we analyze the invocation fib_lpm.apply (), that
will perform a longest prefix match on table fib_lpm.

5.1 Cost models of lookup algorithms

The P4 specification does not specify how lookup tables
should be implemented: the actual packet matching algo-
rithms and data structures are selected by the P4 compiler.
We will refine table applications using two concrete mod-
els: one for linear search, and one for DIR-24-8, the longest
prefix match (LPM) algorithm used by DPDK [8], which is
in turn the primary target platform of the T4P4S [7] P4 com-
piler.

Since most bounded loop analysis problems are expo-
nential in the bound, we choose an approach to predefine
solution templates for some specific loops.

For now, our purpose is to illustrate how to extend the
probability model in Section 3, so we use simplified mod-
els. We plan to evaluate and improve these models with
real-world P4 compilers in future work.

5.1.1 Linear model for LPM lookup

First, we consider modeling the execution cost of the sim-
plest search algorithm: linear search. Since LPM is ba-
sically a search for maximum, we have to assume that
the table is lexicographically sorted with decreasing mask
lengths. It is unlikely for any real world application to use
linear search for lookup: we feature it here because it is

moy A —ext

Figure 2: A flowchart illustration of the DIR-24-8 algorithm

DE GRUYTER

simple, fundamental, and we intend to demonstrate how
to include loops in the presented model.

Listing 3: Pseudocode illustrating linear lookup

1 tbl := memory.open(tbl);
2 for(r in tbl){

3 cache.ensure(r);

4 b := r.match(hdr);
5 if (b.isMatch)

6 return b;

7}

Consider the pseudocode in Listing 3. First, we read a
cache line sized chunk of the table into memory, start the
search loop and, in case we left the cached part of the ta-
ble during the search, we cache the next chunk of the table.
The average execution cost of this simple algorithm can be
approximated using the following formula:

E[L(ns py e, CM-)C; Cm)]

- Zn; iGp()(cm + q(n, e)cur.c))

o

_cm+4(n, e)ey.c
p

In Equation 5, n stands for the number of entries in the
match-action table, e for the size of the pattern to be
matched, and - since, we do not have any information on
arriving packets and tables — we can chose Gp(i) to be the
geometric distribution: Gp(i) := (1 - p)i‘lp. Here, Gp(i)
the probability of the exit condition (successful match of
the packet) failing i — 1 times and succeeding the ith time,
where p is the constant probability of the exit condition
succeeding. Term cp, is the cost of matching an entry, ¢y, ¢
is the cost of caching a cache line sized chunk of mem-
ory, and g(n, e) is the probability that caching must be per-
formed in the ith iteration. Note, that we decided to make
these members independent of the loop index.

We can approximate g(n, e) using amortized analysis.
The number of rows fit in the cache is nqycpe := LSize%d‘eJ,
and in the worst case, we need to perform caching w :=
[+2—] times. In average, we cache ¥ times per iteration.

Ncache

Table 1: Characteristics of each path in Figure 2

Cost

¢(T24|m1) + c(Tg|m1) + c(nexthop)
c(T24|m) + c(Tg|m2)

¢(T24|m3) + c(nexthop)

c(To4|ms)

ID Probability

1 P(mays A ext, mg)
M, P(mys A ext,-mg)
73 P(my4 A -ext)

3 P(-mys)

DE GRUYTER

Control flow based cost analysis for P4 == 77

Table 2: Example configuration specification used for lookup cost analysis

Symbol Value Meaning Knowledge source
w 4B CPU word length Hardware configuration
CMsC 279 Cost of read from memory to cache Hardware configuration
CCsR 5 Cost of read from cache to CPU register Hardware configuration
CRsC 5 Cost of read from CPU register to cache Hardware configuration
cost(memCpy,) (%](COR + CMov + CR-C) Cost of copying a value Implementation

cost(binDecy)
cost(arrldxy)

"%“(CC»R + Capp + CPOW + CRC)
Mol sy |
M>Cl sizecache

cost(nexthop,) cost(memCpy,) + (cc.r + CpeC + CR-C)
cost(matchy) (%}(CC,R +Cemp + CRsC)
Ds 0.1
P24 0.1

Cost of transforming IP4 address to array index
Cost of array lookup with v sized entries

Cost of nexthop action with v-bit destination port
Cost of matching a v sized header to a table entry
Probability of arbitrary Tg entry matching

Probability of arbitrary T,4 entry matching

Implementation
Implementation
Implementation
Implementation
Inferred from table and the packet distribution.
(Now arbitrary.)
Inferred from table and the packet distribution.
(Now arbitrary.)

5.1.2 DIR-24-8 algorithm

DIR-24-8 was introduced by Gupta et al. [9] as a fast solu-
tion for LPM-based IP4 routing. In real networks most pack-
ets can be routed using just the first 24 bits: the basic idea
is to take advantage of array indexing and cache efficiency
by removing masks from the first 24 bits via prefix expan-
sion and applying linear probing to match the last 8 bits.

The algorithm creates in RAM a table (named T,,) stor-
ing an entry for all (22*) permutations of 24-bit addresses:
each entry is either a pointer to Tg (see below) or a 15-bit
next hop address (another 1 bit denotes whether the value
is a pointer or a next hop). Another table (named Tg) will
match the remaining 8 bits of the address to the next hop.
The set of all 24-bit addresses is a sequence between 0 and
2%% in base-256: that means T, can be represented as an
array with 22% entries, each having a size of 16 bits. Thus,
T4 will require 2 - 2% bytes (32 MiB) of space, while a sec-
tion in Tg corresponding to a 24-bit prefix will require at
most 28(1 + 2) = 768 bytes. The main advantage of the
algorithm is that looking up the first 24 bits in T,, has con-
stant cost (the address changed from base-256 to decimal,
or some other base used for array indexing), and - if the en-
try contains a pointer — we only need to read an additional
768-byte parcel of Tg, which easily fits even the smallest
L1 caches. In this paper, we assume that Tg lookups are
performed using linear search: we expect practical imple-
mentations to use more efficient lookup schemes. Figure
2 depicts a schematic CFG of DIR-24-8. As in Section 3,
we calculate the expected value as a weighted sum of the
CFG paths. The products and sums resulting from execut-
ing Algorithm 1 on Figure 2 are displayed by Table 1. Be-
low, let 11 := my4 A ext A mg, My := My, A ext A -mg,
713 = My4 A -ext, and 74 := ~m>4. For now, we assume
my4, ext, and mg are independent, and as such we will
use the notation rg := P(mg|ext, May), Text := P(ext|myy),
and oy = P(m24).

Let p,4, and pg be the probability that an arbitrary
entry is matching in T,4 and Tg respectively. Then rg =
1-(1-pg)**andry = 1-(1-py)> .

It follows that P(711) = rgrextr24, and P(mm,) = (1 -
18) Text 24, and P(m13) = P(my4, ~ext) = (1 - rexe)r24, and
P(r14) = (1-r,4). As aresult, only the probabilities reys, ps,
P24 need to be supplied as input.

E[LPMpir24.8(P245 D85 Text)]

= P(m1)(E(T24|m1) + E(Ts|m1)) +
P(r12)(E(T24|m2) + E(Tg|2)) +
P(113)E(T24|m3) +
P(114)E(T4|m4) +

(P(11) + P(m3))cost(nexthopg)
(6)

where

E(T4|m1) = cost(binToDec,) + cost(arrldx;,)
E(Ty4|ms) = E(Ta4|m3) = E(T24|m2) = E(To4|m1)

E(Ts|my) = EIL(2%, ps, 3, cu.c, cost(match;)]
_ cost(match,) + q(28, 3)cusc
Ds
E(Tg|m,) = (2% + 1)(cost(matchy) + g(28, 3)cpr.)

In the final formula, we only have to substitute runtime in-
formation for pg, p,4, and rey¢, and hardware or implemen-
tation specific information cost(binToDec), cost(arrldx,)
cost(match;), cy.c, cost(nexthopy). Examples for these
can be seen in Table 2.

For T,,4 lookup, we assumed the cost consists of two
substeps: transforming the address to an array index, and
performing an array lookup in memory. As we modeled Tg
lookup using linear search, on 71, we use Equation 5 and
prepare for an early exit. On 14, we use the information
from m,4 that Tg had to be read through in its entirety, i.e.
the probability of the algorithm succeeding in the ith step

78 —— D.Lukécsetal.

is:
o 1 ,ifi=2%8+1
P(exit(i)|my) = 0

, otherwise

5.2 Evaluation

We now evaluate the cost formula with specific parame-
ters and inspect how parameters change program behav-
ior. Using the data (partly utilized also in our earlier work
[2]) in Table 2 to instantiate the formula in Equation 6, we
obtained the graph in Figure 3. This plot exemplifies how
increasing the cache size from 128B to 1024B results in
decreasing execution costs. While L1 caches of this size are
superseded today, translating DIR-24-8 to data larger than
IP4 addresses also requires larger caches. We should also
remember that real world implementations of DIR-24-8 are
unlikely to use linear search for Tg lookup. Larger cache
means fixed sized data can be loaded in less memory reads,
yet it is not evident how important is caching in the overall
cost. By calibrating control event probabilities, we can ob-
serve that different program paths gain more weight in the
expected cost. In the figure, we experiment with increas-
ing the probability of an address requiring Tg lookup (ext
event). According to Gupta et al. [9], 99.93% of prefixes in
IP4 backbone routers in 1998 were at most 24 bits long, that
is, the probability that a random address must be matched
to a more than 24 bits long prefix were 0.0007. The plot
confirms that for this kind of packet distribution DIR-24 is
very efficient: the expected cost is just slightly above the
cost of one memory read. As expected, the cost grows fast
with every increase in Tg lookup probability, suggesting
that the worst case cost of the algorithm is very high. Note
that if matching an entry costs only as much as 11 CPU
cycles, reading through 28 = 256 entries is already 2816

4204 \

400 1 —.

W

®

S
L

W

B

=)
L

Execution cost (cycles)
w
=
S
L

— = P(ext)=0.7
=== P(ext)=0.07
P(ext)=0.007
e P(ext)=0.0007

320

300 CTTTVITTITTTVETVTTTTTTIIITITTTTTYVEYEY

T T T T T
1000 1250 1500 1750 2000

L1 size (B)

T T T
250 500 750

Figure 3: Cost of £ib_lpm.apply () over cache size and prefix
lengths

DE GRUYTER

cycles, and we did not even factor in the required caching.
For comparison, a 4.3GHz processor operating in a 10 Giga-
bit Ethernet network can spend only 288 cycles to forward
a packet without risking buffer overflow [2]. Another prop-
erty of DIR-24-8 illustrated by this plot is that cache size
only becomes critical when Tg lookups have a high prob-
ability (as T4 lookup only requires constant one memory
read). Already, the cost difference between a 128B and a
1KB sized cache is non-negligible.

6 Conclusions

We now conclude this paper. We shared our vision of a
cost analysis tool that enables P4 developers to automat-
ically verify in development time that the program under
construction satisfies soft deadline requirements imposed
by the network. As the core component of this tool, we in-
troduced a control flow based approach, together with an
algorithm, for estimating expected execution time. In prin-
ciple, our algorithm enumerates all execution paths, and
calculates a probability-weighted sum of the costs of each
path.

An important practical feature of this approach was
that it allows incremental refinement: as many parts in P4
are implementation-defined, precise cost estimation ne-
cessitates the ability to extend the description with con-
crete information. If this information is not available, our
model can still fall back to less precise defaults. We illus-
trated these refinement capabilities and the CFG algorithm
by two case studies: the cost analysis of deparsing and of
DIR-24-8 based lookup table application, each leaning on
a simple model of the execution environment. While our
approach is still far from being production-ready, we are
hopeful that now we have the basic scaffolding on which
we can build the aforementioned cost analysis tool.

6.1 Future work

During this article, we left several questions unanswered,
which require future research before we can develop a tool
that P4 network engineers can use in practice.

We have not yet compared estimation capabilities with
real-world P4 compilers. We intend to validate our ap-
proach by trying to predict runtime characteristics of ex-
ecutables generated by T4P4S and P4C.

We hinted that component CFGs in hierarchical CFGs
can be analyzed separately (and thus, efficiently) if their
initial state is known. As it is generally not known, we need

DE GRUYTER

to find a method for inferring it, or at least inputting it (or
risk exponential explosion in the cost analysis runtime).

During refinement, we derived the cost formulas from
an informal description of the concrete implementations
by hand. We are searching for a unified computational
model that can express refining components and execu-
tion environment parameters, and at the same its cost can
be analyzed by our presented approach.

Finally, we plan to create a layer for filling in the miss-
ing parameters automatically, e.g. by inspecting the prob-
ability distributions of inputted packet traces and linking
them with conditionals in the P4 code.

Acknowledgement: The research has been supported by
the European Union, co-financed by the European So-
cial Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamen-
tal Research Collaborations Grounding Innovation in In-
formatics and Infocommunications).

References

[1] PatBosshart, Dan Daly, Martin Izzard, Nick McKeown, Jennifer
Rexford, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet proces-
sors. SIGCOMM Comput. Commun. Rev., 44(3):87-95, July 2014.

[2]

E]

(5]

(6]

(7]

(8]

9]

Control flow based cost analysis for P4 == 79

Daniel Lukacs, Gergely Pongracz, and Maté Tejfel. Keeping P4
Switches Fast and Fault-free through Automatic Verification. Acta
Cybernetica, 24(1):61-81, May 2019.

Robert Davis and Liliana Cucu-Grosjean. A Survey of Probabilis-
tic Timing Analysis Techniques for Real-Time Systems. Leibniz
Transactions on Embedded Systems, 6(1):60, 2019.

Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008.
Rishabh lyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli,
Katerina Argyraki, and George Candea. Performance contracts
for software network functions. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pages
517-530, Boston, MA, February 2019. USENIX Association.

The P4 Language Consortium. P4C reference compiler for the
P44 programming language. https://github.com/p4lang/p4c,
2017. [Online; accessed 28-February-2020].

Sandor Laki, Daniel Horpacsi, Péter Voros, Robert Kitlei, Daniel
Leské, and Maté Tejfel. High speed packet forwarding compiled
from protocol independent data plane specifications. In Pro-
ceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
pages 629-630, New York, NY, USA, 2016. ACM.

Intel Corporation. LPM Library, Chapter 24 in DPDK Documenta-
tion Programmer’s Guide. https://doc.dpdk.org/guides/prog_
guide/lpm_lib.html, 2014. [Online; accessed 12-May-2019].

P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at
memory access speeds. In Proceedings. IEEE INFOCOM 98, the
Conference on Computer Communications. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties. Gateway to the 21st Century (Cat. No.98, volume 3, pages
1240-1247 vol.3, March 1998.

https://doc.dpdk.org/guides/prog_guide/lpm_lib.html
https://doc.dpdk.org/guides/prog_guide/lpm_lib.html

	1 Introduction
	1.1 Motivation

	2 Related work
	2.1 About the P4 language

	3 A probabilistic model of acyclic program flow
	3.1 The model
	3.2 Algorithms for computing expected value
	3.3 Data requirements

	4 Case study: Packet deparsing
	5 Case study: Lookup tables
	5.1 Cost models of lookup algorithms
	5.1.1 Linear model for LPM lookup
	5.1.2 DIR-24-8 algorithm

	5.2 Evaluation

	6 Conclusions
	6.1 Future work

