Open Comput. Sci. 2021; 11:90-98

DE GRUYTER

Research Article

Peter Sedlacek*, Marek Kvet, and Monika Vaclavkova

Development of FRIMAN -

Supporting Tool for

Object Oriented Programming Teaching

https://doi.org/10.1515/comp-2020-0117
Received Mar 30, 2020; accepted May 04, 2020

Abstract: The main goal of this contribution is to present
the current developmental state of FRIMAN - the graph-
ical development environment designed to support the
teaching process of the object-oriented paradigm. FRIMAN
project has two main purposes: 1. simplifying the under-
standing of the basics of the object-oriented programming
for JAVA language beginners, 2. teaching students of ap-
plied informatics to collaborate in bigger project develop-
ment. Therefore, an application called FRIMAN has been
developed at the Faculty of Management Science and Infor-
matics at the University of Zilina. This project is developed
by students of Master degrees under the leaderships of ex-
perienced software developers. The suggested system con-
sists of several modules. In this paper, we focus on the de-
scription of selected modules and their current functional-
ity as well as description of future plans for this project and
brief description of FRIMAN development process. Atten-
tion is paid to a module for class management and a graph-
ical code editor, which enables the creation of method bod-
ies using flow diagrams without the necessity of program-
ming language syntax knowledge. Based on good evalu-
ation by the development team preparing changes in the
high school education process, the current application is
planned to be applied in practice.

Keywords: Informatics teaching process, software tool, ob-
ject programming, class management, graphical editor

*Corresponding Author: Peter Sedlacek: University of Zilina,
Faculty of Management Science and Informatics, Univerzitna 8215/1,
01026 Zilina, Slovakia; Email: peter.sedlacek@fri.uniza.sk

Marek Kvet: University of Zilina, Faculty of Management Science
and Informatics, Univerzitna 8215/1, 01026 Zilina, Slovakia; Email:
marek.kvet@fri.uniza.sk

Monika Vaclavkova: University of Zilina, Faculty of Management
Science and Informatics, Univerzitna 8215/1, 01026 Zilina, Slovakia;
Email: monika.vaclavkova@fri.uniza.sk

1 Introduction

The very rapid development in the field of information
technologies has become an important part of human lives.
That is why many companies are seeking for young profes-
sionals, who are able to adapt to new or various changing
trends very quickly. One of the most affected subjects of
these increasing changes are also the universities, which
provide education of future professionals.

Graduates of any technically oriented university must
get professional education in their particular study field.
First, they need practical skills supported by excellent the-
oretical knowledge. The skills facilitate entry into employ-
ment while theoretical knowledge makes it easier to de-
velop new unique solutions to problems that can arise in
practice. Students of information technologies and man-
agement science are not an exception.

Faculty of Management Science and Informatics of
the University of Zilina has divided the education process
into three study programs each with a focus on different
parts of information technologies. One of these study pro-
grams is management centered on information technolo-
gies. Continuous effort is made to help students of this
program to either develop or improve their understand-
ing and knowledge of modern information technologies.
The result of this effort is an ability of future managers
to use the modern information technologies as a competi-
tion tool for creating a positive and efficient organizational
change or bringing about new solutions based on informa-
tion technologies. But despite the basic knowledge of vari-
ous operating systems performance and common office ap-
plications, our students should also learn the basics of ad-
vanced information systems engineering [1].

Students of the management science at our faculty
have to complete several subjects aimed at software devel-
opment. Many of these students have either very weak or
even no experience with any kind of programming. There-
fore, it is very hard for them to understand the principles of
different programming strategies like object-oriented pro-
gramming [2, 3].

Object-oriented programming (OOP) paradigm is one
of most commonly used paradigms these days and every

3 Open Access. © 2021 P. Sedlacek et al., published by De Gruyter. ‘ (cc) This work is licensed under the Creative Commons Attribution

4.0 License

https://doi.org/10.1515/comp-2020-0117

DE GRUYTER

student in our faculty has to learn it regardless of the study
program. In OOP, any problem is solved via so-called "ob-
jects", i.e. logical entities with their own data and func-
tions and via communication between these objects. These
functions, called methods are often used to modify the
data fields of the object which they are associated with.
For many beginners in software engineering, even the ba-
sic logic of a simple program based on OOP principles con-
stitutes a challenging task, because many applications are
designed by making them out of objects that interact with
one another [3-5], which differs from the style of proce-
dural programming [6], which some students are familiar
with.

Another big issue may follow from the correct syn-
tax, i.e. when, where and why to write a semicolon or any
other specific symbol. Such problems often occur when
changing current programming language for a different
one. Therefore, we have been searching for a suitable way
of making the education process of the programming ba-
sics easier mainly for the beginners.

The FRIMAN project was created as an answer to the
fore-mentioned problems - i.e. a tool to simplify process
of learning OOP paradigm in Java language at our fac-
ulty. This project was originally introduced in [7] and re-
ported in [8, 9] and it also serves another purpose. In or-
der to be an expert in Information Technology, it is not
sufficient to have knowledge, it is also necessary to have
experiences within this field. Therefore our master degree
students have to gain experience in the development of
bigger projects and in collaboration with other developers.
For this reason, the FRIMAN project is designed and devel-
oped by students of master degree within our leadership
[8].

The main research topic and the contribution of the pa-
per is to present the current development state of FRIMAN
system and its particular components.

The remaining part of this paper is organized in the
following way. The next section provides the readers with
the basic characteristics of the FRIMAN project and it de-
scribes the architecture of the suggested system. The third
section is devoted to the explanation of the Class viewer
module and the fourth section summarizes the features of
the Code editor module. The fifth and sixth sections de-
scribe parts of this project that have arisen during the con-
tinuous development and the seventh, and penultimate
section briefly describes the work management and orga-
nization in this project. Finally, the last section contains
the obtained results and future development directions.

Development of FRIMAN — Supporting Tool for Object Oriented Programming Teaching = 91

2 The basic characteristics of
FRIMAN

The first aspect needed to be taken into account is the ex-
pected target group of users of the developed system and
its requested primary functions. At the same time, it is suf-
ficient to analyze existing software solutions in this area.

Currently, there are many environments, which offer
the possibility of simple software projects development.
The comparison of selected suitable solutions has led to
the conclusion that the suggested system FRIMAN should
find such ways of interaction, which would be easy to be
understood by various groups of users, mainly beginners
in object-oriented programming. With this software tool
we want to provide the users with a simple and interactive
style of communication and control.

An example of a suitable existing system could be the
well-known environment Blue]J [10]. Currently, it is being
used in our teaching courses for the beginners. In contrast
with professional environments like IntelliJ [11] or Net-
Beans [12], Blue] offers a simpler interface for classes and
their instances management via a graphical tool for object
inspecting. This feature enables the users to thoroughly
understand the basic principles of the object-oriented pro-
gramming.

The main difference between the existing solutions
and the suggested developed tool consists in usage of
graphical components for creating the algorithms without
the necessity of the knowledge of the specific program-
ming language syntax. Instead of writing the code, various
graphical components should be used by the program de-
velopers to create their application. The resulting code will
be generated from the diagram itself afterwards. The sug-
gested environment should check the correctness of the di-
agram and allow the users to debug their resulting algo-
rithms.

Based on the mentioned primary features and other
supplementary system requirements, we have suggested
the following architecture of the FRIMAN software tool.
The suggested system consists of five modules:

— Editor,

— Debugger,

— Builder,

— Class viewer,
— Core.

The first module is the Editor. It was developed for cre-
ation of individual methods and constructor bodies mak-
ing use of common flowcharts, which can be made in an

92 —— P.Sedlaceketal.

interactive way. This module will be explained in detail in
the next section.

Algorithms made in the Editor module are automat-
ically compiled to the JAVA language using the module
Builder.

The next module is a Class viewer. Its main task is to
provide creating classes and their management and also
making instances of these classes. This module will be also
described in a separate section.

The Debugger module checks possible logical errors in
the proposed algorithms. It processes all used graphical
components in the resulting flowchart and based on the
corresponding programming code, it detects source of er-
rors. This module is currently being implemented.

Finally, the Core module connects all satellite mod-
ules and provides proper performance of the whole appli-
cation. Obviously, the FRIMAN software architecture was
designed with regard to future system enlargements.

3 The Class Viewer module

The Class Viewer module was suggested for managing
classes and their instances. With respect to future users’
abilities and experience, we are looking for the sim-
plest and the most understandable way, in which the
users could communicate with the application and create
classes, their instances and processing various operations
with them. We were inspired by the commonly known JAVA
development environment Blue]J [10], which allows using
the inspector function as a specific tool.

Blue] is currently used as the main teaching tool for
beginners in our faculty. As we have mostly positive expe-
rience with its usage, the original idea of FRIMAN project
was to extend Blue] with new features including creat-
ing method bodies using Activity Diagrams and generat-
ing source code from them. Nevertheless, the research has
shown, that thanks to the complexity of other parts of
FRIMAN, it would be easier to implement class manage-
ment similar to the one provided by Blue] rather than to
extend Blue] with our new features. Although the first ef-
fort that was needed seems larger, this decision also brings
some advantages, specifically that we were free in choos-
ing technologies and we could adjust the class viewer to
be uniform with other modules.

The basic functions, which should be implemented
first in our module for effective class management, can be
summarized as follows:

— Class management,
- Creating object instances,

DE GRUYTER

— Inspecting inner values of attributes in instances,

— Calling methods and sending messages to particular
instances and their ancestors,

— Passing the instances as parameters.

The use-case diagram of required functionalities of
the Class Viewer module is depicted in Figure 1.

FRIMAN Class Explorer

Passing object as.
paramater

-,

1 -

.
Explore atributes

wextends =~ _

Call method

User }«Extznd»
\ ﬁl
Figure 1: A use case diagram for the Class Viewer module

Class Management

\
1
i

-
-

<=~ cextends
Create instance

Based on specified system requirements, the module
was developed and implemented in such a way that allows
its users to manipulate classes by their own requirements.
It provides also functionality to create new instances, mod-
ify them and delete the created objects. The instances can
be also used as parameters of messages sent to other in-
stances or as other objects constructor parameters.

Since the FRIMAN software development tool has
been implemented in JAVA programming language, one of
the very important tools used in the Class Viewer module
implementation was the Reflection API.

Reflection is a feature in the Java programming lan-
guage that allows an executing Java application to exam-
ine or “introspect” upon itself and manipulate internal
properties of the program. It is possible to get the names
of all class fields and to display them. The ability to ex-
amine and manipulate a Java class from within itself may
not sound like very much, but in other programming lan-
guages this feature simply does not exist. For example,
there is no way in a Pascal or C program to obtain infor-
mation about the functions defined within that program
[13, 14].

Reflection APIis symmetric, that means that if we hold
an object of a class, we can analyze its inner parts and
equally, if we have one of its inner parts, we are able to find
out, which class declared this part. This way, we can move
in both directions from a class to a method, to a parameter
of a class, etc. One of the interesting applications of this

DE GRUYTER

technology is to find out the most of relative dependencies
between a given class and the rest of the system [15].

The Class Viewer module also cooperates with a file
system. All configuration files for classes created in a con-
crete project developed by our application are saved in a
suggested file system. The module creates class instances
and these objects will be saved in operation memory. In-
stances enable us to call partial operations. The process
can be formally described by the following activity dia-
gram, which is depicted in Figure 2.

act Class initializatinn/

o --

Load files from root
address

(C reate class instances)
Graphical representation
of instances

End

Figure 2: An activity diagram of the class initialization process

The first step of the class initialization process is read-
ing the necessary configuration files from particular folder
of the associated file system.

Based on loaded configuration settings, the next step
consists of creating the class instances.

Finally, all created objects — class instances are visual-
ized in a specific graphical environment.

Inner object states can be inspected as well as partic-
ular object attributes of any instances. Furthermore, the
module enables to call any method not only of the asso-
ciated object itself, but also any inherited method. Specif-
ically, when a method return value is represented by an
object, the system is able to create and save an instance of
this object. This process is reported in Figure 3.

The first step of the method execution process is call-
ing the method itself. Thus, the code of the method is exe-
cuted. If the execution of the method finishes by returning

Development of FRIMAN - Supporting Tool for Object Oriented Programming Teaching = 93

act Method call

Start

Method call
Method execution

End Display return value

Explore ohject

Create instance

Figure 3: An activity diagram of the method execution process

FRIMAN

fesing a connctin,

Figure 4: The main form of the FRIMAN system in the Class Viewer
mode

any value or an object, then the return value is displayed
in a separate graphical element.

If the return value was an object, the module enables
to inspect inner parts of this object. This functionality is
similar to those, which many Blue] users are familiar with.
Another possibility consists in using the return value as a
new object instance to a specific graphical environment for
further processing.

Except calling member methods, the user is able to ex-
plore selected instance and view values of its fields, as can
be seen in Figure 5.

94 —— P. Sedlaceketal.

Explore instance x

O1: Order

Person Person

ArrayList Products

Close

Figure 5: Example of instance exploration

The following Figure 4 depicts the main form of the
resulting application in the Class Viewer mode. Obviously,
the view mode can be easily changed to the Editor mode,
which is reported in Section IV.

4 The Editor module

The Editor module was suggested and incorporated into
the FRIMAN application because of the necessity of cre-
ating and implementing methods and constructor bodies.
Our vision was to use activity diagrams for this purpose
and to make the process of making the algorithms interac-
tive.

During the development of mentioned module, we
have considered future system users, mainly students, be-
ginners. The interactive way of programming is assumed
to simplify the learning process of the object programming
paradigm and the basics of creating algorithms at the same
time. We believe that they will be able to understand the
process of creating algorithms inside object methods using
this simpler form without the necessity of programming
language syntax knowledge.

The main requirements of this module can be seen
in Figure 6. These requirements are not specific for OOP
paradigm. Therefore the whole Editor module is indepen-
dent on OOP and can also be easily used in other program-
ming paradigms. In the context of the whole application is
the Editor module focused on a specific paradigm. In case
the whole application will manage a project with proce-
dural programming paradigm, the editor will be used the
same way as with any other paradigm.

Although Editor itself is independent on programming
paradigm, each one has specific requirements for editor. In
case of OOP, the activity diagram should offer the possibil-
ity to use attributes present in current class instance, key-

DE GRUYTER

Editor Module

'
'
i
savelLoad '
(of Activity diagram '
1 <<extend=>
[P Use of new
components
=<exiend>>
» Create/Modify N ___o ____ Adding and removing
'\ of Activity diagram of components

1
i
i
'
User [
i
i
i
'

<<extend>>
=== Moving of components
™ Source code preview

>o

Figure 6: A use case diagram for the Editor module

word ’this’, call of methods of this object as well as other
methods, etc. The current version of the Editor module al-
lows usage of the above mentioned: the source code is gen-
erated correctly and also correctly compiled. However it is
not currently implemented in the most intuitive way, and
users are not lead by Editor module to use these possibili-
ties OOP. This requirement is planned for the next version
of FRIMAN and hopefully will be ready when the applica-
tion will be released.

Based on use cases described in Figure 6, require-
ments have been divided into the following tasks:

— Loading the library of graphical components, which
are necessary for creating activity diagrams.

— Loading and displaying activity diagrams from a file.

— Creating the activity diagram using offered graphi-
cal components.

— Possibility of editing existing activity diagrams.

— Modification of text parts and scaling the graphical
components.

— Generating the source code from the activity dia-
gram to the JAVA programming language.

— Saving the final version of the activity diagram into
a file.

The Editor module has been suggested and then im-
plemented in such a way that it enables intuitive usage
by its users. The module allows for the creation of activ-
ity diagrams making use of the set of pre-defined graphi-
cal components. These graphical elements are modifiable
by the needs of users. The provided set of graphical ele-
ments offers all basic programming schemes (input, out-
put, assignment, branching, cycles, etc.). Example of this

DE GRUYTER

diagram can be seen in Figure 7. Available graphical ele-
ments can be seen in Figure 8.

« true false -

Figure 7: Example of an activity diagram in the Editor module of
FRIMAN

: Assign tool

. Begin tool

I i I
Declaration too

L.

—a

Do-while tool

<
o Finish tool

0 If tool

Input toal

D Output tool

While tool

—|oin tool
Return tool
Break_Continue tool

Customn tool

Figure 8: Toolbar for Activity diagram

Development of FRIMAN - Supporting Tool for Object Oriented Programming Teaching = 95

int x;
X =3
Scanner scanner = new Scanner{System.in);
int v = scanner.nextint();
if(x < y)}{
return x;
}

glse {
return vy,

}

Figure 9: Example of a source code generated from the activity
diagram

It is also possible to edit the text information inside
the graphical components according to the user’s concepts
and requests.

One activity diagram can consist of many different
graphical components, which are joined by connections.
The connection provides proper traceability between indi-
vidual parts of the activity diagram. Any graphical com-
ponent may be used multiple times according to the cre-
ated algorithm. Furthermore, they can be hierarchically in-
serted into each other. If the connection between two parts
is no longer needed, the module enables functionality to
remove it.

During the process of drawing the diagram, the user is
offered to switch to such a mode, in which the source code
in JAVA programming language reflecting the activity dia-
gram is being generated (Figure 9). Mainly the advanced
FRIMAN system users will appreciate this functionality.

The set of created graphical components is sufficient
to create any algorithm. The components have been cho-
sen in such a way that the basics of any programming lan-
guage are covered by this set. Thus, this functionality en-
ables future extension of the existing system by the possi-
bility of translating the activity diagram to different pro-
gramming languages. The current version supports only
the JAVA language.

When a user switches the code tab, the activity dia-
gram is transformed into the source code in JAVA language.
Simultaneously, the generated code is compiled by a JAVA
compiler, which is a part of another module — Builder,
which is currently being developed.

If there are any mistakes or errors, they are detected.
The user should make corrections in an interactive way, e.g.
in the graphical mode. In other words, it is not necessary to
edit the programming source code in JAVA. When there are
any changes performed in the activity diagram, the source
code is generated and compiled again. This process can be
repeated until obtaining the right result.

96 —— P.Sedlaceketal.

The example of a generated source code is depicted in
Figure 9.

4.1 Source code generating

The main issue the editor module has to solve is how the
activity diagram should be transformed into the source
code. There are many ways how this can be handled. In
our case we chose the simplest one. Each element that can
be used represents a specific statement of code. For exam-
ple, while element is generated in following way: firstly,
keyword while is generated that is followed by logic con-
dition. Next all connected elements are generated to the
end point of while element (yellow square in Figure 8). All
this is performed with language specific format, i.e. where
language expects round brackets, round brackets are gen-
erated etc. Similarly, each element has its own way how it
is to be generated. In other words, each element is respon-
sible for its own generating into source code. Except that,
each element has reference to element connected to it.

Thanks to this responsibilities distribution, we can
start generating our source code from begin tool. After
begin tool is generated, generating for its followers are
called. This process continues to the point, where the
whole method is generated. Please note, that this transfor-
mation is possible only in case, activity diagram does not
contain any cyclic connected elements. Therefore some
constraints for connection have to be implemented. In our
tool we decide, each element can have exactly one parent
element, i.e. element cannot have more than 1 in-going
connection. Begin tool cannot have any in-going connec-
tion and finish element cannot have any outgoing connec-
tion. Source code is always generated only fro m begin tool.
Thanks to these facts, it is not possible to cyclic connect el-
ements and our transformation is working.

The described process is only used for generating
source code of method. In order to run compiler and build
whole project other parts have to be generated. For these
purposes we decide to implement some business objects,
that will hold information about various parts of project,
the user is working on. Please note, that this is no longer
the responsibility of editor module, but an explanation
of this is also required to understand the whole process
of generating source code. These business objects include
package descriptors, class descriptors etc. Package de-
scriptor is generated as folder in file system. Each package
contains references to its classes. Class descriptor contains
full information about one class, i.e. access modifier, im-
plementing interfaces, fields etc. All of this information is
also generated into corresponding file with exact syntax of

DE GRUYTER

java language. Class descriptor also contains information
about its method descriptors. Method descriptor holds in-
formation as method access modifier, return type etc. Ex-
cept that method descriptor also holds its activity diagram.
When generating, method descriptor generates firstly its
head and then calls generating of source code from activ-
ity diagram. This is also included when class is generat-
ing itself. One class holds many methods. If one element
is changed, the whole class and all its components have to
be generated again. This leads to a challenge. How to opti-
mize this process and generate only some parts instead of
a whole file.

5 Automatic updates

As the development of FRIMAN application will continue
after release. Therefore a new requirement arises. It is a
possibility to update an application. This can be handled
in different ways:

— allow users to manually download and reinstall
whole application,

— allow users to manually download patch and update
application using it,

— allow users to update application using auto-update
feature, i.e. application will handle everything, user
only has to agree to update.

From these options we decide to pick the last one as it is
most comfortable for users although it is most difficult to
implement.

Implementing this requirement consists of several
steps. The first one is implementing support for version-
ing of application as well as individual libraries. This will
be useful also in further development processes because it
will be possible to track bugs and features to a specific ver-
sion of application. Versioning application will also allow
us to manage changelogs and to plan development process
better.

The second step is implementing server, where appli-
cation will look for updates. Server has to provide infor-
mation such as version of application and libraries — for
FRIMAN application to be able to determine if update is
necessary or not, hash of application and libraries - to en-
sure integrity of downloaded files and server has to also
provide files for application to download.

And in the final step, all previously mentioned require-
ments have to be implemented also in application together
the with possibility to update and restart itself if required.

DE GRUYTER

Currently only the first step has been implemented, i.e.
support for versioning. This information can be obtained
from main ribbon — help — about and can be seen in Fig-
ure 10.

About x

o

Message

Version: 0.8

Figure 10: Dialog showing actual version of FRIMAN

6 FRIMAN web

In the previous section the second step to achieve au-
tomatic updates was mentioned as implementing server.
Howeverc we decide to take it more complex and imple-
ment also webserver providing all the information about
FRIMAN project. This web will provide the following:

— possibility to download FRIMAN,

— contact to developers (in order to report bugs, ideas
for new features etc.),

— tutorials and demos

FRIMAN web is implemented using Laravel frame-
work [16]. In current development phase this web provides
possibility to download FRIMAN and contact authors. Cur-
rently web is available only in Slovak language. Of course,
support for other languages is planned. Other possibili-
ties, such as demos and tutorials will be implemented in
next phase. This web will be deployed and available on
site “www.friman.fri.uniza.sk” when this phase will be fin-
ished. Screenshot of current state can be seen in Figure 11.

od Stishnit ¥ Tuorcovia Kontakt Prihlisenic

Stiahnt aktudlnu verziu

Verzia: 201

Figure 11: FRIMAN web

Development of FRIMAN - Supporting Tool for Object Oriented Programming Teaching = 97

7 Management of development
process

As was already mentioned before in this paper and also
in paper [8], development of FRIMAN project is performed
within a project course by a team of students of master de-
gree in our faculty. Working on a project in this way brings
several pros — mainly for students as they are forced to un-
derstand source code of other programmers, but, for the
whole project there are also cons - the whole development
process is slower then if the team was permanent. The
number of students in one team varies from 2 to 8 people
and each of these students is working 3 semesters on this
project and during this time he has to:

— Study source code written by other students - for stu-
dent to be able to implement new features and fix
bugs, he have to understand already written source
code.

— Collaborate with other developers working on this
project — student is not working on project alone, so
he have to discuss problems and solution with oth-
ers, merge code with others etc.

— Work on assigned tasks — each student has assigned
several tasks in one moment. He has to understand
them and implement requirements without break-
ing other parts of FRIMAN

— Hand over the project to others — in order for the next
team of students to be able to continue working on
FRIMAN, it is necessary for the current team of stu-
dents to explain current state, tasks etc. to the new
one.

All the above mentioned will be also useful for stu-
dents. In order to ensure and to help students to gain these
experience, FRIMAN project is led by three experienced
developers. They ensure the project is heading the way it
should be heading, they are preparing tasks and managing
work.

Collaboration on this project is performed in many
ways:

— By weekly meetings of the whole team. In these meet-
ings, each student presents what has been done,
consults the problems with others and gets new
tasks.

— Using GitLab [17] service to manage source code and
project lifecycle.

- Using YouTrack [18] issue tracking software to man-
age tasks, plan work for development cycles etc.

www.friman.fri.uniza.sk

98 —— P.Sedlaceketal.

In the future, we would like to extend our team by sev-
eral testers. Currently, FRIMAN is tested only by the devel-
opers and leaders, but it would be helpful to delegate this
work to testers and so let the developers focus more on
other tasks.

8 Conclusion

This paper was focused on describing the current develop-
ment state of FRIMAN application. This project originated
at the Faculty of Management Science and Informatics at
the University of Zilina to simplify learning of program-
ming for non-programmers and for programmers to gain
experience in developing a bigger project. The system con-
sists of several cooperating modules. In this paper, the cur-
rent versions of the Class Viewer and the Editor modules
were presented as well as a description of future plans for
this project. Class Viewer module allows users to create
class instances and call methods using Java reflection API.
Editor module provides a possibility of creating method
bodies using activity diagrams instead of writing the code.

During the development process, many different chal-
lenges for future work on the system have occurred. First,
we need to finalize the implementation of the missing mod-
ules. Then, the cooperation among modules may need to
be resolved. The biggest challenge from our point of view
is the Debugger module, because it should be done also
in a graphical way. Another research topic that needs to
be solved in the future work consists in optimization of
the code generating process as mentioned in previous sec-
tions.

Currently, several new requirements have arisen dur-
ing the development process. Therefore, features to auto-
matic updates and a FRIMAN web server were introduced.

This paper also briefly describes management of work
on FRIMAN. This project is developed by master degree
students within the project course. As students are work-
ing on this project only for a limited time and new stu-
dents come every year, it is necessary to organise work on
FRIMAN in such a way, which enables the project to pro-
ceed.

Based on reported results we can conclude that the
FRIMAN system represents a very useful tool for beginners
in any object programming subjects.

DE GRUYTER

References

[1] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fun-
damental Algorithms, 3rd Edition. Addison-Wesley Professional,
jul1997.

[2] B. Stroustrup. What is object-oriented programming? IEEE Soft-
ware, 5(3):10-20, May 1988.

[3] Ole-Johan Dahl. The birth of object orientation: the simula lan-
guages. In From Object-Orientation to Formal Methods, pages
15-25. Springer Berlin Heidelberg, 2004.

[4] Axel Schreiner. Object-Oriented Programming With ANSI-C. Axel
T. Schreiner / Lulu, sep 2011.

[5] Eugene Kindler and Ivan Krivy. Object-oriented simulation of
systems with sophisticated control. International Journal of
General Systems, 40(3):313-343, April 2011.

[6] Howell Jordan, Goetz Botterweck, John Noll, Andrew Butterfield,
and Rem Collier. A feature model of actor, agent, functional,
object, and procedural programming languages. Science of Com-
puter Programming, 98:120-139, February 2015.

[71 E.Parso etal. Friman. Central European Research Journal, 2:70-
76, 2016.

[8] Peter Sedlacek and Monika Vaclavkova. Tool for supporting
education process in information technology. In 2018 16th Inter-
national Conference on Emerging elLearning Technologies and
Applications (ICETA). IEEE, November 2018.

[9] Jozef Kostolny and Monika Vaclavkova. Learning system friman.
In ICTERI, 2017.

[10] Bluej. http://www.bluej.org/. [Accessed 22-0ct-2019].

[11] Intellijidea: The javaide for professional developers by jetbrains.

https://www.jetbrains.com/idea/. [Accessed: 22-0Oct-2019].

Apache netbeans. https://netbeans.org/. [Accessed: 22-Oct-

2019].

Using java reflection. https://www.oracle.com/technetwork/artic

les/java/javareflection-1536171.html. [Accessed: 22-Oct-2019].

J. Jenkov. Java reflection tutorial. http://tutorials.jenkov.com/

java-reflection/index.html. [Accessed: 22-Oct-2019].

[15] C.Mcmanis and C. Mcmanis. Take an in-depth look at the java re-

flection api. https://www.javaworld.com/article/2077015/take-

an-in-depth-look-at-the-java-reflection-api.html. [Accessed: 22-

0Oct-2019].

The php framework for web artisans. https://laravel.com. [Ac-

cessed: 27-Feb-2020].

Gitlab. https://about.gitlab.com. [Accessed: 28-Feb-2020].

Youtrack. https://www.jetbrains.com/youtrack/. [Accessed:

28-Feb-2020].

[12]

[13]

[14]

[16]

[17]
[18]

http://www.bluej.org/
https://www.jetbrains.com/idea/
https://netbeans.org/
https://www.oracle.com/technetwork/articles/java/javareflection-1536171.html
https://www.oracle.com/technetwork/articles/java/javareflection-1536171.html
http://tutorials.jenkov.com/java-reflection/index.html
http://tutorials.jenkov.com/java-reflection/index.html
https://www.javaworld.com/article/2077015/take-an-in-depth-look-at-the-java-reflection-api.html
https://www.javaworld.com/article/2077015/take-an-in-depth-look-at-the-java-reflection-api.html
https://laravel.com
https://about.gitlab.com
https://www.jetbrains.com/youtrack/

	1 Introduction
	2 The basic characteristics of FRIMAN
	3 The Class Viewer module
	4 The Editor module
	4.1 Source code generating

	5 Automatic updates
	6 FRIMAN web
	7 Management of development process
	8 Conclusion

