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Abstract: Detection of plant disease has a crucial role in
better understanding the economy of India in terms of
agricultural productivity. Early recognition and catego-
rization of diseases in plants are very crucial as it can
adversely affect the growth and development of species.
Numerous machine learning methods like SVM (support
vector machine), random forest, KNN (k-nearest neighbor),
Naive Bayes, decision tree, etc., have been exploited for
recognition, discovery, and categorization of plant diseases;
however, the advancement of machine learning by DL
(deep learning) is supposed to possess tremendous poten-
tial in enhancing the accuracy. This paper proposed a
model comprising of Auto-Color Correlogram as image filter
and DL as classifiers with different activation functions for
plant disease. This proposed model is implemented on four
different datasets to solve binary and multiclass subcate-
gories of plant diseases. Using the proposed model, results
achieved are better, obtaining 99.4% accuracy and 99.9%
sensitivity for binary class and 99.2% accuracy for multi-
class. It is proven that the proposed model outperforms other
approaches, namely LibSVM, SMO (sequential minimal opti-
mization), and DL with activation function softmax and soft-
sign in terms of F-measure, recall, MCC (Matthews correlation
coefficient), specificity and sensitivity.
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1 Introduction

In India, agriculture is a supporting factor for all the
existing cultures and 70% of the population depends
on the agriculture sector. Agriculturalists have a large
variety of choices to select vegetable and fruit crops.
Practices like crop rotation, pesticides, irrigation, and
fertilizers in agriculture have been practiced for a long
time. Farmers face multiple problems in detecting and
identifying the diseases in crops [1]. The introduction of
seed, soil, chemical-based approaches to agriculture was
the output of the production system; however, wise and
careful management of every input is needed for the sur-
vival of agriculture’s complex system. So, advancement is
required in the production of plants in a proper manner.
Plants are seen everywhere on the Earth. Thus, identi-
fying disease is a very important step in agriculture. Plant
diseases and chemical fertilizers are the major issues that
can affect the cultivation of rice, tomato, potato, and
pepper plants. Hence, a more serious diagnosis and
proper handling of crops on time are needed to prevent
them from heavy losses. Detecting plant diseases is an
important factor as it can affect the life of an animal as
well as human beings and cause a lot of changes in the
quantity and quality production of crops [1]. Hence,
the detection and classification of plant diseases is a
vital task. Diseases in tomato, potato, pepper, and rice
plants can occur in several parts like roots, stems, leaves,
and fruits. Major diseases affecting the rice crop are
leaf_smut, brown_spot, and bacterial_leaf. In the case
of potatoes, diseases are early_blight and late_blight;
pepper diseases can be bacterial, whereas in the case of
tomato it can be target_spot, leaf_mold, mosaic_virus,
yellow_leaf_curl_virus, bacterial_spot, early_blight, healthy,
late_blight, septorial_leaf spot and spider_mites_two_spot-
ted_spider_mite. The diseases of rice, tomato, potato, and
rice are shown in Figure 1. Improvements are obtained using
Deep Learning (DL) tactics in image-based detection of
diseases developed with autor-color correlogram and DL
for image-based automatic diagnosis and detection of plant
disease asperity. The model’s competence for accurately
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Figure 1: Samples of leaf images showing different types of diseases in (a) rice, (b) pepper, (c) potato, and (d) tomato plants.
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forecasting the disease severity stage is better than other
machine learning algorithms.

Our experimental results are decisive steps towards
the plant disease severity investigation. The overall flow
of the remaining of the paper is as follows: Section 2
reviews the literature survey, Section 3 presents the pro-
posed model in detail, Section 4 describes the auto-color
correlogram filter approach, Section 5 describes the DL
technique, Section 6 is a performance measure related
analysis, Section 7 represents experimental study,
Section 8 describes the results and discussion, and lastly,
Section 9 gives the conclusion.

2 Literature review

Akhtar et al. presented an approach, where features were
trained using SVM, k-NN, RNN(recurrent neural net-
work), Naive Bayes, decision tree, and detection of dis-
ease using wavelet-based plant disease and gray-level
co-occurrence matrix [2]. Using hyperspectral measure-
ment, Fathima et al. presented techniques to identify dis-
eases in leaf [3]. The asperity of diseases in plant leaves is
proposed by Karthik et al. [4]. An automated approach by
Semary et al. used the texture as well as color features
and SVM for categorization. Gabor wavelet features and
GLCM (gray-level co-occurrence matrix), using weighted
KNN, features were trained in ref. [5]. Detecting disease
using texture and color features [6] is presented by Padol
et al. where the infected area was segmented with sup-
port of k-means and features were trained and used
for classification using SVM. Using k-means for disease
detection and categorization was used in ref. [5]. Identi-
fying the presence of fungal infection in leaves using
k-means [7] is presented by Mehra et al. Major challenges
in clustering algorithm is finding the count of clusters and
adjusting the parameters to separate from each cluster.
Scale-invariant features were examined for multiple pro-
blems in the image [3,4,8]. The use of scale-invariant as an
approach for disease identification was presented by Dan-
dawate and Kokare [9] where features were examined with
the help of SIFT (scale-invariant transforms are trained
using the support vector machine to identify the presence
of disease).

To have an effective classification, SIFT features were
joined and combined with SB distribution for detecting
diseases in tomato leaves [10]. As various factors are
responsible for low production of all crops like potato,
tomato, and rice, etc., hence, image segmentation in pat-
tern recognition and image analysis is the first step, as it
is the necessary component and one of the important
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tasks in processing the images and analyzing the result.
Image segmentation is defined as a method of parti-
tioning the image into disjoints sets with k-means clus-
tering methods [11-13]. Sannakki and Rajpurohit used a
classification method depending on the backpropagation
neural network, explaining the defected area, color and
texture in segments used as features [14]. This categori-
zation has achieved an accuracy of 97.3% with only limi-
ted crops as input. Rothe presented a pattern recognition
technique using snake segmentation. The proposed model
assesses the vitality in the infected part of the leaf secur-
ing a classification accuracy of 85.52% [15]. Rastogi used
k-means to segment the affected part and used ANN (arti-
ficial neural network) for classification that helps in iden-
tifying the hardness of the diseased leaf [16]. Tian used
SVM as a classifier for finding the disease in wheat plants
[17]. Owomugisha used decision trees, nearest neighbors,
naive Bayes, and random forest for diagnosing diseases
in plants [18]. Hall et al. [19] used random forest and
CNN on 32 species for classification of leaves and perfor-
mance achieved is 97.3% classification accuracy. Using image
multiscale representation and the leaf number improved
counting accuracy by using deep CNN [20-22]. Identification
of a variety of plants using DL methods [23-25], where it was
used a modified CNN together with the architecture of AlexNet
using accuracy parameter [23,25]. For crop discrimina-
tion [26,27], authors introduced CNN and evaluated the
performance using accuracy and recall with the help of
two datasets. DL was studied for the recognition of plants
and successfully achieved a 91.78% success rate [28]. For
the classification of crop variety, Kussul et al. [29] men-
tioned modified CNN according to Mortensen et al. [30]
applying VGG 16, enforcing three-unit LSTM [31], and
used the RGB histogram method and CNN [30]. Accuracy
purely depends on the nature of handcrafted features
selected. The performance of the work needs to be updated
by large datasets. These shortcomings can be overcome
using the model of DL for plant disease discovery [32].
Multiple research articles have summarized the research
on agriculture in the field of plant diseases using DL
[21-25,28,29,33,34]. Contemplating the advantages of DL,
we have chosen them after ACC in our proposed model.

3 Proposed model

The analysis of the methodology of the proposed work
has been presented using images in Figure 1. Image data-
sets are collected from the rice dataset [35] and the Kaggle
plant village dataset [36]. These images go through pre-
processing called filtering. After the pre-processing step,
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different texture and color features are collected. The fea-
tures obtained are fed as an input in DL to correctly clas-
sify the disease of a given plant.

3.1 Input image

In the proposed model, the initial step is to gather and
capture the image dataset to obtain relevant features, and
the obtained features are stored in the database. The rice
dataset consists of three classes: bacterial leaf bright
(40), brown spot (40) and leaf smut (40). The pepper
datasets consist of two classes as healthy (997) and bac-
terial (997). The potato datasets consist of three classes,
namely early-blight (1,000), healthy (152) and late blight
(1,000). The tomato datasets consist of ten classes, namely
spider_mites_two_spotted_spider_mite (1,676), target_spot
(1,404), mosaic_virus (373), yellow_leaf _curl_virus (3,209),
bacterial_spot (2,127), septorial_leaf spot (1,771), early_
blight (1,000), healthy (1,591), late_blight (1,909) and leaf
mold (952). The numbers in parenthesis show the count of
samples for the category of plant diseases.

3.2 Image database

The next step is creating the database of images. The
database of rice consists of 120 images, pepper consists
of 1,994 images, potato consists of 2,152 images and
tomato consists of 16,072 images. The images present in
the database are responsible for good and accurate cap-
ability of classification that enhances the strength of the
algorithm.

3.3 Image pre-processing

It is defined as an operation on images with an improve-
ment in images to correct distortion and enhance the
important features required for processing and analyzing
the images. This step does not add any further informa-
tion to the image and helps in reducing the redundancy
in images.

4 Auto-color correlogram (ACC)
filter

It is a pre-processing step defined as a filter that helps in
calculating a color correlogram from the input image. It
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encodes the dimensional correlation of colors in images
and is effective in changing the viewing position. An ACC
is defined as the average of all color pixels of color Hj at a
gap (length) ith against a pixel of color Hj in the image

[37] (Figure 2).
ACC = I (x,y), x=1,2,3,...A, y =1,2,3,...B,

is explained as

Image Pre-
processing

l

Capture Image

l

Auto-Color
Correlogram

!
. }

Classification using Classification using
Machine Learning Deep Learning
Methods
Different Activation
Function
\ 4
Stop

Figure 2: Flow chart of the proposed model.
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ACC(, j, k) = AHj(k)HiHj = RmHj(k)HiHj(I),

GmHj(K)HiHJ (1), BmHj(K)HiHj(I)|Hi # Hj. W

Image (i, j) is defined as quantized to m colors H1, H2,
H3,..., Hm, and the gap between two pixels k [min(A < B)]
is fixed considering AHj to be the RGB value of color m in
the image. The average colors are defined as

RmHj(k)HiHj(I) = (n(k)Hi, RHj(I))

/(u(k)Hi, Hi(I))|Hi # Hj, @
GmHj(k)HiHj(I) = (n(k)Hi, GHj(I)) 5

/(n(k)Hi, Hj(I))|Hi # Hj,
BmHj(k)HiHj(I) = (n(k)Hi, BHj(I)) @

[(n(k)Hi, Hj(I))|Hi + Hj.

Here, x represents the accounting color Hi against Hj
at a gap of k. n(k)Hi, xHj(I) denominator is the sum of
pixel values of color Hj at point k from color Hi when x is
the RGB color space, Hj # 0.

This reduces the intensity of the color correlogram
0(m2d) to 0(3md), and the ACC can be used to find the
logical spatial correlation among colors to decrease the
size of storage and increase the speed of the retrieval size
of ACC from 0(3md) to O(m). With the help of the method,
RGB dominant captured the peak values in any color
bin. The dominant elements are gathered to reduce the

INPUT
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Figure 3: The architecture of deep learning.
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storage speed and the amount of retrieval while proces-
sing (similarity) calculation of the two images [38].

5 Deep learning

Contrary to the old machine learning approaches, DL has
the potential to implement itself directly on the input
data and it does not require any handcrafted features.
From the concept of the learning pattern of the human
brain, the architecture of neural networks was developed.
Having two or more hidden layers lead to DL. As a brain
neuron receiving stimuli from the outside world and then
processing the input and producing output at the end,
multiple neurons are connected to form a complex net-
work that helps in learning complicated patterns from the
dataset. The detailed architecture of DL consisting of
input layers tracked by multiple hidden layers and output
layers using an activation function is shown in Figure 3.
Determining the total count of neurons and the hidden
layers depends on the trial-and-error rule [39]. Every
neuron is characterized by some of its weight, activation
function and bias. The images are fed into the DL using
the input layer, and the neuron will perform a transfor-
mation described by equation (5).

Output Layer

ACTIVATION
FUNCTION

— (o
J- ACTIVATION
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X = (weight = input) + bias. (5)

Applying the activation function on the linear trans-
formation, the output produced is supplied as an input to
the next hidden layer and the same is repeated. The
transfer of information is called forward propagation.

Y = Activation((weight * input) + bias). (6)

A network without the activation function will be less
powerful and will not be suitable for many problems
having a complex pattern. Without the activation func-
tion, it is known as a linear regression model.

In DL, when the input is given to the neurons along
with weights, the weighted sum of input is generated that
is further given to the activation function to generate the
output. The activation function (AF) is utilized to map the
input to the output. Due to AF, the DL learns complicated
patterns in the datasets easily. The important uses of AF
are as follows:

To maintain output limited to a specific range.
To include nonlinear functionality in data.

Different AF exists in the literature [45—47] and some
of them are described in detail as follows.

5.1 Kinds of activation functions

1. Sigmoid: It is defined as a nonlinear function produ-
cing values between 0 and 1, and the output produced
will be nonlinear of the same sign. This is not sym-
metric around zero:

fx) =

L %

1-e
2. tanh: It is like a sigmoid function but it is symmetric

around O producing values lying between [-1, 1], and
the output sign may not be the same:

tanh(x) = 2 * sigmoid(2x) - 1, (8)
g(x) =1 - 2tanh?x. )

The output produced in the case of sigmoid and
tanh function has lower and upper limits.

3. ReLu: It is nonlinear and stands for a rectified linear
unit. ReLu has one advantage over the other activation
function as it never initiates all the neurons at the
same time. If the value of output is less than 0, the
neuron will get deactivated. It is more computationally
efficient than the sigmoid and tanh functions:
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f(x) = max(0, x). (10)

4. Softmax: It consists of multiple sigmoids. The sigmoid
returns values between 0 and 1 and treats probabilities
of data relating to the class used for the multiclass
problem:

7

. e
n@)j=—x—>
k=187

for j=1,2,3,4,..k. (11
5. Softplus: It is a kind of traditional function introduced
in 2001 and is differentiable and easy to demonstrate
due to its derivative.
It is an alternative to dead ReLu. The output lies
between [0 to 00]:

y = log(1 + e¥). (12)

6. Softsign: It is more like the tanh function; the difference
is tanh converges exponentially and softsign converges
polynomially. The output produced is between [-1, 1]:

1

.
1+ -
X

y= (13)

7. Hard sigmoidal: It is a variation of the sigmoidal func-
tion and is given by

f(x) = max (O, min (1, (X; ) )) )

(14)

Hard sigmoidal offers a lower computation cost
[43].

8. Hard tanh: It is a variation of the tanh activation func-
tion, and represents a cheaper and more computa-
tional efficient version of tanh. It reports both accuracy
and speed enhancements [43]. The function values lie
between [-1, 1] and are given by

-1, x< -1
fx)=4x, -1<x<1 (15)
1 x> 1.

9. Rational tanh: It is also known as a rational approx-
imation of a hyperbolic tangent [44] and is repre-
sented as

f(x) = 1.7159 x tanh(%x), (16)

1
. (17
1+ |yl + y? + 1.41645 x y‘*) (7)

tanh(y) = sgn(y)(l

A detailed description of different AFs with advan-
tages and disadvantages are given in Table 1.
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Table 1: Advantages and disadvantages of activation functions
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Types of Activation Advantages Disadvantages
function
1. Sigmoidal/ ® Smooth gradient, precluding “jumps” in ¢ Vanishing gradient: make network declining to learn further

Logistic [45] output values

e Clear predictions

e Smooth function

e Continuously differentiable

® O/P is nonlinear

e Easy to apply and understand
2. Tanh/hyperbolic e Zero centered

tangent [45]

backpropagate the faults/errors
3. RelU [45]
to unite very promptly

e Non-linear: though it has a derivative function

e Backpropagation allowed

4, Softmax [46]
class in other activation functions

* Give the probability of the I/P value beingin a

particular class
¢ Beneficial for O/P neuron usually
5. Softplus [45]

e Continuous and differentiable at every point
e As the function is nonlinear it can effortlessly

e Computationally efficient: permits the network

e Competent to handle various classes, just one

® Smooth derivative used in backpropagation

and being very slow to attain a precise prediction

® O/P is not zero centered

e Computationally costly

e Slow convergence

e Like the sigmoid function

e Vanishing gradient problem
® Low gradients

® The Dying ReLU problem: once inputs get in touch with
zero/negative, the gradient turns into zero, resulting in the
network unable to perform backpropagation and will not be
able to learn

e Unbounded and nondifferentiable at zero

¢ Gradients for negative I/P are zero

® O/P is not zero-centered, hence it does harm the
performance of the neural network

e Activation mean value is nonzero

e |t will not work if data are not linearly separable

* Does not support null rejection

e Derivative of the softplus is equal to a sigmoid

function [45]

6. Softsign [45]
® Grows polynominally rather than
exponentially

* Smoother than the tanh activation function

* More expensive to compute than tanh
¢ Often, gradient produces extremely high/low values

e Faster and better learning because of the lack
of struggling along with the vanishing gradient

e Softsign barring neurons from being
saturated, which leads to more efficient
learning

e Variant of sigmoidal

® Lesser computation cost

7. Hard
sigmoidal [47]

6 Performance measures

The performance of classification of plant diseases is
evaluated using an output that can be a binary class or
multiclass. The confusion matrix, shown in Figure 4,
helps in measuring the performance consisting of actual
and predicted values. It also helps in understanding the
usefulness of sensitivity as true positive rates and then
to analyze the ability to correctly identify the healthy
leaf from the diseased leaf, specificity as true negative
rates given by equation (20), accuracy as a positive pre-
dicted value shown in equation (18), recall known as the

probability of detection, defined as the number of truly
classified positive outcomes by the sum of total positive
outcomes in equation (19). The Mathews correlation coef-
ficient (MCC) is used to overcome the class imbalance
problems. The F-measure is the harmonic mean of preci-
sion and recall and helps to evaluate recall and precision
as in equation (21).

Accuracy = (IP + TN) , (18)
(TP + TN + FP + FN)
TP TP
Recall/Sensitivity = ——— = —, 1
/ Y= TP+FN) P 19)
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Figure 4: Confusion matrix.

Specificity = %, (20)
F-measure — (2 * Precision *.R'ecall) 1)
(Recall + Precision)
MCC = ((TN » TP) — (FN * FP)) )

((FP + TP)(EFN + TP)(FP + TN)(FN + TN))*5

True positive (TP) is a positive outcome that is true
and prediction comes to be true. True negative (TN) is a
negative outcome that is true. False positive (FP) seems to
be positive and prediction comes to be false. False nega-
tive (FN) is a negative outcome that is false.

For each k length
For each X position
For each Y position
H; <- current_pixel
While (H; <- obtain neighbors pixel of H; at length k)
for each color_H,,
If (Hy, = H; and H; # H))
Count_Color ++
Color_R[Hy] <- color_R[H,;] + color_RH;
Color_G[H,,] <- color_G[H,,] + color_GH;
Color_B[H] <- color_B[H,,] + color_BHj
End if
End for

End while
Mean_color_R <- sum(color_R[H,,])/count_Color
Mean_color_G <- sum(color_G[H,,])/count_Color
Mean_color B <- sum(color_B[H,,])/count_Color
end for X
end for Y
end for k

Algorithm of ACC

7 Experimental study

A study centered on the experimental results is designed
to determine the influence of the proposed model. Taking
the advantages of the four image datasets of plant diseases
from Kaggle [37], namely, pepper, tomato, potato, and rice
from the UCI repository [38]. The experiments analyze
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the performance of four datasets-based approaches to six
parameters, sensitivity, specificity, accuracy, recall, F-mea-
sure and MCC, using 15 machine learning algorithms for clas-
sification, namely, Bayes Net, Naive Bayes, LibSVM, SMO,
RBF_classifier, RBF_Network, PART, J48, Random Forest,
Filtered Classifier, Iterative optimized Classifier, multiclass
classifier, simple logistic, decision table and randomized
filtered classifier as mentioned in Tables 2, 4, 6, and 8. The
performance using DL is also evaluated using different
activation functions given in Tables 3, 5, 7, and 9. The
experiment was carried out as per the following process:

START

Input: Images of four datasets of plant diseases.
Output: Performance evaluation of 15 machine learning
algorithms and DL with different activation functions.
Step 1: Preparing the target image datasets.

Step 2: Creating the image datasets of rice containing
120 images [38], pepper having 1994 images, potato
containing 2,152 images and tomato having 16,072
images [37].

Step 3: Image pre-processing.

Step 4: Using unsupervised Image Filter known as Auto
Color Correlogram in WEKA 3.9.4 on four datasets.
Step 5: Results obtained from the image filter, used for
evaluating the execution of 15 machine learning algo-
rithms in WEKA 3.9.4 [40].

Step 6: Evaluating the performance of DL with nine
activation functions.

Step 7: Comparing various machine learning algorithms
and DL based on six parameters, sensitivity, specificity,
accuracy, recall, F-measure and MCC, and finding out
which algorithm outshines in each dataset.

A. Mixed Datasets: Four plant disease datasets are selected
in the study, out of which pepper is a binary class and the rest,
rice, potato and tomato, are multiclass datasets. The data is
balanced as per class in both rice and pepper, whereas it is
imbalanced in the case of potato and tomato datasets.

B. Fifteen machine learning classification algorithms
and DL with nine activation functions. All these classifica-
tion algorithms are implemented on the four image data-
sets with the help of WEKA 3.9.4 learning environment
using default parameters. In WEKA, the first image data
are loaded into WEKA, the class name is converted to
nominal. Using imageFilters named ACC, the batch filter
is used to compute the color correlogram from the images.
ACC converts the spatial color correlation in images and is
an efficient feature that is resilient to changes in the
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Table 2: Effectiveness of machine learning algorithm on the pepper bell dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure McCC

BayesNet 0.981 0.017 0.981 0.981 0.981 0.961
Naive bayes 0.957 0.033 0.96 0.957 0.957 0.914
LibSVM (3) 0.995 0.005 0.994 0.994 0.994 0.993
SMO (2) 0.996 0.005 0.996 0.996 0.996 0.992
RBF_Classifier 0.994 0.007 0.994 0.994 0.994 0.987
RBF_Network 0.97 0.031 0.97 0.97 0.97 0.937
Simple logistic 0.994 0.007 0.994 0.994 0.994 0.987
Decision table 0.977 0.025 0.977 0.977 0.977 0.952
PART 0.983 0.019 0.983 0.983 0.983 0.983
148 0.975 0.026 0.975 0.975 0.975 0.948
Random forest (1) 0.997 0.004 0.997 0.997 0.997 0.993
Filtered classifier 0.98 0.022 0.98 0.98 0.98 0.959
Iterative optimized classifier 0.988 0.012 0.988 0.988 0.988 0.976
MultiClass classifier 0.989 0.013 0.989 0.989 0.989 0.978
Randomized filtered classifier 0.989 0.013 0.989 0.989 0.989 0.978

The number in parenthesis defines the ranking with the machine learning algorithm.
Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.

Table 3: Effectiveness of deep learning with different activation functions on the pepper bell dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure mcc

DL_softmax 0.976 0.034 0.977 0.976 0.976 0.951
DL_Relu 0.993 0.008 0.993 0.993 0.993 0.985
DL_tanh (3) 0.997 0.004 0.997 0.997 0.997 0.994
DL_Hard_Sigmoidal 0.978 0.016 0.979 0.978 0.978 0.956
DL_Hard_tanh (2) 0.998 0.003 0.998 0.998 0.998 0.995
DL_rational_tanh 0.98 0.003 0.998 0.998 0.998 0.995
DL_Sigmoidal 0.95 0.042 0.952 0.95 0.95 0.899
DL_Softplus 0.993 0.01 0.993 0.993 0.993 0.985
DL_Softsign (1) 0.999 0.002 0.994 0.999 0.999 0.998

The number in parenthesis defines the ranking with the machine learning algorithm.
Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.

Table 4: Effectiveness of machine learning algorithm on the rice dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure MCC
BayesNet 0.733 0.133 0.731 0.733 0.732 0.599
Naive bayes 0.717 0.142 0.726 0.717 0.716 0.58
LibSVM 0.85 0.075 0.866 0.85 0.846 0.784
SMO (1) 0.875 0.063 0.877 0.875 0.875 0.813
RBF_Classifier (2) 0.867 0.067 0.867 0.867 0.867 0.8
RBF_Network 0.775 0.113 0.789 0.775 0.777 0.669
Simple logistic 0.692 0.154 0.723 0.692 0.674 0.554
Decision table 0.708 0.146 0.716 0.708 0.708 0.566
PART 0.792 0.104 0.791 0.792 0.791 0.687
148 0.792 0.104 0.793 0.792 0.791 0.688
Random forest (1) 0.875 0.063 0.887 0.875 0.871 0.82
Filtered classifier 0.75 0.125 0.757 0.75 0.75 0.629
Iterative optimized classifier (3) 0.867 0.067 0.866 0.867 0.866 0.8
MultiClass classifier 0.775 0.113 0.776 0.775 0.774 0.663
Randomized filtered classifier 0.742 0.129 0.749 0.742 0.741 0.616

The number in parentheses defines the ranking with the machine learning algorithm.
Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.
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Table 5: Effectiveness of deep learning with different activation functions on the rice dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure McCC
DL_softmax (1) 0.907 0.093 0.922 0.907 0.904 0.853
DL_Relu 0.856 0.123 0.871 0.856 0.84 0.773
DL_tanh (2) 0.894 0.098 0.905 0.894 0.89 0.829
DL_Hard_Sigmoidal 0.706 0.294 0.815 0.706 0.653 0.535
DL_Hard_tanh (3) 0.894 0.094 0.903 0.894 0.888 0.831
DL_rational_tanh 0.9 0.094 0.909 0.9 0.896 0.839
DL_Sigmoidal 0.725 0.275 0.823 0.725 0.672 0.563
DL_Softplus 0.838 0.146 0.853 0.838 0.823 0.727
DL_Softsign 0.869 0.119 0.884 0.869 0.858 0.791
The number in parenthesis defines the ranking with the machine learning algorithm.

Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.

Table 6: Effectiveness of the machine learning algorithm on the tomato dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure MCC
BayesNet 0.916 0.021 0.917 0.916 0.916 0.895
Naive bayes 0.845 0.042 0.85 0.845 0.844 0.806
LibSVM (1) 0.982 0.007 0.982 0.982 0.982 0.976
SMO (2) 0.98 0.008 0.98 0.98 0.98 0.973
RBF_Classifier (3) 0.977 0.01 0.977 0.97 0.973 0.96
RBF_Network 0.808 0.076 0.808 0.808 0.808 0.8
Simple Logistic 0.889 0.036 0.894 0.889 0.889 0.85
Decision table 0.751 0.101 0.745 0.751 0.734 0.657
PART 0.925 0.025 0.925 0.925 0.925 0.9
148 0.9 0.036 0.899 0.9 0.899 0.864
Random forest (3) 0.965 0.03 0.764 0.765 0.764 0.734
Filtered classifier 0.871 0.047 0.87 0.871 0.87 0.827
Iterative optimized classifier 0.925 0.029 0.925 0.925 0.924 0.898
MultiClass classifier 0.928 0.034 0.929 0.928 0.927 0.901
Randomized filtered classifier 0.764 0.085 0.761 0.764 0.762 0.678
The number in parenthesis defines the ranking with the machine learning algorithm.

Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.

Table 7: Effectiveness of deep learning on different activation functions on the tomato dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure Mmcc
DL_softmax 0.891 0.047 0.888 0.891 0.871 0.844
DL_Relu 0.96 0.015 0.96 0.96 0.96 0.946
DL_tanh (2) 0.977 0.008 0.977 0.977 0.977 0.969
DL_Hard_Sigmoidal 0.961 0.009 0.961 0.961 0.961 0.95
DL_Hard_tanh 0.972 0.006 0.974 0.972 0.973 0.965
DL_rational_tanh (3) 0.976 0.006 0.977 0.976 0.976 0.976
DL_Sigmoidal 0.967 0.009 0.967 0.967 0.967 0.958
DL_Softplus 0.967 0.009 0.965 0.967 0.966 0.954
DL_Softsign (1) 0.981 0.005 0.982 0.981 0.981 0.976

The number in parenthesis defines the ranking with the machine learning algorithm.

Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.
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Table 8: Effectiveness of the machine learning algorithm on the potato dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure McCC
BayesNet 0.971 0.024 0.971 0.971 0.971 0.949
Naive bayes 0.955 0.038 0.956 0.955 0.955 0.919
LibSVM (1) 0.993 0.006 0.993 0.993 0.993 0.988
SMO (2) 0.99 0.007 0.99 0.99 0.99 0.983
RBF_Classifier (3) 0.987 0.011 0.987 0.987 0.987 0.976
RBF_Network 0.921 0.069 0.921 0.921 0.921 0.921
Simple logistic 0.941 0.047 0.943 0.941 0.941 0.898
Decision table 0.934 0.051 0.934 0.934 0.934 0.885
PART 0.965 0.028 0.965 0.965 0.965 0.938
148 0.964 0.028 0.964 0.964 0.964 0.937
Random forest (3) 0.987 0.012 0.987 0.987 0.986 0.977
Filtered classifier 0.95 0.038 0.95 0.95 0.95 0.913
Iterative optimized classifier 0.974 0.02 0.974 0.974 0.974 0.954
MultiClass classifier 0.983 0.009 0.983 0.983 0.983 0.973
Randomized filtered classifier 0.868 0.099 0.868 0.868 0.868 0.769
The number in parenthesis defines the ranking with the machine learning algorithm.

Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.

Table 9: Effectiveness of deep learning on different activation functions on the potato dataset

Machine learning methods Sensitivity Specificity Accuracy Recall F-measure McCC
DL_softmax 0.942 0.05 0.944 0.942 0.944 0.906
DL_Relu 0.983 0.012 0.983 0.984 0.984 0.973
DL_tanh (3) 0.989 0.009 0.989 0.989 0.989 0.981
DL_Hard_Sigmoidal 0.966 0.024 0.968 0.968 0.942 0.942
DL_Hard_tanh (1) 0.992 0.007 0.992 0.992 0.992 0.986
DL_rational_tanh (2) 0.99 0.008 0.991 0.99 0.99 0.984
DL_Sigmoidal 0.986 0.008 0.987 0.986 0.986 0.977
DL_Softplus (1) 0.992 0.007 0.992 0.992 0.992 0.986
DL_Softsign (1) 0.992 0.007 0.992 0.992 0.992 0.986

The number in parentheses defines the ranking with the machine learning algorithm.
Bold is used to high-light the ranking of top 3 classifiers among machine learning algorithms.

viewing position. After that, the classification is operated
using 10-fold cross-validation tactics [41].

8 Results and discussion

8.1 Results

Out of the four datasets, two datasets are balanced, namely
rice and pepper and the remaining two datasets are unba-
lanced, namely tomato and potato. Only one data set con-
sists of binary classes, i.e., pepper and the remaining three
datasets consist of multiclasses. As per the proposed model,
initially, all the datasets are pre-processed by removing the
duplicated and distorted images to build the image database

consisting of various classes for all four datasets individu-
ally. After pre-processing, the image filter called ACC (Auto
color correlogram) is applied to compute the color correlo-
gram. Evaluating the four datasets of binary and multiclass
with 15 machine learning algorithms and DL with nine dif-
ferent activation functions based on six parameters are men-
tioned in Tables 2-9. First, out of the 15 machine learning
algorithms, the top three algorithms are highlighted in bold
in Tables 2, 4, 6, and 8. Second, rankwise results of DL are
highlighted in Tables 3, 5, 7, and 9 with activation functions.
Third, the assessment of the results of the top machine
learning algorithm with DL is accomplished. The detailed
results of the four datasets are described as:
(a) Pepper Dataset
Out of all mentioned machine learning algo-
rithms mentioned in Table 2, the finest accuracy is
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Figure 5: Performance of sensitivity using deep learning with different activation functions on the four datasets.
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Figure 6: Performance of specificity using deep learning with different activation functions on the four datasets.
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Figure 7: Performance of accuracy using deep learning with different activation functions on the four datasets.
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Figure 8: Performance of recall using deep learning with different activation functions on the four datasets.
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Figure 9: Performance of F-measure using deep learning with different activation functions on four datasets.
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Figure 11: Comparison of machine and deep learning on pepper bell.
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Figure 12: Comparison of machine and deep learning on rice.
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Figure 13: Comparison of machine and deep learning on tomato.

achieved by Random Forest as 0.997, followed by SMO achieved 0.999 with sensitivity, recall and F-measure,
and LibSVM. The DL with a softsign function shows a highlighted in boldface in Table 3. Specificity is 0.002,
good performance with all the six parameters and MCC is 0.998 and accuracy is 0.994. Ranking wise, DL
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Figure 14: Comparison of machine and deep learning on potato.

with softsign followed by DL with hard_tanh and third
is DL with tanh.
Rice Dataset

As per the comparison made on the six parameter
measures, Randomforest and SMO perform the best
when compared with 15 machine learning algorithms as
shown in Table 4. The DL with Softmax outshines among
all the machine learning algorithms with 0.907 for both
sensitivity and recall in Table 5. The accuracy is 0.922, the
F-measure is 0.904 and MCC is 0.853, highlighted in bold-
face in Table 5. Rankingwise, second is DL with hardtanh.
Tomato Dataset

LibSVM outshines the other learning algorithms
as mentioned in Table 6. LibSVM achieved 0.982 for
sensitivity, accuracy, recall and F-measure. MCC is
0.976 and sensitivity is 0.007. The performance of
DL with softsign is like LibSVM, followed by SMO
and DL with tanh, as shown in Tables 6 and 7.
Potato Dataset

LibSVM outshines the other learning algorithms as
mentioned in Table 8. LibSVM achieved 0.993 for sensi-
tivity, accuracy, recall and F-measure. MCC is 0.988 and
sensitivity is 0.006. Ranking wise, LibSVM, followed by
DL with softsign same as DL with hardtanh same as DL
with softplus, DL with rational tanh and SMO.

(b)

()

(d

8.2 Discussion

Images of healthy and unhealthy (consisting of some dis-
eases) plants, as computer processes the images, neurons
present in the deep neural network try to adjust the weight
and bias to recognize fewer images wrongly depending on
the input, i.e., number of images with each dataset. This

Recall F-measure

needs a small change of weights (or/and bias) producing a

small change in the output. The DL cannot show this small

change as a behavior. It requires a perceptron, i.e., O or 1 to
produce a big change. So, there is a need for a function that
progressively changes with continuity from O to 1 [42]. Utilizing

the different activation functions at the output layer of the DL

to uncover the change in performances of six parameters.

In the case of a balanced number of classes, the DL
with softsign with 0.999 accuracy outshines in pepper
datasets (binary class) and DL with softmax performs
best with the rice dataset (multiclass) securing accuracy
of 0.922. Whereas in unbalanced classes, DL with softsign
performs best in the tomato dataset achieving an accu-
racy of 0.982 and DL with hard tanh, softplus and soft-
sign shows the same performance obtaining an accuracy
of 0.992 in the potato dataset. With DL, on observing the
difference in performances of various activation func-
tions with different parameter measures, the significant
difference can be viewed from the graphs shown in
Figures 5-10 on the four image datasets.

This proposed model helps to differentiate between
healthy and diseased leaves. The work has been done on
four datasets consisting of different numbers of images
with different numbers of classes. The experimental result
works better for binary classification in pepper bell rather
than multiclass in rice, tomato, and potato.

DL is advantageous over 15 machine learning algo-
rithms due to the following reasons:

(a) DL comes up with the expertise to recognize them-
selves and produce output that is not constrained to
an input supplied.

(b) Concerning the case of large data size, the implemen-
tation of DL is quite good and makes up the highest
possible consumption of unstructured information.
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(c) DL has high-end infrastructure for instructing large
data in a reasonable time.

(d) The performance of DL is stronger even in issues of
complex dilemmas.

The effectiveness of DL is extremely focused on the
activation function; it performs as a statistical “gate”
sandwiched in the middle of an input feeding the pre-
sent neuron as well as its output moving on to the next
layer. It could be as straightforward as a step function
that transforms the neuron output off and on, varying
upon a threshold or law. It plays a major role due to the
amalgamation of the arbitrary linear model. When it
comes to the design solution of complex problems, the
use of different activation functions can enhance the
performance.

8.3 Experimental comparison of machine
learning and DL

On comparing the machine learning methods with DL,
the DL key benefits over other machine learning algo-
rithms are its ability to accomplish features engineering
on its own. DL will scan the information and data to seek
features that associate and merge them to facilitate spee-
dier learning without being explicitly stated to do so. AF
establishes the output of a DL, its computational effi-
ciency and the accuracy of training a model. Utilizing
the nonlinear AFs that can facilitate the model to discover
complex data, handle and learn providing correct predic-
tions. Using different AFs can result in different results.
Out of four datasets, DL with softsign has gained 0.99
sensitivity, F-measure and recall in pepper bell. The accu-
racy achieved is 0.922 in rice datasets with DL softmax.
There is an increase of 4.5% in accuracy achieved by DL
than the ML algorithm named SMO. But, the performance
of LibSVM and SMO is outstanding in the case of potato
and tomato datasets with respect to all the parameters. The
details are shown by graphs in Figures 11-14.

9 Conclusions

This article mainly focuses on extracting data from images
using auto-color correlogram filter and classifying the dis-
eases in plants. The model highlights the importance of
image pre-processing and extracts information that helps
in the classification task, which can then support disease

DE GRUYTER

detection in plants. DL helps in easy learning of difficult
complex patterns by making use of the unseen layers
between inputs and outputs. It is required to represent
mediator representations of the data that other machine
learning methods cannot easily do. More data are needed
to train in comparison to other learning methods by DL as
it has more parameters for estimation. This proposed
model will boost the performance and recognize the com-
plex patterns in various plant datasets.

Experimental results show that the proposed model
has achieved an accuracy of 99.4% with binary class and
99.2% with multiclass.

Furthermore, future work will involve increasing the
performance of DL in the detection of plant diseases
having a multiclass subcategory. As the severity of the
disease is supposed to be changing with time, so the DL
should be improved to enhance detection and classifica-
tion of the diseases throughout the whole development
cycle of plant leaves.
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