
Open Access. © 2021 W. Steingartner, published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 License

Open Comput. Sci. 2021; 11:2–11

Research Article

William Steingartner*

On some innovations in teaching the formal
semantics using software tools
https://doi.org/10.1515/comp-2020-0130
Received Mar 12, 2020; accepted Apr 01, 2020

Abstract: In this work we discuss the motivation for inno-

vations and need of a teaching tool for the visualization of

the natural semantics method of imperative programming

languages.We present the rôle of the teaching software, its
design, development and use in the teaching process. Our

software module is able to visualize the natural semantics

evaluation of programs. It serves as a compiler with envi-

ronment that can visually interpret simple programming

language Jane statements and to depict them into a deriva-

tion tree that represents the semantic method of natural

semantics. A formal definition of programming language

Jane used in the teaching of formal semantics and produc-

tion rules innatural semantics for that language are shown

as well. We present, how the presented teaching tool can

provide particular visual steps in the process of finding the

meaning of well-structured input program and to depict

complete natural-semantic representation of an input pro-

gram.

Keywords: Jane language, innovation of teaching, lan-

guage, natural semantics, parser, teaching software, uni-

versity didactic, visualization

1 Introduction
The aims of an education system are that the learner must

be able to understand the concepts and he must be able

to apply these concepts in solving practical problems ex-

isting in society. Meeting the demands of current society is

becoming complex due to rapid changes in technology. So,

education techniques are required to be amended to meet

the social and technological demands [1, 2]. In this con-

text, the teaching of formal foundations of software engi-

neering is nowadays a big challenge.

*Corresponding Author: William Steingartner: Technical Univer-
sity of Košice, Slovakia; Email: william.steingartner@tuke.sk

Formal methods are an integral part of the curriculum

of computer science on many universities. In the context

of computer science, formal methods refer to a variety of

mathematical modeling techniques, which are used both

to model the behavior of a computer system and to ver-

ify that the system satisfies design, safety and functional

properties [3].

The course on Semantics of Programming Languages

is taught as a graduate course in master study of Com-

puter Science at the Faculty of Electrical Engineering and

Informatics, Technical university of Košice, Slovakia. The

course is a foundational one and obligatory in graduate

study. There are many universities where the course with

similar content is taught. Based on the bilateral interna-

tional cooperation with Wolfgang Schreiner from the Re-

search Institute for Symbolic computation, JKU Linz, Aus-

tria, we prepared under the project “Semantics technolo-

gies for computer science education” (Acronym: SemTech,

Number of project: SK-AT-2017-0012) new teaching tools as

a support for teaching the formalmethods. Theprojectwas

focused on the novel application of technologies which

are based on the semantics of formal languages (program-

ming languages, the language of predicate logic, etc.) to

the education of university students in formal models of

computer science.

One of the tools prepared under this cooperation was

a module for visualizing the derivations in natural seman-

tics of imperative programming languages. The idea was

to bring an innovation of the existing course on Semantics

– to extend and enrich the conventional teaching by us-

ing the interactive software which can help to understand

better the principles of the mentioned semantic method.

It seems to be useful to show the future IT experts the

advantages of formal methods and their fruitful usage in

a process of practical software development [4–6]. One of

the courses focused on formal methods in software en-

gineering is a course on the Semantics of Programming

Languages. In this course, mostly the methods focused

on imperative (and often also functional or some domain-

specific) languages are presented: operational semantics,

denotational semantics and others.

https://doi.org/10.1515/comp-2020-0130

On some innovations in teaching the formal semantics using software tools | 3

With some techniques, the teaching of formal meth-

ods can be more attractive and more understandable for

students [7, 8]. For instance, formulating the modular

structural operational semantics [9] where the descrip-

tions of functional programs given in this method could

be automatically translated into programs in the logic pro-

gramming languageProlog, using the software provided to

the students. Another approachwas defining an action se-

mantics [10] – a pure formal framework for describing the

meaning of programs in textual phrases that are nearer to

real programming languages and, moreover, quite easily

understoodbyprogrammers that are not very familiarwith

mathematical methods.

A very fruitful method seems to be a visualization of

processing the semantic method. We prepared more tools

for visualization of some semantic methods, for instance,

a tool for categorical semantics [11] (categorical denota-

tional semantics we formulated in [12]), a tool for han-

dling the mathematical expressions [13] or a tool for com-

plex work with the abstract implementation of imperative

language with an abstract machine for structural opera-

tional semantics [14]. Based on successful implementation

in teaching process and the positive feedback from stu-

dents, we have continued to prepare new tools.

The structure of a paper is as follows: in Section 2, we

present some basic ideas and standard notions as a start-

ing point. Furthermore, we show here the definition of a

toy language Jane and we present how to define a natural

semantics for this language. Section 3 presents the main

motivation for implementing the innovations into a teach-

ing process in the course on Semantics of Programming

Languages and their outcomes. In Section 4, the struc-

ture of a teaching software is presented: we briefly show

a methodological part of the design, grammar for parsing

the input source codes. An example of using the program

is also shown. More technical details about the implemen-

tation of the presented module can be found in [15]. The

paper ends with a Conclusion section.

2 Theoretical background
In this paper, we are focused on building and presenting

the teaching tool containing the parser of a simple toy pro-

gramming language Jane and presenting on how a seman-

tic tool for this language can be used in teaching process.

The syntax of Jane is inspired and mostly adopted from

the well-known toy languageWhile [16], or sometimes re-

ferred also as IMP [17]. We start with the formal definition

of language that serves as a background for preparing our

software tool: for design and development and for teach-

ing. Then we present abstract toy language Jane that is the
subject of software tool processing. In the last part of this

section, we briefly define natural semantics of imperative

languages and we focus on semantics of Jane because the
processing andvisualizing of thismethod is amain subject

of the presented software tool.

2.1 Language, syntax and semantics

Derivationof behavior of a commandwritten in a computer

language can be made with help of the exact definition

of the language. Formal definition of a language consists

of its syntax and semantics. The syntax of a language is

considered as the set of rules that defines the combina-

tions of symbols that are considered to be a correctly struc-

tured document or fragment in that language [18]. Syntax

determineswhich character strings constitutewell-formed

programs. The programming language syntax determines

the design and structure of programs written in some lan-

guage [19–21]. Generally, the syntax is defined by

– a grammar – a set of rules that specify how input is

structured;

– extended Backus-Naur form (BNF);

– an inductive definition.

Because syntax defines only the language structure,

i.e. how it is allowed to classify individual constructions,

it is necessary to use the second part of the language defi-

nition which is the specification of semantics. The seman-

tics of a language describes the meaning (behavior) of a

program in terms of the basic concepts of a language [22].

The only possibility of unambiguous writing of semantics

is writing it using formal semantic methods.

The definition of formal semantics includes:

– semantic domains,

– specifications of semantic functions,

– semantic equations or deduction rules.

The semantic domain is a (mathematical) structure that

contains the mathematical elements of a particular form

representing meanings of elements from a given syntactic

domain [21]. The sets serving as domains have a lattice-

like structure [23]. For simplicity, we view these seman-

tic domains as normal mathematical sets: basic sets (Z -

sets of integers, N - natural numbers, B - Boolean values)

and sets that arise by applying operations to these sets are

very practical in the teaching process. The semantic func-

tion maps syntactic entities to the elements of semantic

domain. Schematically, its specification is given as follows

4 | W. Steingartner

[21]:

f : Synt → Sem.

Semantic function is mostly given by:

– semantic equations (mainly for expressions), and

– production rules (for statements, see Section 2.3).

We determine in the production rules the meaning of

each element (syntactic pattern/element) for a given syn-

tactic domain [21]. For each syntactic domain, a unique se-

mantic function is defined.

2.2 Formal definition of Jane programming
language

In the previous section,we explained howa syntax and se-

mantics of programming language are usually defined. In

this section, we define the language that is used in teach-

ing the course on the Semantics of Programming Lan-

guages. We present an abstract (non-real) programming

language with language patterns belonging to an imper-

ative paradigm. In the course on Semantics, we are fo-

cused on teaching the formal semantics of imperative lan-

guages. Therefore, abstract language with imperative pat-

terns serves as a background. Its syntax is adopted from

thewell-known toy languageWhile [16] andwe refer to this
language as Jane.

Now, we list the various syntactic categories (do-

mains) and give a meta-variable that will be used to range

over constructs of each category. For our language Jane,
the meta-variables and categories are in the Table 1.

Table 1: Syntactic categories (domains) for the language Jane

Num – for numeric strings
Var – for variables
Expr – for arithmetical expressions
Bexp – for Boolean expressions
Statm – for statements

The domains for numerals (Num) and variables (Var)
have no internal structure from the semantic point of view.

For the three remaining domains, particular production

rules describing the syntax are defined.

For the arithmetic expressions, we formulate the fol-

lowing production rule:

e ::= n | x | e + e | e − e | e * e | (e), (1)

where

– n denotes an integer numeral;

– x stands for a program variable;

– e • e represents an arithmetic operation that can

be applied to arithmetic expressions (here in stan-

dard notation: addition (+), subtraction (−), multi-

plication (*));

– (e) represents an arithmetic expression enclosed

into parenthesis.

The Boolean expressions of the language Jane are

given by the following production rule. In the case of lan-

guage Jane, their rôle is to provide a logical condition in a
conditional or a loop statement.

b ::= false | true | ¬b | b ∧ b | e = e | e ≤ e | (b), (2)

where

– false, true represent syntactic forms of Boolean

constants;

– e = e represents an equality of arithmetic expres-

sions;

– e ≤ e represents a relation “less then or equal” of

arithmetic expressions;

– ¬b stands for a negation of a Boolean expression;
– b ∧ b is a conjunction of Boolean expressions;
– (b) represents a Boolean expression enclosed into

parenthesis.

The language Jane contains five (standard) imperative

constructs [21]:

– a variable assignment statement;

– an empty statement, used when there are no oper-

ations to perform in a context where a statement is

required;

– apatternof sequencing the statements–a statement

list that consists of oneormore statementswritten in

sequence;

– a conditional statementwith twomandatoryways of

control-flow; and

– a loop statement that conditionally executes an em-

bedded statement zero or more times.

Of course, for teaching purposes, the language Jane
can be extended on syntactic level with new constructs

and elements, like various types of loops, variables’ decla-

rations, or procedures, as well. In this approach, we work

with standard D-constructs, without any extension.

The syntax of statements is given by the following pro-

duction rule:

S ::= x := e | skip | S; S
| if b then S else S
|while b do S.

(3)

On some innovations in teaching the formal semantics using software tools | 5

These five commands are considered as standard (ba-

sic) constructs of the imperative programming languages.

They are also referred to as Dijkstra commands (or D-

diagrams) [21]. Based on this abstract syntax, we can de-

fine standard imperative constructs in real imperative lan-

guages.

2.3 Natural semantics of imperative
languages

We briefly express the basic properties of natural seman-

tics of imperative languages: we list standard rules of this

method and we show how this method is applied for the

language Jane. We note that natural semantics [24] is con-

sidered as a hybrid of operational and denotational se-

mantics that shows computation steps performed in a

compositional manner. It is also referred as a “big-step se-

mantics”. This method has been proposed that is halfway

between operational semantics and denotational seman-

tics [25, 26]. Like structural operational semantics, natural

semantics shows the context in which a computation step

occurs, and like denotational semantics, natural seman-

tics emphasizes that the computation of a phrase is built

from the computations of its sub-phrases.

So, the main rôle of natural semantics is to define the

relationship between the initial state before executing the

language statement and the final state after executing this

statement. Themeaning of the statement (its semantics) is

therefore considered as a change of memory state. Natu-

ral semantics does not follow the detailed execution of the

statement; it is focused on changing the state that occurs

by executing the entire statement, as it expresses the tran-

sition relation in natural semantics [21, 25]:

⟨S, s⟩ → s′.

The general form of the production rule of natural se-

mantics looks as follows [21]:

⟨S
0
, s

0
⟩ → s

1
, . . . ⟨Sn , sn⟩ → s

⟨S, s
0
⟩ → s (rule

ns
)

where

– S stands for a statement, possibly consisting of one

or more statements written in sequence S
1
, . . . , Sn;

– s
0
is an initial state;

– s is a final state;
– s

1
, . . . , sn−1 are states during the particular steps;

– in the notation (rule
ns
) of a rule, rule represents

name (or numeric notation) of the rule and an index

“ns” indicates that it is a rule of natural semantics.

Notation of a general production rule (rule
ns
) ex-

presses the natural semantics of the statement S as a one-
step change from the initial memory state s

0
to the final

state s [21]. Now, we briefly introduce the rules of natural
semantics for the statements of the language Jane listed in
(3).

The assignment statement is defined by the axiom

⟨x := e, s⟩ → s [x ↦→ E JeKs] (1ns)

The rule (1
ns
) above notation represents the meaning of

the assignment command: the variable x is assigned to the
value of an arithmetic expression e (implicitly typed as in-

teger) calculated in the state s and amemory state is being

actualized from s to s′.
An empty statement is defined by the axiom:

⟨skip, s⟩ → s (2
ns
)

Here, the state is not being changed after the execution of

a statement.

The list of statements is defined by the following rule:

⟨S
1
, s⟩ → s′′

⟨︀
S
2
, s′′

⟩︀
→ s′

⟨S
1
; S

2
, s⟩ → s′

(3
ns
)

This rule expresses that statements are executed in partic-

ular steps with step-wise computing and passing the ac-

tual memory state.

The conditional statement is defined by the following

two rules:

⟨S
1
, s⟩ → s′ BJbKs = tru

⟨if b then S
1
else S

2
, s⟩ → s′ (4

tru
ns
)

⟨S
2
, s⟩ → s′ BJbKs = �s

⟨if b then S
1
else S

2
, s⟩ → s′ (4

�s
ns
)

For the conditional statements, two rules based on the

value of a Boolean conditions are defined. They are sym-

metric and their use is straightforward.

The loop statement is defined by the following two

rules:

⟨S, s⟩ → s′′
⟨︀
while b do S, s′′

⟩︀
→ s′ BJbKs = tru

⟨while b do S, s⟩ → s′ (5

tru
ns
)

BJbKs = �s
⟨while b do S, s⟩ → s (5

�s
ns
)

A while loop allows code to be executed repeatedly based

on a given Boolean condition zero or more times.

Generally, a program in Jane is considered as a se-

quence of statements, i.e. one compound statement. For

6 | W. Steingartner

simplicity, we can denote the whole program by one state-

ment (meta-)variable, e.g. P. Deriving the semantics of a

program P we start in an initial state, e.g. s
0
and we con-

struct a transition relation to a final state s. Such defined

relation is a root of a derivation tree in natural semantics

of a program P:
⟨P, s

0
⟩ → s.

Then

– the transition of the programwill form the root of the

tree;

– by applying the rules of natural semantics,we create

inner vertices;

– the leaveswill form the axioms of natural semantics.

By step-wise applications of appropriate semantic rules,

we construct a full derivation tree of a program in natural

semantics.

3 Motivation for bringing
innovations to teaching

The course on Semantics of Programming languages has

been taught by conventional teaching methods which in-

clude lecturing and face to face interaction in a classroom.

Lecturing method is based on a one sided input i.e. from

teacher. The teacher delivers the content to learner and a

learning level can bemeasuredwith the help of written ex-

amination.

We present a contribution to teaching modernization

whose focus is the innovation of the existing course on

Semantics of Programming Languages which is taught at

the Faculty of Electrical Engineering and Informatics for

graduate degree in the study program Computer Science.

The main idea is to bring innovations based on presenting

and visualizing the formal principles of programming lan-

guages and their semantics in more understandable and

attractive way. For this purpose, we have started to pre-

pare a project – software package consisting of modules

for visualizing and simulating particular semantic meth-

ods (under the SemTech project).

The package is aimed at improving and making the

teaching methods applied to the lecture and laboratory

part of the coursemore attractive. Our goal is to applymod-

ern software solutions in this course as a significant help in

teaching the lectures and laboratory exercises and to sup-

port self-study and to apply the given software solution for

the evaluation part of the course (tests, exams). Presented

softwaremodulewill allowan illustrative andunderstand-

able use of semantic method. In this way, we will achieve

greater clarity in the applied procedures and principles in

the course teaching.

Specifying the semantics of a programming language

is a more difficult task than specifying its syntax. Formal,

mathematical methods are precise, but they are also com-

plex and abstract, and require study to understand. Dif-

ferent formal methods are available, with the choice of

method depending on its intended use [27]. After some

years of teaching the course on Semantics, we identified

the points in which we can bring innovations and make

this course more attractive for students and for young

IT experts. We revised the content of the course to re-

flect the current state of the art in the world (mostly ori-

ented to modern technologies). We designed and devel-

oped some new modules of teaching software [11, 13, 14].

Based on the extension and adaptation of the content of

the course, a new textbook with supplementary materials

was prepared. The using of this book assumes the coor-

dination with particular modules of our software package.

Wenote that standard teachingmethods - explanation and

model calculation using board where the rôle of the edu-
cator/teacher is indispensable cannot be so simply omit-

ted. We think that modern visualizing methods can signif-

icantly help andwewant to apply thembutwe donotwant

to avoid using standard methods as well [28].

The practical outcomes of using the software package

will be used in teaching computer science courses in the

field of software engineering focusing on the design and

development of correct programs and systems, not only

at the domestic university and at a cooperating univer-

sity, Johannes Kepler University in Linz, Austria, or other

universities where related and similar courses are a part

of curriculum. One of the advantages can be also putting

this software into practice for distance learning. Our soft-

ware tool (or the complete software package) can serve as

a modern interactive learning tool, as a support for new

teachers of the course, as a tool for IT experts using formal

methods or for other interested experts.

The proposed teaching software canhelp teachers and

educators in providing a better and illustrative form for the

students:

– during the lectures, the teacher can present exam-

ples directly and interactively; or at least use pre-

pared examples depicted on screen-shots;

– at laboratory exercises and seminars, examples can

be explained step-wise with possible change of in-

put parameters to show the differences in programs’

simulations.

The teaching software can be very useful for students

especially in the following cases:

On some innovations in teaching the formal semantics using software tools | 7

– during the laboratory work for simulation of pro-

gram execution, when examining the conditions of

how results will program produce based on input

parameters;

– in the phase of self-study and self-preparation for

testing or exams;

– when doing research or simulationswhen the visual

output is needed.

Moreover, theprogramprovides visual output that can

be stored into graphic file. Another option is to export

the L
A
T
E
X source of the produced visual output that can be

used in other projects. We consider both output forms as

very important for future work in studying, teaching and

preparing output materials.

The theoretical outcomes of using the software pack-

age can find their application in the field of further re-

searchon the issue of interactive and experiential teaching

of theoretical principles in computer science.

In addition, themost important contribution to social,

industrial and economic practice, we consider an increas-

ing of the professionalism of the young IT experts in the

field of formal methods for software engineering and their

potential and attractiveness in the labor market. Last but

not least, we expect a raising of interest in formalmethods

and deepening skills of young IT experts.

4 Software tool for natural
semantics

As a kind of modern support of teaching in the field of for-

malmethods, we developed a softwaremodule for the pro-

cess of visualization of natural semantics. The software is

designed to help students understand better how to find

the meaning of a code written in a simple toy program-

ming language with the semantic method of natural se-

mantics. Since the program reads an input source in Jane,
it has been designed and developed simply as a compiler

transforming the source code into semantic-driven visual

output form.

4.1 Implementation of the visualization

The visualization has been implemented as a unit that

takes an output provided by a compiler of a Jane code.

We follow the basic idea that a compiler is a program

that reads a program written in a source language and

translates it in to an equivalent form in another language,

called target language or target representation [29, 30].

In our case, a source program is written in a language

Jane. As a target form, visual representation of program is

provided: a semantic-driven simulation of program exe-

cution by step-wise application of concrete semantic rules.

The compiler is designed with its standard phases:

– the lexical analysis, which reads the input string

from the code and produce tokens;

– syntax analysis – it analyzes the syntactical struc-

ture of the given input; and

– semantic analysis, which judges whether the syntax

structure constructed in the source program derives

any meaning or not.

A grammar that represents the language Jane is the fol-
lowing:

commands → sub_commands ;
{︀
sub_commands ;

}︀
sub_commands → assign | statement | cycle
sub_commands → EPSILON
assign → VARIABLE ASSIGNMENT expr
assign → EPSILON
statement → IF (expr) then commands{︀

else commands
}︀

statement → EPSILON
cycle → WHILE (expr) do commands
cycle → EPSILON
expr → sig_operator log
log → PM operator log
log → EPSILON
sig_operator → PM operator
sig_operator → operator
operator → sig_term sum
sum → PM term sum
sum → EPSILON
sig_term → PM term
sig_term → term
term → factor product
product → MD sig_factor product
product → EPSILON
sig_factor → PM factor
sig_factor → factor
factor → value
factor → NEG factor
factor → O_BR expr C_BR
value → NUM
value → VAR

The compiler provides as its output the binary version

of an input source – a byte-code. This form is used only in-

8 | W. Steingartner

ternally, i.e. the compiler translates the source into the se-

quence of elements that are ready to provide a visual form

– a tree in natural semantics. Visualizing mode is run af-

ter the compilation is successfully finished: it depicts the

derivation tree of an input program in natural semantics

by reading the provided compiled byte-code and interpret-

ing it step-by-step. Before starting the visualization, the

user is asked to put the values of input variables. After

this step, the semantic implementation is ready to be visu-

alized (depicted). Visualizing mode practically simulates

particular steps of an input program with real (concrete)

input values. When an input programwas correct (at least

without the logical errors), the program shows at the end

of simulation a complete derivation tree in natural seman-

tics with all memory states (the new variable values) that

have occurred during the program simulation.

The program allows to input of the source codemanu-

ally or by loading it from a file. For the Jane source codes,
standard syntax according to the rules (1), (2) and (3) is

used. The program recognizes the key words and supports

the syntax-highlighting. We note, that for easier manipu-

lation with the source and better readability:

– we enriched the blocks in a loop statement and a

conditional statement with the keywords (textual

“brackets”) begin and end; and
– we allowed the use of C-like syntax for Boolean ex-

pressions (in contrast to rule (2)): ‘==’ for equality

of expressions, ‘<=’ for less-or-equal symbol, ‘!’ for

negation and ‘&&’ for logical conjunction.

The final step in implementation is to design a graph-

ical interface. The interface was implemented using exter-

nal JavaFX¹which is a part of theOracle JDK9 implementa-

tion of Java, and JLaTeXMath libraries². Using the first one,
componentswere created to interact with the user, and the

second allowed to render a graphical representation of the

specified source code on the tree of natural semantics.

The resulting GUI look can be seen in Figure 1.

At the end of a simulation, the provided visual output

can be stored into separate file as a picture (in one of PNG
or JPG formats) for its future use. Moreover, the depicted

derivation tree is displayed using the L
A
T
E
X style. The user

can export and store the L
A
T
E
X source code of the displayed

derivation tree into separate TEX file.

1 https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm

2 https://github.com/opencollab/jlatexmath

Figure 1: Graphical User Interface of visualizing tool

4.2 Graphic user interface of a program

In this section, we briefly present how this software can be

used. When launched, the main application window ap-

pears, which contains the components to interact with. At

the top of the window, we can see the menu bar where the

user can work with all the features that the application of-

fers. Right below this panel, there is a text area into which

input code can be put. Below this text area is a set of but-

tons that perform the following tasks:

– Generate button – it calls the main programmethod

and generates an application output.

– Save Input button – it is used to store an input to a

user-selected location in the computer memory.

– Set Variables button – it allows user to set variables
before the output is generated.

– Clear Input button – it serves for clearing the text

area.

Figure 2: Application after output generation

https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
https://github.com/opencollab/jlatexmath

On some innovations in teaching the formal semantics using software tools | 9

After entering the input string in the form of a Jane
code and possibly setting the variables and pressing the

Generate button, a new component appears at the bottom

of the screen. This component contains a canvas to render

the resulting natural semantic tree and a set of buttons.

The set consists of the following buttons:

– Show States button – it displays a pop-up window

inwhich the table shows the states that the program

has passed during execution.

– Save as TeX button – it saves the latex-code output

string to a text file on a user-selected location in the

computer memory.

– Save as Figure button – similar to the previous but-

ton, it saves the result to the computer’smemory but

in the image format of the user’s choice. Supported

formats are JPG or PNG.
– Clear button – it removes the entire component that

was created after pressing the Generate button.

Accessing these functions is also possible from the upper

menu bar.

4.3 Example of using the application

As an example of using this program, we show how our

software tool produces a visual output for theEuclideanal-

gorithm finding the greatest common divisor of two given

numbers.

In the text area, we insert the program realizing the

Euclidean algorithm in the form of Jane code. We write the

program into the text area, then we set the initial values

for variables x and y to 96 and 64, resp.

Figure 3: Example of using the tools with implementation of Eu-
clidean algorithm

The following is an example of a program given as an

input:

while !(x == y) do begin
if (x <= y) then begin y := y − x end
else begin x := x − y end

end

The result can be seen in Figure 3. Moreover, we can

see the states that occurred during the program function-

ing in the table. When the user recalls the states (using the

Show States button), the table appears with all the states

(Figure 4).

Figure 4:Memory states during the computation of Euclidean algo-
rithm

5 Conclusion
In this paper, a software tool that allows visualizing the

construction of trees in natural semantics of imperative

programming languages was presented and discussed.

Moreover, its need and rôle in teaching process was em-

phasized. The method of natural semantics is imple-

mentedona toy (non-real) language Janeused for teaching
the principles of languages and the semantics in many ap-

plications. A developed software allows the visualization

of the semantic method and allows the quick understand-

ing and the easy reading of its results.

Our tool for semantic-driven visualizations fully sup-

ports all standard imperative constructs - variable assign-

ment, sequencing of statements, conditional and loop

statement. As an added value, the program allows the

users to store the state table into a text file, to store a source

10 | W. Steingartner

code of an input program after modifications, to store the

picture of a depicted tree and to produce a source code

of a constructed tree for L
A
T
E
X. A presented software tool

is planned to be integrated into a larger software pack-

age for teaching the semantic methods. The main motiva-

tion for creating this tool wasmainly help for students and

young IT experts to get more familiar with formal methods

grounded in the field of semantics of programming lan-

guages.

Acknowledgement: This work has been
supported in the frame of the initia-

tive project “Semantic Modeling of

Component-Based Program Systems” under the bilateral

program “Aktion Österreich — Slowakei, Wissenschafts-

und Erziehungskooperation” and by the project KEGA

011TUKE-4/2020: “A development of the new semantic

technologies in educating of young IT experts”.

References
[1] Dostál J., Wang X., Steingartner W., Naungchalerm P., Digital In-

telligence - New Concept in Context of Future School of Edu-
cation, Proceedings of International Conference of Education,
Research and Innovation – ICERI 2017 Conference (16th–18th
November 2017, Seville, Spain), available at SSRN: https://ssrn.
com/abstract=3255366

[2] Jhanji K., Kumar A. R., Modernization in Teaching Learning Pro-
cess, In Innovative Teaching Practices for 4G students, IOR In-
ternational Press, 2019, 105–109

[3] Sotiriadou A., Kefalas P., Teaching Formal Methods in Computer
Science Undergraduates, 2000, unpublished, available online

[4] Dostál J., Wang X., Naungchalerm P., Brosch A., SteingartnerW.,
Researching computing teachers’ attitudes towards changes in
the curriculum content — an innovative approach or resistance?
In: 2017 Second International Conference on Informatics and
Computing – ICIC 2017 (2017, Jayapura, Indonesia), IEEE, New
York, 2017, 1–6

[5] Novitzká V., Logical Reasoning about Programming of Mathe-
matical Machines, Acta Electrotechnica et Informatica, 2005,
5(3), 50–55

[6] Steingartner W., Radaković D., Novitzká V., Eldojali M. A. M.,
An analysis of some aspects of component-based programming
for selecting appropriate categorical structures as theirmodels,
Acta Electrotechnica et Informatica, 2017, 17(2), 3–10

[7] Bilanová Z., Perháč J., About possibilities of applying logical
analysis of natural language in computer science, Proceedings
of IEEE 13th International SymposiumonApplied Computational
Intelligence and Informatics – SACI 2019 (29th–31st May 2019,
Timişoara, Romania), IEEE, Danvers, 2019, 256–260

[8] Mihályi D., Peniašková M., Perháč J., Mihelič J., WEB-Based
Questionnaires For Type Theory Course, Acta Electrotechnica et
Informatica, 2017, 17(4), 35–42

[9] Mosses P. D., Teaching Semantics of Programming Languages
with Modular SOS, In: Proceedings of the 2006 Conference
on Teaching Formal Methods: Practice and Experience, Series
TFM’2006, BCS Learning & Development Ltd., Swindon, UK,
2006

[10] Mosses P. D., Theory and Practice of Action Semantics, BRICS
Report Series RS9653, University of Aarhus, Aarhus, Denmark,
1996

[11] Steingartner W., Perháč J., Biliňski A., A Visualizing Tool for
Graduate Course: Semantics of Programming Languages, IPSI
BgD Transactions on Internet Research, 2019, 15(2), 52–58

[12] Steingartner W., Novitzká V., Bačíková M., Korečko Š., New ap-
proach to categorical semantics for procedural languages, Com-
puting and Informatics, 2017, 36(6), 1385–1414

[13] Steingartner W., Yar-Muhamedov I., Learning software for han-
dling the mathematical expressions, Journal of Applied Mathe-
matics and Computational Mechanics, 2018, 17(2), 77–91

[14] Kochaníková Ž., SteingartnerW., EldojaliM. A.M., A code gener-
ator for an abstract implementation of imperative language, In:
Electrical Engineering and Informatics VIII : Proceedings of the
Faculty of Electrical Engineering and Informatics of the Techni-
cal University of Košice, 2017, 342–347

[15] Steingartner W., HaratimM., Dostál J., Software visualization of
natural semantics of imperative languages – a teaching tool, In:
Proceedings of the 2019 IEEE 15th International Scientific Con-
ference on Informatics – Informatics 2019 (20th–22nd Novem-
ber 2019, Poprad, Slovakia) IEEE, Danvers, 387–392

[16] Nielson H. R., Nielson F., Semantics with Applications: An Appe-
tizer (Undergraduate Topics in Computer Science) 2007th Edi-
tion, Springer, 2007

[17] RoşuG., K –ASemantic Framework for Programming Languages
and Formal Analysis Tools, In: D. Peled and A. Pretschner (eds.),
Dependable Software Systems Engineering, Series NATO Sci-
ence for Peace and Security, IOS Press, 2017

[18] Perháč J.,Mihályi D., NovitzkáV., Between syntax and semantics
of resource oriented logic for IDS behavior description, Journal
of Applied Mathematics and Computational Mechanics, 2016,
15(2), 105–118

[19] Dedera L., Computer languages and their processing, Armed
Forces Academy, Liptovský Mikuláš, Slovakia, 2014 (in Slovak)

[20] Gabbrielli M., Martini S., Programming languages: principles
and paradigms, Springer-Verlag London, 2010

[21] Novitzká V., Steingartner W., Semantics of Programming Lan-
guages, Technical University of Košice, Košice, Slovakia, 2015
(in Slovak)

[22] Waite W. M., Goos G., Compiler Construction, Series: Texts
and Monographs in Computer Science, Springer-Verlag, 1984,
reprint 1996

[23] Slonneger K., Kurtz B. L., Formal Syntax and Semantics of Pro-
gramming Langauges: A Laboratory-Based Approach, Addison-
Wesley, Reading, Massachusetts, 1995

[24] Kahn G., Natural semantics, In: Brandenburg F.J., Vidal-Naquet
G., Wirsing M. (eds) STACS 87. STACS 1987. Lecture Notes in
Computer Science, vol. 247, Springer, Berlin, Heidelberg

[25] Benčík M., Dedera L., Natural Semantics of Battle Management
Languages, In: Proceedings of the 2019 Communication and In-
formation Technologies – KIT, (9th–11th October 2019, Vysoké
Tatry, Slovakia), IEEE, 2019

[26] Schmidt A. D., Programming language semantics, In: Encyclo-
pedia of Computer Science, John Wiley and Sons Ltd., Chich-

https://ssrn.com/abstract=3255366
https://ssrn.com/abstract=3255366

On some innovations in teaching the formal semantics using software tools | 11

ester, UK, 2003, 1463–1466
[27] Louden K., Lambert K., Programming languages – Principles

and Practice, Third edition, Cengage Learning, USA, 2011
[28] Teplická K., Steingartner W., Matvija M., Innovative didactic

methods in the teaching process at universities. Technical Uni-
versity of Košice, 2020, (in Slovak).

[29] Aho A. V., Ravi S., Ulman J. D., Compilers, principles, tech-
niques, and tools, Addison-Wesley Publishing Company, 1987

[30] Kollár J., Compilers, elfa s.r.o., Košice, Slovakia, 2010 (in Slo-
vak)

	1 Introduction
	2 Theoretical background
	2.1 Language, syntax and semantics
	2.2 Formal definition of Jane programming language
	2.3 Natural semantics of imperative languages

	3 Motivation for bringing innovations to teaching
	4 Software tool for natural semantics
	4.1 Implementation of the visualization
	4.2 Graphic user interface of a program
	4.3 Example of using the application

	5 Conclusion

