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Abstract: Recent advances in the field of web technologies,
including the increasing support of virtual reality hard-
ware, have allowed for shared virtual environments, reach-
able by just entering a URL in a browser. One contempo-
rary solution that provides such a shared virtual reality is
LIRKIS Global Collaborative Virtual Environments (LIRKIS
G-CVE). It is a web-based software system, built on top of
the A-Frame and Networked-Aframe frameworks. This pa-
per describes LIRKIS G-CVE and introduces its two orig-
inal components. The first one is the Smart-Client Inter-
face, which turns smart devices, such as smartphones and
tablets, into input devices. The advantage of this compo-
nent over the standard way of user input is demonstrated
by a series of experiments. The second component is the
Enhanced Client Access layer, which provides access to
positions and orientations of clients that share a virtual
environment. The layer also stores a history of connected
clients and provides limited control over the clients. The
paper also outlines an ongoing experiment aimed at an
evaluation of LIRKIS G-CVE in the area of virtual prototype
testing.
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1 Introduction
Contemporary virtual reality technologies provide a solid
basis for the development of simulations and various ac-
tivities in Virtual Environments (VE) [1]. Thanks to these
technologies, we can construct immersive VE faster than
a physical environment [2]. During the last few years, we
observed an increased demand for shared VE, where a vir-
tual collaboration ofmultiple users in real-time is possible.
Therefore, Collaborative Virtual Environments (CVE) were
proposed to allow groups of participants to cooperate on
solving various tasks while operating over a network [3].
However, most of these CVE use a local network connec-
tion without worldwide access, which limits their possibil-
ities.

Deployment of web-based CVE can provide global col-
laboration without limitation in geographical location of
its users [4]. Web-based CVE possess several strengths,
increasing their usability and demand for Virtual Reality
(VR). Concerning cross-platform access, current VR tech-
nologies are facing hardware diversity with demands to es-
tablish software compatibility to run on various operating
systems. A web cross-platform environment can simplify
user access and reduce development time [5]. In contrast
to the technological progress in other areas, optimization
of 3Dgraphics and inputs for cross-platformVR remains in-
sufficient.However, thesedifficulties canbe resolvedby an
implementation of a dynamic device recognition, utiliza-
tion of entity-component interfaces and automated adap-
tation to device performance.

The aforementioned issues sparked the development
of LIRKIS Global - Collaborative Virtual Environments
(LIRKIS G-CVE) at the home institution of the authors.
LIRKIS G-CVE, first presented in [6], is a web-based sys-
tem, built on top of the A-Frame¹ web VR framework and
its extension, called Networked-Aframe² (NAF). Thanks
to A-Frame, it is possible to run LIRKIS G-CVE on vari-
ous user devices, from desktop computers and notebooks

1 https://aframe.io/
2 https://github.com/networked-aframe
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through tablets and smartphones to virtual andmixed real-
ity headsets. The integration of NAF makes the VE global
and collaborative by allowing on-line multi-user interac-
tion in real-time. LIRKIS G-CVE adds several reusable com-
ponents, particularly the Smart-Client Interface (SCI) and
the Enhanced Client Access (ECA) layer. SCI allows the use
of tablets and smartphones as input devices. Thanks to
ECA, a client may access detailed information about the
avatars, representing other clients in the same shared vir-
tual environment.

This paper presents the architecture of LIRKIS G-CVE
(Section 3), focusing on the functionality provided by its
A-Frame/NAF basis and introduces and evaluates the SCI
component (Section 4). In Section 5, it describes the ECA
layer and outlines an ongoing experiment aimed at a uti-
lization of LIRKIS G-CVE in the area of virtual prototype
testing which relies heavily on the ECA layer. The paper
also deals with related solutions (Section 2) and concludes
with a summaryof achieved results and future plans in Sec-
tion 6.

2 Related Work
Web technologies simplify the creation of CVE through
various graphics libraries and standards supporting
JavaScript, HTML and CSS. The work most related to the
LIRKIS G-CVE is [7], where architecture for web-based col-
laborative 3D virtual spaces using DOM synchronization is
presented. Both [7] and our work employ the same VRweb
framework, the A-Frame, for building immersive CVE. The
work [7] implements the architecture for sharing 3D virtual
spaces through a server aimed at the DOM and object syn-
chronization while using a NoSQL database. In the LIRKIS
G-CVE, the object synchronization is provided over client-
server data channels viaWebSockets. This process is more
effective in asynchronous real-time connection when the
number of clients and objects varies during collaboration.
In the case of user interaction, our solution employs smart-
devices, such as multipurpose VR controllers, while the
work [7] uses the standard A-Frame inputs and focuses on
visual output for head-mounted displays.

Another related architecture, called SimCEC [8], pro-
vides multi-user CVE via a Unity3D application, executed
in web browsers. CVE distribution is ensured by a dedi-
cated cloud server. Similarly to our work, the system eval-
uates the user’s activity during the collaboration and pro-
cesses results in real-time. The SimCEC focuses on Medi-
cal CVE, while our solution is able to cover an extensive
range of CVE and collaborative applications. The LIRKIS

G-CVE supports scripting through online IDE without in-
stallation of external tools, such as Unity3D. In order to en-
hance user interaction, the SimCEC includes a hand track-
ing to correct positioning of user’s hands. Our system in-
volves cross-platformVR interface,which is able toprocess
smartphone sensor data to control 3D interaction.

The VirtualOulu system [9] uses a 3D virtual collabo-
rative model of a town in web-based immersive VR. The
system is intended for laptop computer utilization instead
of wearable devices. On the other hand, LIRKIS G-CVE is
designed to be adaptable for a variety of displays and VR
equipment. Both solutions depend on the Three.js soft-
ware library to render CVE in real-time.

Figure 1: LIRKIS G-CVE system architecture with Smart-Client Inter-
face and Enhanced Client Access layer.
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3 LIRKIS Global Collaborative
Virtual Environments

The LIRKIS Global Collaborative Virtual Environments
(LIRKIS G-CVE) platform represents an immersive web-
based virtual reality system with a real-time multi-user
connection. The system’s architecture utilizes Entity-
Component-System (ECS) software architectural pattern,
which offers high flexibility to create VR applications and
extensions of CVE with various complexity requirements
(Figure 1).

Each entity can contain multiple, fully reusable, com-
ponents, which can be mixed according to the intended
use. The communication between the system and users is
based on client-server architecture to share data over the
network. The LIRKIS G-CVE provides client-side rendering
(CSR) to be able to process more complex virtual environ-
ments with a variety of visual effects, lights and shades.

3.1 Remote Web Server

The main part of the LIRKIS G-CVE is a remote web server,
which is responsible for providing communication be-
tween clients and mediating networked entities in shared
CVE. The server uses three JavaScript frameworks; namely,
Node.js, Express.js and Networked-Aframe (NAF), all of
which support full backend services. The Node.js provides
real-time parallel client connection andmanages the asyn-
chronous client-server data stream. Usage of Express.js
was considered as important to handle HTTP requests
from clients during the connection. The NAF mediates all
of the Networked-Aframe components (NAC) and synchro-
nizes them among all clients. The NAC consist of a shared
scene, its entities, and features as Entity Ownership Trans-
fer (EOT) and Networked Entity Manipulation (NEM). The
EOT creates a relation, which allows the user to take con-
trol of an object in VE and the NEM supports several object
translations.

The communication between a client and the server
is based on the WebSocket protocol. Each CVE is accessi-
ble under a specific URL address for clients. The server is
processing all of the clients’ data, including their IDs and
avatar coordination. After a client is connected, the server
requires its data and then broadcasts it to all of the ac-
tive connections. The amount of transferred data between
clients depends on properties of the CVE. These proper-
ties include interaction levels and number and complex-
ity of shared entities. Client-server communication is band-
width sensitive,whichprevents server overloadingby inac-

tive networked entities. This feature was utilized to elimi-
nate data transmission and reduces concurrent replication
of identical data. When a client leaves a CVE, its connec-
tion is terminated by the server.

3.2 Web-client Interface

Our intention was to provide a web-client interface with
asynchronous CVE rendering. In the implementation
stage, the A-Frame technology was chosen with respect
to its guaranteed cross-platform support and scalability
through ECS. The A-Frame is built on top of the Three.js
3D JavaScript library, which is used to render 3D content
on the web. By using the Asynchronous JavaScript (AJAX),
it is possible to render all of the changes simultaneously
and without reloading the page.

The Web-client interface provides several data ele-
ments and components for its integrity and interaction.
The most important data elements are User ID and Avatar
Coordination, which are sent as first after the client con-
nects to the server. The Local scene component contains a
virtual environment with all 3D entities and surrounding
objects composed through NAC. To support user interac-
tion, each Web-client utilizes an integrated Standard-VR
input interface that collects all of the components respon-
sible for user movement and object manipulation. These
components are able to process data fromdifferent VR con-
trollers and standard inputs. However, each type of input
is conducted by its own component. Therefore, if a CVE re-
quires usermovement by touch andVRGamepad, it is nec-
essary to use two separate components. Each kind of inter-
action increases the number of input components, which
is likely to cause a problem when users do not provide
them.

4 Smart-Client Interface
As mentioned in Section 3, the LIRKIS G-CVE utilizes the
ECS to provide reusable functionality mixed with differ-
ent entities. However, the Standard-VR input interface con-
tains a large number of components serving each type of
input. Therefore, manipulation with a single entity by dif-
ferent inputs increases the number of active components
concurrently. This causes their faulty integration when a
user desires to utilize multiple VR input devices at the
same time. It also reduces the client’s performance. This
may negatively affect the user interaction. An extension of
the multi-purpose interface component can improve the
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same functionality as the previous ones and simplify im-
plementation of user interaction.

Considering this issue, the multipurpose VR interface
component called Smart-client interface (SCI) was pro-
posed. The SCI would eliminate the number of VR in-
put devices by using smart devices, namely smartphones
and tablets. We decided to use smart devices because of
the range of peripherals they provide: a variety of sen-
sors, a touch screen, and potential haptic feedback. Smart-
phones also offer more functionality than dedicated VR
controllers.

Generally, each Web-client (user) can access the
LIRKIS G-CVE through different platforms and devices,
such as desktop computers, VR headsets, holographic
computers (Microsoft HoloLens), seamlessly. These de-
vices are able to provide visual feedback and some of them
support standard inputs.

Extending the LIRKIS G-CVE by the SCI can positively
affect the Web-client’s performance in visual output ren-
dering. The main role of SCI is to handle the computing
of user interaction. In the same way, it is responsible for
3D object manipulation similar to VR hands, tracked con-
trollers and 3D pointers. These features allow the user to
interact with 3D objects more naturally.

4.1 Implementation

In the first stage of implementation, we decided to extend
an already existing NAF component, which was responsi-
ble for mapping device sensors through JavaScript events.
The main intention was to gather all of the data that the
smart-device can provide. Therefore, a dynamic device
recognition was considered helpful in recognizing all the
sensors and features available in the smart device. To pro-
vide 3D object manipulation, it was important to acquire
data from the IMU of the smart device. The IMU stands for
an Inertial Measurement Unit and usually consists of an
accelerometer, a gyroscope and a magnetometer.

The accelerometer was also utilized to trigger a sensor
data stream when a user shakes the device. This feature
was proposed to conduct device activity, while the user is
wearing a VR headset and cannot see their hands. The gy-
roscope and magnetometer were important to ensure 3D
object orientation. To enable touch inputs for object selec-
tion and grabbing, the graphical user interface with a vari-
ety of sliders and buttons was considered necessary.

The second stage of the implementation focused on
the communication between aWeb-client and the SCI over
the network (Figure 1). On the server side, we decided to
implement pairing functions that attach the SCI to itsWeb-

client by their IDs. The SCI shares its position, rotation and
geometrywith the server, which shares the datawith other
networked entities. In the sameway, theWeb-client is only
observing all of the SCI activities. Considering that the SCI
uses a smart device, it is able to handle all interactions au-
tonomously and it does not overload theWeb-client perfor-
mance in doing so.

The third stage focused on manipulation with net-
worked entities and interaction through the SCI. The first
type of interaction was implemented using a ray-casting
method (Figure 2a). The Raycaster [10] includes a 2D

(a)

(b)

(c)

Figure 2: LIRKIS G-CVE smart-client interface in practice: SCI ray-
casters intersection (a), hand and gaze-based interaction (b) and
bounding volumes in collision detection (c).
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line extended from the user towards the direction where
it checks its intersection with surrounding objects (Fig-
ure 2b). Each of them can be selected and then manipu-
lated. The second type of interaction involves 3D object
collision detection between the user and the surround-
ing scene (Figure 2c). Each collision is processed by 3D
volumes called bounding boxes (3D colliders) that are
wrapped around objects [11]. A 3D collider can be formed
into various shapes, such as a primitive box, a cube, a
sphere or a cylinder.Utilizationof 3Dcolliders positively af-
fects object selection and manipulation through 3D point-
ers and VR hands, which can collide with surrounding ob-
jects.

4.2 Performance Evaluation

After finalizing the implementation, we performed several
experiments to evaluate the results of LIRKIS G-CVE with
the recently deployed interface. The purpose of the experi-
ments was to compare the previous Standard-VR input in-
terface and the newly created Smart-Client Interface (SCI).
We decided to prepare tests of both solutions with three
end-user devices:

– an ASUS FX504 SERIES notebook, equipped with
Intel Core i5-8300H CPU (2.30GHZ), 8.00GB RAM,
NVIDIA GeForce GTX 1050 graphics card with 4GB
video RAM (GDDR5), 5400RPM HDD and 64bit Win-
dows 10 Home operating system,

– a VR smartphone headset, where the smartphone
model was SAMSUNG J5 2017 SM-J530F and

– the MS HoloLens holographic computer (1st genera-
tion).

In the first experiment, we measured the framerate
during user interaction. The second experiment evaluated
the response time between interface input action and vi-
sual output rendering. Each experiment consisted of 1000
trials and used the same CVE with 300 000 polygons.

4.2.1 FPS Measuring Experiment Evaluation

The results of the first experiment, shown in Figure 3, de-
scribe the framerate in Frames Per Second (FPS) for both
interfaces. Each interface was tested with a corresponding
VR controller. A VR gamepadwas used as the Standard-VR
input interface, while the SCI was usedwith a smartphone.
When the Standard-VR input interfacewas employed,mea-
sured FPS values were lower compared to the usage of
the SCI. The most significant difference of FPS rates was

observed while using the MS HoloLens rendering device,
where the average difference was 21 FPS. The least signif-
icant difference occurred with the usage of the notebook,
which can be explained by its adaptable computing perfor-
mance. In this case, the difference was 13 FPS. In all cases,
the SCI performed better than the Standard-VR input inter-
face.

Figure 3: Rendering performance comparison.

4.2.2 Measuring Rendering Response Time

The second experiment compared the response times be-
tween interface input action and Web-client’s visual out-
put reaction. The same VR devices and interfaces were uti-
lized as in the first experiment. The averages of response
times for all 1000 trials are shown in Figure 4. For each
trial, the measurement was carried out in the following
way: First, the interface input action was performed and
the time ti of the action was recorded. Second, the time
te of an event, triggered by the input action on the render-
ing devicewas recorded. Then, the response timewas com-
puted as

te − ti .

The measurements confirm that the Web-client rendering
response time was lower when using the SCI compared
with the Standard-VR. The most significant difference was
observed when the VR Smartphone headset was utilized;
with the average time difference of 72 ms. Similar to the re-
sults of the first experiment, the least significant difference
occurred when the notebook was used (21 ms average dif-
ference).

Based on the evaluation, the SCI interface yields pos-
itive results of testing with various rendering devices. The
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Figure 4:Measured response time comparison.

testing of the SCI proved increased rendering performance
on each device. Considering the fact that the interface
utilizes a smart device, it can be deployed without the
need for special calibration and setup. The currently im-
plementedmulti-purpose interface improves natural inter-
action and simplifies user access to the LIRKIS G-CVE.

5 Enhanced Client Access
While the Networked-Aframe allows multiple clients to si-
multaneously access a shared virtual environment just by
typing the same URL into a browser, it is not so easy for a
client to get information about other clients that share the
environmentwith them. LIRKIS G-CVE solves this problem
byprovidinganapplicationprogramming interface, called
the Enhanced Client Access (ECA) layer.

The ECA layer utilizes real-time communication capa-
bilities of NAF, implemented on the basis of the EasyRTC
toolkit. The functionality the ECA provides for a LIRKIS G-
CVE client can be divided into five client-side modules:

– Client identification. Allows a client to enter their
name when connecting to a shared VE. Also pro-
vides a list of identifiers and names of the clients
that share the same VE.

– Client position and orientation. Gives access to more
detailed information about the connected clients,
namely their position and rotation in all three axes.

– Client history. Provides a list of clients that have vis-
ited the shared VE, together with the timewhen they
entered and left it.

– Client administration. Allows control over other
clients in the same shared VE. In the current version,
its functionality is limited to removing clients from
the VE.

– Dashboard. Provides an administrative GUI for the
previous modules, where their functionality can be
accessed in a user-friendly way. The lists with client
information and history are displayed in tables and
the possibility of removing the clients is also avail-
able. The module is password-protected.

The modules periodically check for the clients con-
nected to the shared VE and update the corresponding
lists.

To support themodules, the ECAalso includes a server
component, called Enhanced Client Access Server Side
(ECA-SS). The ECA-SS stores administrator credentials for
accessing the dashboard module and a list of client con-
nections for the client history module. It also includes
three endpoints. The first one authenticates dashboard
users against the stored credentials, the second one sends
commands from the client administration to other clients
in the same VE and the third one is used for the client his-
tory list maintenance.

5.1 Utilization for Prototype Testing

One of the possible LIRKIS G-CVE utilization areas that the
ECA layer makes accessible is virtual prototype testing of
autonomous equipment. Here, a shared VEwill be used as
a testing area, where one client will take on the role of the
tested prototype and other clients will be testers.

The possibilities and limitations of such utilization
will be explored using a VE representing a room with sev-
eral places to be cleanedby an autonomous cleaning robot.
The robot specification and control software will be bor-
rowed from [12], where a similar scenario has been imple-
mented using the jMonkeyEngine game engine and Jadex
agent system.

As in [12], the robot will have a circular sensor array
with eight sensors, each covering a 45∘ area. The robot
also stores a list of places to clean. The robot, called cbot,
will clean each place in its list while taking care of the
safety of people in is vicinity. If someone gets too close, the
robot will interrupt its activity (i.e. cleaning or moving).

The arrangement of LIRKISG-CVE for this purpose can
be seen in Figure 5. The clients Visitor1 to Visitorn repre-
sent people in the room the robot is cleaning. They are or-
dinary LIRKIS G-CVE clients. The robot is represented by
the cbot client, which utilizes the ECA layer, its client posi-
tion and orientationmodule in particular.While the visitor
clientswill be operated by humans, cbotwill be actualized
automatically using the following procedure, executed in-
side the simulation loop of the VE:
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Figure 5: LIRKIS G-CVE system configuration for the cleaning robot
prototype testing.

1. Acquire positions of other clients using the ECA
layer and call the cbotPos2SensData function to
transform them to the form of robot sensor data.

2. Check the list places2clean of the places to be
cleaned to determine the next activity of the robot.

3. Check the robot sensor data to determine whether it
is safe to perform the next activity.

4. Manipulate the cbot according to the activity cho-
sen.

Steps 2 and 3 are performed by the control program
cbotController of the cbot client and its cbotScControl part
is responsible for Step 3.

The shared VE for cbot is already available and its
appearance can be seen in Figure 6. The screenshot is
taken from the position of a third visitor, who is looking
at the cbot (in the middle) and at the first and second vis-
itors. However, the cleaning functionality is not yet imple-
mented and the robot just moves between the three posi-
tions, represented by the purple, yellow and blue blocks.
The visitor clients are available at http://intersim.glitch.
me/ and the cbot client at http://intersim.glitch.me/cbot.
html. To set up the environment properly, it is necessary to
run several instances of the visitor client and one instance
of the cbot client.

Figure 6: Shared virtual environment for the cleaning robot proto-
type testing.

6 Conclusion
This paper introduced two key components of the LIRKIS
G-CVE online collaborative VR system, built on the basis of
the A-FramewebVR framework and its Networked-Aframe
extension.

The first component, the Smart-Client Interface allows
the use of smart mobile devices as VR controllers, which
makes VR more accessible to ordinary people. Based on
the experimental evaluation results presented in thepaper,
we may consider the development and deployment of the
SCI into the LIRKIS G-CVE a success and a significant im-
provement. The interface is currently used in several VE
developed for LIRKIS G-CVE, including a virtual hand ap-
plication to be used for motor function rehabilitation.

The second component, the Enhanced Client Access
layer, is essential in providing additional information
about, and control of, the clients sharing a virtual environ-
ment. Among other benefits, it allows to utilize automated
clients that are aware of their surroundings in VE. This can
be used for a virtual testing of autonomous equipment, as
in the case of the cleaning robot environment introduced
in the paper. The environment will be used to evaluate the
concept of virtual testing in LIRKIS G-CVE, including a uti-
lization of VR headsets.
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