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Abstract: Nature inspired swarm based meta-heuristic op-
timization technique is getting considerable attention and
established to be very competitive with evolution based
and physical based algorithms. This paper proposes a
novel Buyer Inspired Meta-heuristic optimization Algo-
rithm (BIMA) inspired form the social behaviour of human
being in searching and bargaining for products. In BIMA,
exploration and exploitation are achieved through shop to
shop hoping and bargaining for products to be purchased
based on cost, quality of the product, choice and distance
to the shop. Comprehensive simulations are performed on
23 standard mathematical and CEC2017 benchmark func-
tions and 3 engineering problems. An exhaustive compar-
ative analysis with other algorithms is done by perform-
ing 30 independent runs and comparing the mean, stan-
dard deviation aswell as by performing statistical test. The
results showed significant improvement in terms of opti-
mum value, convergence speed, and is also statistically
more significant in comparison tomost of the reportedpop-
ular algorithms.

Keywords: Nature Inspired; Optimization Algorithm;
Swarm Intelligence

1 Introduction
Optimization has become an integral part of scientific and
engineering problems in order tomaximize the output per-
formance of a given system under a set of defined con-
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straints. As compared to conventional deterministic ap-
proach, swarm-based stochastic optimization approach
has found significant attention due to simplicity, less com-
plexity, speed and robustness in finding optimal solutions
of a given function in various applications [1, 2]. Recently
developed swarm-based optimization technique based on
the behavior of social agents like ants, bees, fish, birds
etc. are gaining attention among the research community.
The foundation of popular meta-heuristic optimization al-
gorithms was created in 1995 when Eberhart and Kennedy
developed Particle Swarm Optimization (PSO) [3], a novel
solution for solving complex problems inspired from the
behavior of a flock of birds. PSO was found very effec-
tive in solving single-objective as well as multi-objective
constraint optimization problems in various engineering
fields [4–6] and [7]. Subsequently in 2004, Ant Colony
optimization [8] was developed, which was inspired by
the natural behavior of ants and was found very effective
while searching for optimal solutions in structure-based
problems. In 2012, inspired by the social behavior of bee
colonies, Akay and Karaboga proposed an optimization
technique which is found to be very effective in solving
constraint engineering design problems [9]. Accordingly,
based on the social behavior of animals, authors have pro-
posed effective, less complex, robust optimization tech-
niques such as Bat algorithm [10], Firefly algorithm [11],
Whale Optimization Algorithm (WOA) [12], Grey Wolf op-
timization [13], Ageist Spider Monkey optimization [14],
Moth Search optimization [15], Moth Flame optimization
algorithm [16], ant Lion optimizer [17], Salp Swarm algo-
rithm (SSA) [18] and Dragonfly algorithm [19], which are
some of the widespread swarm-based meta-heuristic opti-
mization algorithms in literature.

On the other hand, a hybrid optimization algorithm
aims to minimize complexity, improve stability, enhance
convergence speed and provide better accuracy in com-
parison to standard algorithms [20]. Any hybrid optimiza-
tion technique thus developed has contributed to notable
improvement in the performance measuring matrices of
the parent algorithm. The dynamic, self-adaptive and di-
verse learning strategy of the swarm agent makes the al-
gorithmmore robust to deal with diverse situations. There
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is a lot of scope for improving the exploration and ex-
ploitation rate with the key tools of newly developed op-
timization techniques. The PSO, due to its lower complex-
ity and high exploration rate, has become a very popu-
lar optimization algorithm among researchers for various
applications. In [21], author proposed an improved ver-
sion of PSO algorithmnamely fitness-basedmulti-role PSO
(FMPSO),where the particle velocity parameter of the algo-
rithm is updated through subsocial-learning component.
To enhance the diversity in the swarm, in [22], authors
used logisticmap-based initialization, sigmoid-like inertia
weight and wavelet mutation to the worst particle in the
swarm in order to avoid premature saturation. The effec-
tive performance of any optimization algorithm, including
PSO, largely depends on the selection of system parame-
ters. In [23], authors proposed a Fuzzy Self-Tuning based
PSO (FST-PSO) algorithm where the algorithm itself finds
the best optimal parameter setting for the global best so-
lution. In ALC-PSO [24], an aging leading and comparison
parameter was introduced to the parent PSO technique in
such a way that when the particles are getting aged, their
leading capacity is checked by generating new challenger
and comparing. Through improving the inertial weight of
PSO, an adaptive weighted PSO is proposed in [25] and
found to be best suited for real time engineering problems.
Combining the features of an artificial bee colony and PSO,
a hybrid technique namely PS-ABC [26] was proposed and
the result shows its superiority to PSO in terms of speed
and convergence.

In an evolutionary algorithm, Differential Evolution
(DE) [27] is mostly preferred for solving problems with real
valued parameters and since finding an optimal hyper-
plane is a hard computing task, this metaheuristic (MH) is
chosen to conduct an intelligent search of a near-optimal
solution. DE is chosen for its significant features like high
exploration rate, fast convergence and lower complexity.
DE-based evolutionary algorithm with affinity propaga-
tion clustering is proposed in [28], where authors pro-
posed a dual strategy mutation scheme which efficiently
balances the exploration and exploitation rates to avoid
local optima.

To enhance the performance of the algorithm, the di-
versification of the population plays an important role.
Considering this dual population based framework, a bee
colony algorithm (BCA) is proposed in [29], where one set
of population is responsible for exploitation and another
for exploration through the diversification of the popula-
tion. In [30], authors described a novel algorithm to im-
prove the exploitation capability of the BCA, by invoking
Force model which is inspired by the Gravity model. By in-
corporatingmutation and crossover strategy into the artifi-

cial bee colony, algorithm variables are updated self adap-
tively each time for improving the search mechanism [31].
Artificial BCA is further improvised in [32] with the innova-
tive search mechanism for finding out the global optimal
solution in complex problems.

Finding the optimal solution inmulti-modal functions
where many local optima are present is treated as a con-
siderably difficult job formeta-heuristic optimization algo-
rithms [33]. To avoid getting trapped in the local optima,
there should be proper trade-off between exploration and
exploitation of the algorithm. High population diversity
basedPSOalgorithmwith the inclusionof a learningmech-
anism and local search strategy is proposed in [34], where
each particle is inspired and learning from different neigh-
borhood particles rather than traditional personal best
only. Further to improve the population diversity of the
swarm, bottleneck objective learning (BOL) strategy is ap-
plied to the PSO algorithm for finding high convergence
rate in a large set of complex objective functions [35].

Solving real life problems is an important and neces-
sary task for a state-of-the-art optimization algorithm. On
this basis, a randomwalk greywolf optimizer (RW-GWO) is
proposed in [36] where in updating of position, each well
fitted wolf of α and β is updated by the most prominent
and leading wolves and avoids premature convergence. In
[37], authors presented a hybrid meta-heuristic algorithm,
where the position of salp swarm is updated using the po-
sition equations of sine cosine algorithm (SCA) for improv-
ing the global search ability of the SSA. As fewer parame-
ters need to be tuned in GWO algorithm, a PSO-inspired
efficient and robust GWO algorithm is proposed in [38],
which is capable of solving large scale numerical problems
of optimization. In engineering problem solving, the crite-
ria for selecting optimization are based on less complex-
ity and computational cost effectiveness [39]. The recently
proposed Dragonfly Algorithm (DA) by Mirjalilii et al. [19]
which was inspired by the static and dynamic features of
dragonflies in nature, provides very competitive results as
compared to the state-of-the-art algorithms in literature. In
DA, exploration simulates the dynamic swarming behav-
ior of dragonflies upon encountering an enemy as well as
their levy flight search, which ensures the diversity of the
dragonfly solution. In order to improve exploitation and
avoid premature convergence, some features like addition
of memory was proposed in [40]. But the proposed model
failed to address the issues of computational complexity
and convergence at local minima. The authors in [41] de-
liberated the use of diversity in order to improve the global
convergence of PSO.

This motivated us to design an innovative optimiza-
tion algorithm inspired by the peculiar ability of humans
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to purchase the best quality product at minimum cost and
subsequent bargaining for optimum cost and quality with
the location of shops, reviews of products as key parame-
ters. We developed a novel optimization algorithm for lin-
ear, non-linear and non-differentiable optimization prob-
lems.

In our proposed model, the cost and choice provide
exploration, which is otherwise known as dynamic swarm
behavior, and quality and user reviews provide exploita-
tion, which is otherwise known as static swarm behav-
ior, as features to the algorithm. Thereafter, the buyer step
size is formulated, which provides diversity to the popu-
lation in finding the global best solution. Therefore, the
algorithm guarantees exploration at the early steps and
exploitation at the later steps and confirms global opti-
mum with improved accuracy. The proposed algorithm
was tested on standard benchmark functions and engi-
neering design problems in order to establish its validity.
The detailed comparison is presented which proves the su-
periority of the algorithm over popular optimization algo-
rithms in literature.

The rest of the paper is organized as follows. Section 2
consists of the description of the proposed algorithm. In
Section 3, formulation of the proposed algorithm is pre-
sented. Section 4 and Section 5 consist of the performance
evaluation and convergence analysis of the proposed algo-
rithm. In Section 6, the performance analysis of the algo-
rithm on benchmark engineering design problems is de-
scribed and a detailed comparison is deliberated. Finally,
a conclusion is drawn in Section 7.

2 Inspiration
The main inspiration for this algorithm is a bargainer or
buyer who tries to purchase the best product from a dif-
ferent number of shops available in the market. A group
of bargainers/buyers are considered as a swarm. Depend-
ing on different parameters and the corresponding fitness
value, the buyer will move from one shop to the other in
order to find the best product and use the result of other
buyers to find the optimal shop. The worst scenario for
one buyer in buying a product is measured as the posi-
tion of the shop which results in a bad product in terms
of price and quality. The worst position of the buyer is
used for prioritizing the choice factor. While updating
the process of the position towards the global best posi-
tion, a buyer has to avoid the worst position of the re-
spected space. As shown in Figure 1, in our proposed al-
gorithm, the total area and the swarm population are ini-

tially partitioned and characterized into different sets of
zones/clusters. Based on the population density, the clus-
ter radius may be varied. All the assigned swarm particles
(buyers) of one zone search their local cluster area which
provides the exploitation to the algorithm. Through itera-
tion/time the cluster radius is gradually increased and fi-
nally converted into one cluster (similar to buyers’ nature
to learn from their neighbors andupdate their choices over
time) which provides the exploration rate to the algorithm.

The shops are randomly distributed over a specific
search space and hypothetically located near the buyer’s
location. Generally, every buyer prefers to buy from the
nearby shops. But for a higher profit and a desired product,
even marginally, buyers explore shops located at a larger
distance based on their neighbor buyers’ reviews. Here in
BIMA the main aim is to find out the best shop (location
in the search space) which could provide the best quality
product at optimum price.

Zones are basically the region that is within radius r of
the current position of buyers in the search space.

Here, initially each buyer forms a zone around them-
selves of calculated radius (rinitial) to search locally. Grad-
ually with evolution, the cluster size increases and buyers
move towards the global optimal solution.At the endof the
iteration all the buyers came in the same cluster of radius
rinital (r�nal ≫ rinitial) as shown in Figure 1.

As shown in the Figure 1(b), all the buyers are ran-
domly distributed initially and through searching of the
global best shop the buyers are attracted towards the
global best shop. Thus, at the end of the iterations or meet-
ings of the search criteria as shown in Figure 1(e), all the
buyers updated their position and converge on the global
best shop or the best solution.

3 The Proposed BIMA Algorithm
The behavior of the swarm of buyers depends on the fol-
lowing principle components:

3.1 Cost

In general, one buyer will try to buy the best product at
minimum price. Therefore, the buyer hops from shop to
shop in order to buy the best product at a minimum cost
in the search space.

Mathematically it can be calculated as follows:

CD,i = gBestXD,1 − XD,i (1)
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(a) Buyers’ position at iteration 1 and final iteration (N)

(b) iteration = 1 (c) iteration = 30% of N

(d) iteration = 70% of N (e) iteration = N

Figure 1: Buyer’s zone up-gradation process
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Figure 2: Based on cost of the product buyer tends to move towards the best shop

where gBestX is the best position in the swarm, XD,i is the
position of the ith individual and D is the dimension of the
search space. The global best (gBest) of the swarm repre-
sents the best buyer position, thus the distance of the con-
sidered buyer from the best buyer is treated as the cost to
be afforded by the individual buyer and is represented by
Eq. (1).

3.2 Quality

This is an important factor which plays amajor role in buy-
ing a product. Most buyers are immensely concerned with
the quality of the product and perhaps a buyer hops from
shop to shop in order to ensure buying the best quality
product.

Mathematically, it can be designated as follows:

QD,i = pBestXD,i − XD,i (2)

where pBestXD,i is the personal best position of the buyer
i and XD,i is the position of the current individual. The
physical significance of the term pBest is that it stores the
pointer addressing to the earlier shop wherein the buyer
found the best quality product before their present shop.
Thus, for an individual buyer i, the difference between
the buyer’s current position and pBest provides the self-
learning strategy to the buyer. The self-learning ability of

Figure 3: Based on quality of the product the buyer move towards
the best shop

each individual buyer improves the quality of the product
to be searched and depicts the quality parameter of BIMA.
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3.3 Choice

Individuals will make different choices to buy a particu-
lar product. The choice of a product based on some sub-
jective parameters such as color, aesthetic, brand etc. is
an important factor for buyers when buying that particu-
lar product. In that manner, a buyer is determined to buy
the best-choice product by avoiding the worst one.

Mathematically, it can be calculated as follows:

HD,i = gWorstXD,1 − XD,i (3)

where gWorstX is the worst position of the buyer swarm in
terms of choice and Xi is the current position of the buyer.

The choice of one buyer basically depends on the cur-
rent trends of products and the buyer’s personal percep-
tion. Thus, the global worst (gWorst) solution is used to for-
mulate the choice parameter (H) of the product. The differ-
ence between the gWworst solution and the buyer’s current
position provides an extra weight to divert an individual
buyer from the worst product. Therefore, with this param-
eter an individual buyer is diverted from the worst product
and directed towards the best individual.

Figure 4: Based on the Choice of the product, the buyer has to move
towards the best shop

3.4 User Review Attraction

In any locality, the best shop is considered to be the shop
where the probability of getting the best quality of prod-
ucts is higher when compared to other shops. Buyers are

attracted towards the shop which their neighbors visited
and where they bought products. Buyers rate such shops
with higher ratings which subsequently attract other buy-
ers towards the shop to buy products. The information col-
lected from the neighbor buyer provides mutual learning
to the algorithm. The termUser ReviewAttraction (R) plays
a significant role in the selection of proper direction by the
buyer to move towards the position of the best shop.

Mathematically shop attraction can be calculated as:

RD,i = −
Li∑︁
j=1

Neighbor_pBestXD,j − XD,i (4)

where Li is the number of neighbors in the neighbor ra-
dius of a buyer i, XD,i is the position of the current in-
dividual, and Neighbor_pBestX is the neighbor’s best re-
ported shop. Thus, the difference between the individ-
ual buyer’s current position and the neighborhood buyer
Neighbor_pBestX provides the mutual learning strategy to
the algorithm to attract towards the best solution.

The selection of the route towards the best shop satis-
fying all the desired needs of a buyer is largely described
by four parameters: cost, quality, choice and user review at-
traction.

In BIMA, buyers are hopping locally in search of get-
ting a better probability of a desired product which repre-
sents the exploitation feature of the algorithm and is pri-
marily governed by the quality of the product (Q), and re-
viewsof theneighbor buyer (R) parameters. BIMAachieves
a high exploration rate by exploring the maximum area of
the search space through maintaining minimum cost (C)
and suitable choice (H). The neighborhood buyer plays an
important role in the search of the global optimal product.
In the initial phase of the evolution, each individual buyer
searches in their own cluster of radius r, that radius grad-
ually increases with the generation as per the proposed
mathematical Eq. (5).

radius = ub − lb4 (5)

+
[︂
(ub − lb)

(︂
iteration

Maximum_iteration

)︂
2
]︂

To update the position of buyers in a search space
and corresponding movements, two vectors are consid-
ered: stepsize (∆X) and position (X). The step and position
vector of the proposedmodel are analogous to the velocity
and current position vector of PSO.

Unlike PSO, the step vector in BIMA provides the di-
rection of movement of the buyers and is developed as fol-
lows:

∆Xg+1 = w∆Xg + c1CD,i + qQD,i + c2HD,i + sRD,i (6)
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Figure 5: Attraction towards best shop based on user reviews

where, c1 indicates the cost weight, q is the quality weight,
c2is the choice factor, s is the neighbor review factor of the
ith individual, and g represents the current generation. The
inertia weight (w) can be written as:

w = 0.9 − iteration * (0.9 (7)
− 0.4)/Maximum_iteration

where the parameter iteration represents the current itera-
tion/generation (g).

After calculating the step vector, the position vectors
are calculated as follows:

Xg+1 = Xg + ∆Xg+1 (8)

where g is the current iteration/generation.
With cost, quality, choice and review (c1, q, c2 and

s), different explorative and exploitative behaviors can be
achieved during optimization. Neighbors of the buyer are
very important, as a neighborhood buyer zone is created
around each buyer considering a cluster representing a dif-
ferent group of buyers with a certain finite radius.

A question may arise here as to how the convergence
of the buyer is guaranteed during optimization. The bar-
gainers/buyers are required to change their weights adap-
tively for transiting from exploration to exploitation in the
search space. In our proposed BIMA, proper balance be-
tween exploration and exploitation is achieved through
adaptive tuning of the swarming factors (c1, q, c2, s, andw)
during optimization. The tunedvalues of the swarming fac-
tors used in our experiment are adaptively evaluated from
the value of ∆X which gradually decreases with the num-
ber of iterations. Intuitive understanding of the algorithm
supported by several rounds of experimentation leads us

to formulate the parameter ∆X and accordingly c1, q, c2, s,
and w are evaluated as per the following equations:

c1 = 1.2 × rand(1) × ∆X (9)

q = 1.2 × rand(1) × ∆X (10)

c2 = rand(1) (11)

s = rand(1) × ∆X (12)

where rand(1) is the randomly generated number in [0, 1]
It is obvious that the buyer observed and learned from

his neighborhood buyers in order to select the best route to
reach a shop. This resembles the general human behavior
to follow the best individual and learn from them. Every
buyer is bounded in a cluster containing a group of buy-
ers to observe and learn from thebest individuals. Through
iteration, the cluster area of each buyer is increased, and
the number of clusters is reduced. At the final stage of op-
timization, it forms a single cluster containing the best in-
dividual of buyers to reach the globally optimum shop for
the product to be purchased.

The cost andquality are evaluated from the global best
and worst solution of the whole set of the buyer swarm.
The choice of the product is evaluated from the personal
best solution of a buyer in the search space during the iter-
ation. In this manner the buyers are able to gradually con-
verge towards the best area in the search space and diverge
away from the non-promising areas of the search space.
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3.5 Algorithm of proposed BIMA
1: Initializemaximum iteration (N), number of search agents (NP),

dimensions (dim or n), upper bound (ub) and lower bound (lb) of
variable, vector constant F=0.5, population vector (X) and step
vectors (∆X) as 0.4X

2: Calculate fitness value for each Bargainer/buyer
3: for each Bargainer/buyer
4: Evaluate fitness(i)
5: Initialize pBest(i) = fitness(i)
6: end for
7: Whilemaximum iterations not attain
8: Calculate radius of buyers neighbor zone and ‘w’ as in Eq. (5) and (7)

respectively
9: Evaluate fitness of each buyer
10: if fitness(i) < pBest(i) this iteration
11: Update pBest(i) as pBest(i) = fitness(i)
12: Update pBestX
13: end if
14: Evaluate gBest and gBestX as gBest = min(pBest), gBestX =

argMin(pbest)
15: Evaluate gWorst and gWorstX as gWorst = max(pBest), gWorstX =

argMax(pbest)
16: Listing neighbor of each buyer, Calculate Cost Parameter C (accord-

ing to Eq. (1)), Calculate Quality Parameter Q (according to Eq. (2)),
Calculate Choice Parameter H (according to Eq. (3)), Calculate Re-
view Parameter R (according to Eq. (4))

17: for each buyer
18: Update weight c1, q, c2, and s as in Eq. (9), Eq. (10), Eq. (11)

and Eq. (12)
19: Update buyers zone radius
20: Update F as F = F − F × r
21: ∆Xg+1 = w ∆Xg + [c1C + qQ + c2H + sR] as Eq. (6)
22: δi = F

(︀
Xi + ∆Xg+1

)︀
23: if buyer has neighbor in the zone
24: for j = 1 : dim
25: if rand(1) < F
26: T ji = δ

j
i

27: Else
28: T ji = X

j
i

29: end if
30: end for
31: if f (Ti) < f (Xi)
32: Xi = Ti
33: end if
34: Else
35: Update X vector using Eq. (8)
36: end if
37: end for

3.6 Description of the algorithm

After initialization of all the parameters and constants in
step-1, the algorithm evaluates the initial fitness value of
all the buyers in step-2 to step-6. Then it updates the ra-
dius of each buyer and correspondingly evaluates the cur-
rent fitness in step-9 and updates the pBest (step-10 to 13),

gBest (step-14) and gWorst (step-15). Then in step-16, the
algorithm evaluates the key parameter of the algorithm,
namely Cost Parameter C, Quality Parameter Q, Choice Pa-
rameter H and Review Parameter R for each buyer of the
swarm. Then for each buyer the weight co-efficients c1, q,
c2 and s corresponding to cost, quality, choice, and review
parameters areupdated in step-19. In step-21 the step vector
is updated, which directs the buyer position towards the
optimal shop. In step-22 to step-30, the algorithm checks
the boundary condition and evaluates the trial vector from
the calculated step vector of buyer. In step-31 to step-36,
current positions of the buyers are updated.

If a buyer fails to find neighborhood buyers, it moves
in a random direction in the search space using a random
walk (Lévy flight) algorithm which improve the random-
ness, stochastic behavior, and exploration of the popula-
tion.

Under this situation, a buyer updates its position as
follows:

Xg+1 = Xg + Levy(D) × Xg (13)

where X is the position of the bargainer, and D is the di-
mension of the position vectors.

The Lévy flight is basically a random walk whose step
size is governedby the Lévydistribution. According to Lévy
flight the position X is calculated as follows [42]:

Lévy(X) = 0.01 × R1 × σ
|R2|1/λ

(14)

where R1, R2 are two random numbers existing in [0,1], λ
is a constant between 0 and 2 (0 < λ ≤ 2) (λ is equal to 1.5
in this work), and σ is calculated on the basis of Eq. (15):

σ =

⎛⎝ Γ(1 + λ) × sin
(︁
πλ
2

)︁
Γ
(︁
1+λ
2

)︁
× λ × 2( λ−12 )

⎞⎠1/λ

(15)

where Γ(z) is the gamma function, Γ(k) = (k − 1)!, when z
= k is an integer.

4 Performance Evaluation
The performance of BIMA is evaluated on the basis of 23
benchmark functions, as shown in Table 1, where func-
tions F1 to F7 are unimodal functions, functions F8 to F13
aremultimodal functions, F14 to F23 are fixed dimensional
multi-modal benchmark functions [40].
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Table 1: Description of Unimodal and Multimodal Functions

Sl no. UNIMODAL FUNCTIONS Dim Range
[lb, ub]

Fmin

1 F1(X) =
∑︀n

i=1 x
2
i 30 [−100, 100] 0

2 F2(X) =
∑︀n

i=1 |xi| +
∏︀n
i=1 |xi| 30 [−100, 100] 0

3 F3(X) =
n∑︀
i=1

(︁∑︀i
j−1 xj

)︁2
30 [−100, 100] 0

4 F4(X) = max {|xi| , 1 ≤ i ≤ n} 30 [−100, 100] 0
5 F5 =

[︁
100

(︁
Xi+1 − Xi2

)︁
+ (Xi − 1)2

]︁
30 [−30, 30] 0

6 F6 (X) =
∑︀n

i=1 [(Xi + 0.5)]
2 30 [−100, 100] 0

7 F7(X) =
∑︀n

i=1 iXi
4 + random [0, 1) 30 [−1.28, 1.28] 0

MULTIMODAL FUNCTIONS
8 F8(X) =

∑︀n
i=1 −xi sin

(︁√︀
|xi|
)︁

30 [−500, 500] −418.98D
9 F9(X) =

∑︀n
i=1
[︀
x2i − 10 cos(2πxi) + 10

]︀
30 [−5.12, 5.12] 0

10 F10(X) = −20 exp
(︃
−0.2

√︃
1
n

n∑︀
i=1
x2i

)︃
− exp 1

n
n∑︀
i=1

cos(2πxi)) + 20 + e 30 [−32, 32] 0

11 F11(X) = 1
4000

n∑︀
i=1
x2i −

n∏︀
i=1

cos
(︁
xi√
i

)︁
+ 1 30 [−600, 600] 0

12 F12(X) = Π
π

⎧⎨⎩ (10 sin(Πyi) +
n−1∑︀
i=1

(yi−1)
2

[1 + 10sin2(πyi+1)] + (yn−1)
2

⎫⎬⎭ +
n∑︀
i=1
u(xi , 10, 100, 4) 30 [−50, 50] 0

13 F13(X) = 0.1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin2(3Πxi) +

n∑︀
i=1

(xi−1)
2

[1 + sin2(3Πxi+1)]
+(xn−1)2

[︁
1 + sin2(2Πxn)

]︁
⎫⎪⎪⎪⎬⎪⎪⎪⎭ +

n∑︀
i=1
u(xi , 5, 100, 4)] 30 [−1.28, 1.28] 0

FIXED DIMENSIONAL MULTI-MODAL FUNCTIONS

14 F14 =
(︁

1
500 +

∑︀25
j=1

1
j+
∑︀2

i=1 (xi−aij)
6

)︁−1
2 [−65, 65] 1

15 F15 =
∑︀11

j=1

(︁
ai −

x1(b2i +bix2)
b2i +bix3+x4

)︁2
4 [−5, 5] 0.00030

16 F16 = 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [−5, 5] −1.0316

17 F17 =
(︀
x2 − 5.1

4π2 x
2
1 + 5

π x1 − 6
)︀2 + 10 (︀1 − 1

8π
)︀
cos x1 + 10 2 [−2, 2] 3

18

F18 =
[︃
1 + (x1 + x2 + 1)2

(︃
19 − 14x1 + 3x21 − 14x2

+6x1x2 + 3x22

)︃]︃
2 [−2, −2] −3.86

[︃
30 + (2x1 − 3x2)2 ×

(︃
18 − 32x1 + 12x21 + 48x2

−36x1x2 + 27x22

)︃]︃
19 F19 = −

∑︀4
i=1 Ci exp

(︁
−
∑︀3

j=1 aij
(︀
xj − pij

)︀2)︁ 3 [1, 3] −3.86

20 F20 = −
∑︀4

i=1 Ci exp
(︁
−
∑︀6

j=1 aij
(︀
xj − pij

)︀2)︁ 6 [0, 1] −3.32

21 F21 = −
∑︀5

i=1

[︁
(X − ai) (X − ai)T + Ci

]︁−1
4 [0, 10] −10.1532

22 F22 = −
∑︀7

i=1

[︁
(X − ai) (X − ai)T + Ci

]︁−1
4 [0, 10] −10.4028

23 F23 = −
∑︀10

i=1

[︁
(X − ai) (X − ai)T + Ci

]︁−1
4 [0, 10] −10.5363
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Table 2: Comparison between BIMA and other algorithms on optimizing benchmark functions for 30 independent runs

Function
I MHDA DA PSO GWO DE
II FEP SSA WOA GSA Proposed

Unimodal Benchmark Function

F1
I Mean 4.07E−42 5.15E−07 0.000136 6.59E−28 8.2E−14

Std 2.22E−41 2.82E−06 0.000202 6.34E−05 5.9E−14

II Mean 0.00057 9.8447e−09 1.41E−30 2.53E−16 0.00E+00
Std 0.00013 8.9132e−09 4.91E−30 9.67E−17 57.282

F2
I Mean 6.62E−15 4.818E−06 0.042144 7.18E−17 1.5E−09

Std 3.61E−14 2.50E−05 0.045421 2.91E−02 9.9E−10

II Mean 0.0081 0.0359 1.06E−21 0.055655 0.00E+00
Std 0.00077 3.1979e−05 2.39E−21 0.194074 5.4664

F3
I Mean 2.55E−50 5.366E−07 70.12562 3.29E+06 6.8E−11

Std 1.3E−49 2.939E−06 22.11924 79.14958 7.4E−11

II Mean 0.016 31.6049 5.39E−07 896.5347 0.00E+00
Std 0.014 0.0024 2.93E−06 318.9559 68.0245

F4
I Mean 4.99E−05 1.349E−04 1.086481 5.61E−07 0.0E+00

Std 2.73E−04 4.57E−04 0.317039 1.32E+00 0.0E+00

II Mean 0.3 2.2605 0.072581 7.35487 0.00E+00
Std 0.5 6.0967e−05 0.39747 1.741452 34.7607

F5
I Mean 3.34E−22 6.71E−01 96.71832 2.65E+01 0.0E+00

Std 5.67E−22 3.66E+00 60.11559 69.90499 0.0E+00

II Mean 5.06 29.2188 27.86558 67.54309 5.0135
Std 5.87 1.2303e−04 0.76362 62.22534 7.1234

F6
I Mean 0.0E+00 9.047E−06 0.000102 8.17E−01 0.0E+00

Std 0.0E+00 3.31E−05 8.28E−05 1.26E−04 0.0E+00

II Mean 0.0E+00 6.7786e−09 3.116266 2.5E−16 0.3010
Std 0.0E+00 1.1389e−08 0.53242 1.74E−16 3.0362

F7
I Mean 5.25E−05 4.5E−04 0.122854 2.22E−02 0.00463

Std 5.02E−05 5.71E−04 0.044957 1.00E−01 0.0012

II Mean 0.1415 0.0826 0.001425 0.089441 0.024337
Std 0.3522 0.5459 0.00114 0.04339 0.22929

F8
I Mean −2957.34 −3932.76 −4841.29 −6123.1 −11080.1

Std 3.86E+02 −3932.76 1152.814 4.08E+04 574.7

II Mean −12554.5 −8.282e+03 −5080.76 −2821.07 −4442.3483
Std 52.6 6.7502e−04 695.7968 493.0375 4521.8888

F9
I Mean 5.901E−07 3.36E−02 46.70423 3.12E−01 69.2

Std 3.23E−06 1.81E−01 11.62938 4.74E+01 38.8

II Mean 0.046 35.8185 0.0000 25.96841 0.00E+00
Std 0.012 4.2856e−09 0.0000 7.470068 2.3343

F10
I Mean 6.34E−15 2.66E−04 0.276015 1.06E−13 9.7E−08

Std 2.72E−14 8.59E−04 0.50901 7.78E−02 4.2E−08

II Mean 0.018 2.2210 7.4043 0.062087 7.99E−15
Std 0.0021 2.1773e−09 9.897572 0.23628 21.0599

F11
I Mean 2.39E−04 3.83E−03 0.009215 4.49E−03 0.0E+00

Std 2.25E−02 7.15E−02 0.007724 6.66E−03 0.0E+00

II Mean 0.016 0.0099 0.000289 27.70154 0.00E+00
Std 0.022 6.4693e−08 0.00158 5.040343 0.00E+00

I Mean 2.34E−31 7.48E−04 0.006917 5.34E−02 7.9E−15
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F12
Std 4.45E−47 3.75E−04 0.026301 2.07E−02 8E−15

II Mean 9.2E−06 4.6283 0.339676 1.799617 8.9E−15
Std 3.6E−06 3.0276e−05 0.21486 0.95114 25.7025

F13
I Mean 1.39E−32 1.06E−03 0.006675 6.54E−01 5.1E−04

Std 5.57E−48 3.99E−04 0.008907 4.47E−03 4.8E−04

II Mean 0.00016 0.0439 1.889015 8.899084 5.1E−14
Std 0.000073 2.5607e−09 0.26608 7.126241 27.1233

Fixed Dimension Multi-Modal Benchmark Function

F14
I Mean 0.9880 0.9980 3.627168 4.042493 0.99800

Std 0.9880 0.9980 2.560828 4.252799 3.3E−16

II Mean 1.22 0.9980 2.111973 5.859838 0.9980
Std 0.56 1.0381E−15 2.498594 3.831299 39.6545

F15
I Mean 0.0013 0.0015 0.000577 0.000337 4.5E−14

Std 0.0011 0.0017 0.000222 0.000625 0.00033

II Mean 0.0005 0.0012 0.000572 0.003673 2.01E−05
Std 0.00032 2.8878e−11 0.000324 0.001647 1.2249

F16
I Mean −1.0316 −1.0316 −1.03163 −1.03163 −1.03163

Std 1.23E−11 1.0316 6.25E−16 −1.03163 3.1E−13

II Mean −1.03 −1.0316 −1.03163 −1.03163 −1.0316
Std 4.9E−07 3.5228e−12 4.2E−07 4.88E−16 2.3604

F17
I Mean 0.3979 0.3979 0.397887 0.397889 0.39788

Std 5.01E−04 0.3979 0.0E+00 0.397887 9.9E−09

II Mean 0.398 0.3979 0.397914 0.397887 0.3978
Std 1.5E−07 2.1985e−12 2.7E−05 0.0E+00 5.9735

F18
I Mean 3.0000 3.0000 3.00 3.00003 3.00

Std 2.9890 3.0000 1.33E−15 3.00 2E−15

II Mean 3.02 3.0000 3.00 3.00 3.0000
Std 0.11 5.8085e−11 4.22E−15 4.17E−15 3.0662

F19
I Mean −3.8628 −3.8628 −3.86278 −3.86263 N/A

Std 0.8628 3.8628 2.58E−15 −3.86278 N/A

II Mean −3.86 −3.3220 −3.85616 −3.86278 −3.8619
Std 0.000014 1.9490E−12 0.002706 2.29E−15 4.4195

F20
I Mean −3.1936 −3.1936 −3.26634 −3.28654 N/A

Std 3.1901 3.1936 0.060516 −3.25056 N/A

II Mean −3.27 −10.1532 −2.98105 −3.31778 −3.3199
Std 0.059 5.9610e−10 0.376653 0.023081 3.5723

F21
I Mean −5.0552 −5.0552 −6.8651 −10.1514 −10.1532

Std 5.0553 5.0552 3.019644 −9.14015 3.00E−06

II Mean −5.52 −5.1288 −7.04918 −5.95512 −10.1532
Std 1.59 1.4741e−10 3.629551 3.737079 14.3918

F22
I Mean −10.3742 −10.3742 −8.45653 −10.4015 −10.4029

Std 1.21E−08 10.3742 3.087094 −8.58441 3.9E−07

II Mean −5.53 −10.4029 −8.18178 −9.68447 −10.4028
Std 2.12 5.4429e−10 3.829202 2.014088 15.772

F23
I Mean −10.5364 −10.5364 −9.95291 −10.5343 −10.5364

Std 1.87E−03 10.5364 1.782786 −8.55899 1.9E−07

II Mean −6.57 −10.5364 −9.34238 −10.5364 −10.5364
Std 3.14 6.1826e−10 2.414737 2.6E−15 15.846
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4.1 Experimental Results

In this section, we analyze the performance of BIMA on 13
unimodal and multi-modal benchmark functions and 10
fixed dimensional benchmark functions mentioned above
with the recently developed andmost popular population-
based optimization techniques, namely MHDA [40], DA
[19], PSO [3], GWO [13], DE [27], Fast Evolutionary Pro-
gramming (FEP) [43], SSA [18], WOA [12] and Gravitational
Search Algorithm (GSA) [44]. Performance is evaluated on
the basis of 50 search agents and the dimension of the
search agent was set to 30, setting levy flight constant to
1.5 and simulating the evaluation for 30 independent runs
having 500 iterations each. Comparison of the results are
made on the basis of mean and standard deviation (Std) of
the optimal solution. Thedetailed comparisons of the func-
tional evaluations (FEs) are presented inTable 2,where the
optimal results are in bold.

From the experimental results of the algorithms on
benchmark functions, the following observations are
made:

• Unimodal functions (F1 -F7): Such functions are
used to assess the exploitation ability of optimiza-
tion algorithms. The proposed BIMA algorithm out-
performs other algorithms in four benchmark func-
tions (F1-F4) out of seven. In function F7 BIMA be-
comes the sixth best, in function F5 BIMA becomes
the fourth best and in functionF6BIMAbecomes the
eight best out of the ten state-of-the-art heuristic al-
gorithms compared. The results indicate the conver-
gence capability and accuracy of the algorithm.

• Multimodal Functions (F8-F13): These functions
are very useful to assess the exploration ability of
the heuristic algorithms. DADE accomplishes better
results than other algorithms in three functions (F8,
F9 and F11) out of six cases and at least secures
the second best position in functions F10 and F13,
the third best in function F12. Results show the ex-
ploration capability of the proposed algorithm. The
hybridization with DE provides a better divergence
to the swarm as well as convergence span control
to reach an optimal solution rapidly comparing to
other algorithms.

• Fixed Dimension Multi-modal Function (F14-
F23): This set of functions shows the ability to
achieve the defined fitness value. From observing
the results it may be concluded that the Proposed
DADE outperforms in nine benchmark functions
(F14, F16, F17, F18, F19, F20, F21 F22 and F23) out of
ten functions. It is able to secure at least the second

best position in function F15. Results shows the su-
periority of the algorithm in finding the near optimal
solution of the function.

Here, we analyzed the performance of BIMA on 30
benchmark functions of CEC2017 [45] with the recently de-
veloped andmost popular population-based optimization
techniques, namely DA [19], GWO [13], PSO [3], DE [27],
SSA [18], LSHADE [46], L-SHADE SPACMA [47] L-SHADE-
cnEpSin [48] and CMA-ES [49]. Performance is evaluated
on the basis of 50 search agents and the dimension of the
search agent was set to 30 and simulated the evaluation
for 30 independent runs having 500 iterations each. The
detailed comparison of the functional evaluation (FEs) is
presented in Table 3.

The algorithm was tested for 51 runs, where each run
consisted of a total 1000×D evaluations. The objective is
represented by the minimization of the error value. The
error value is the difference between the optimal desired
value and the value obtained through function evaluation.
The error value is treated as zero (0) if the difference be-
tween the optimal solution and the obtained solution is
less thanor equal to 10−8. In Table 3, the best optimal value
of error and corresponding standarddeviation obtainedby
the algorithms are marked in bold. For D=30, the experi-
mental results of the algorithms on CEC2017 benchmark
functions listed in Table 3 show that the proposed BIMA
algorithm outperforms other algorithms in twelve bench-
mark functions (F1, F2, F3, F6, F7, F9, F12, F16, F18, F23, F24
and F28). BIMA becomes the second in four benchmark
functions (F4, F15, F19 and F22). In functions F26, F27 and
F29, BIMA becomes the third best and in functions F8, F10,
F11, F14, F17, F25 and F30, BIMA becomes the fourth best.
In functions F8, F10, F11, F14, F17, F25 and F30, BIMA be-
comes the fifth best, whereas in functions F5, F13, F20 and
F21, BIMA scores sixth among ten state-of-the-art heuristic
algorithms compared. The results are very competitive and
show that the BIMA performs better for eleven and close
to the optimum in four benchmark functions in compar-
ison to other standard and well established optimization
algorithms presented in the paper. The result indicates the
convergence capability and the accuracy of the algorithm.
Assumptions taken in the parameter value of all the con-
sidered algorithms are listed in Table 4.
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Table 3: Comparison between BIMA and other algorithms on CEC2017 optimization benchmark functions for 30 independent runs

Benchmark Function of CEC 2017
Function I DA GWO PSO DE SSA

II L-SHADE L-SHADE
SPACMA

L-SHADE-
cnEpSin

CMA-ES BIMA

F1
I Mean 8.4370E+12 1.565E+07 4.759E+03 1.928E+03 2.060E+04

Std 5.212E+08 2.232E+06 2.019E+02 1.142E+02 8.125E+03

II Mean 0.00E+00 0.00E+00 0.00E+00 1.029E+05 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 2.068E+10 0.00E+00

F2
I Mean 1.879E+51 6.198E+28 3.233E+06 1.590E+21 4.875E+18

Std 1.121E+11 1.026E+12 4.587E+04 1.535E+09 3.175E+15

II Mean 0.00E+00 0.00E+00 0.00E+00 8.345E+26 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 1.434E+53 0.00E+00

F3
I Mean 1.961E+07 5.893E+04 1.214E+04 8.321E+03 1.506E+04

std 2.112E+02 4.925E+02 1.001E+03 7.259E+02 1.282E+03

II Mean 0.00E+00 0.00E+00 0.00E+00 2.312E+05 0.00E+00
std 0.00E+00 0.00E+00 0.00E+00 2.519E+06 0.00E+00

F4
I Mean 5.179E+07 1.418E+02 7.976E+01 9.116E+01 9.180E+01

std 1.205E+01 4.692E+01 6.235E+01 6.276E+01 8.192E+01

II Mean 5.961E+01 5.856E+01 3.4763E+01 417.8210 5.786E+01
std 0.00E+00 0.00E+00 3.0697E+00 6.321e+03 0.00E+00

F5
I Mean 2.563E+04 1.114E+02 1.681E+02 1.987E+02 7.462E+01

std 4.516E+01 1.002E+02 1.358E+01 1.574E+02 7.156E+01

II Mean 6.727E+01 3.2652E+00 5.5543E+00 664.6020 8.628E+01
std 1.202E+00 1.9515E+00 2.3430E+00 103.5152 1.891E+00

F6
I Mean 5.571E+02 5.746E+00 3.441E+01 8.009E−01 3.768E+01

Std 3.120E+01 1.725E+00 3.256+01 7.982E+01 2.359E+01

II Mean 1.521E−08 0.00E+00 0.00E+00 600.0003 0.00E+00
Std 4.105E−08 0.00E+00 0.00E+00 30.7247 0.00E+00

F7
I Mean 2.043E+05 1.461E+02 1.474E+02 2.432E+02 1.521E+02

Std 1.025E+02 2.345E+01 2.542E+01 1.325E+02 1.428E+02

II Mean 6.351E+01 3.3865E+01 3.8949E+01 905.7383 3.343E+01
Std 1.124E+00 8.753E−01 2.1667E+00 414.9433 1.835E+00

F8
I Mean 2.405E+04 1.162E+02 1.074E+02 2.019E+02 1.751E+02

std 2.010E+02 1.025E+01 1.015E+02 2.014E+02 1.642E+02

II Mean 8.0155E+00 3.2492E+00 5.4402E+00 963.7556 9.765E+00
std 1.421E+00 1.5171E+00 2.8641E+00 91.6537 3.759E+00

F9
I Mean 3.091E+04 1.928E+03 2.461E+03 6.959E+00 2.599E+03

std 6.107E+01 1.825E+03 2.0156E+02 5.612E+00 1.256E+02

II Mean 0.00E+00 2.229E−15 0.00E+00 900.0000 0.00E+00
std 0.00E+00 1.103E−13 0.00E+00 6.326E+03 0.00E+00

F10
I Mean 3.551E+04 2.223E+03 2.985E+00 7.417E+03 3.816E+03

std 1.028E+02 2.015E+03 2.752E+00 2.472E+02 2.492E+03

II Mean 3.114E+03 1.428E+03 8.4381E+02 9.051E+03 1.534E+03
std 1.278E+02 2.278E+02 2.1047E+02 391.4174 1.638E+02

F11
I Mean 9.597E+07 2.668E+02 9.730E+01 1.54E+02 2.585E+02

std 6.214E+03 2.354E+01 8.754E+01 1.146E+02 2.427E+02

II Mean 3.458E+01 1.866E+01 1.7249E+00 3.685E+03 3.847E+01
std 3.125E+01 2.513E+01 1.9384E+01 1.476E+04 1.326E+01
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F12
I Mean 3.783E+12 8.372E+03 9.333E+04 7.780E+05 3.773E+06

std 3.018E+09 7.825E+02 6.589E+03 6.291E+04 2.416E+05

II Mean 1.434E+03 5.823E+02 1.3150E+02 1.810E+07 9.462E+01
std 3.424E+02 2.573E+02 2.0053E+02 5.115E+09 5.892E+01

F13
I Mean 1.252E+12 1.366E+05 1.189E+03 1.168E+01 1.810E+04

std 1.000E+07 1.254E+04 1.025E+03 5.246E+02 1.715E+04

II Mean 1.634E+01 1.311E+01 2.0256E+00 6.400E+06 1.832E+01
std 7.101E+00 5.737E+00 1.0207E+01 1.945E+09 3.261E+00

F14
I Mean 4.677E+09 5.721E+05 4.012E+04 2.490E+01 8.226E+03

std 4.158E+06 2.546E+04 3.254E+03 6.164E+01 7.815E+03

II Mean 3.063E+01 2.302E+01 7.6082E+00 2.601E+06 2.571E+01
std 1.101E+00 1.512E+00 2.2600E+00 3.662E+06 1.250E+00

F15
I Mean 7.955E+11 3.690E+04 2.198E+03 9.320E+01 1.582E+05

std 3.254E+09 2.356E+03 1.289E+02 8.421E+01 1.432E+05

II Mean 3.8078E+00 4.777E+00 5.7530E−01 1.781E+06 8.896E−01
std 1.301E+00 2.053E+00 1.9802E+00 7.906E+08 7.826E−01

F16
I Mean 2.693E+06 8.384E+02 1.370E+03 1.414E+03 1.026E+03

Std 2.120E+05 2.452E+02 1.287E+02 2.409E+02 1.025E+01

II Mean 4.238E+01 3.059E+01 3.9799E+00 2.998E+03 4.537E−01
Std 3.303E+01 4.525E+01 3.0731E+01 1.682E+03 6.724E−01

F17
I Mean 3.207E+12 3.689E+02 4.201E+02 5.817E+02 6.214E+02

Std 1.001E+10 3.154E+02 6.248E+01 5.842E+01 2.156E+01

II Mean 2.379E+02 2.927E+01 1.5817E+01 2.319E+03 2.569E+02
Std 6.736E+00 1.008E+01 5.5593E+00 2.679E+04 6.361E+00

F18
I Mean 6.047E+09 2.050E+06 3.978E+01 2.39E+01 2.827E+05

std 5.031E+05 1.568E+04 3.248E+01 2.042E+01 1.624E+02

II Mean 4.930E+01 2.328E+01 2.0199E+01 1.097E+06 2.031E+01
std 2.041E+00 2.075E+00 7.5204E−01 6.484E+07 2.936E+00

F19
I Mean 1.542E+09 1.917E+04 1.015E+03 4.180E+00 4.976E+04

std 1.122E+10 1.652E+04 1.002E+02 3.927E+00 2.618E+02

II Mean 6.981E+00 9.564E+00 2.9633E+00 2.228E+06 3.793E+00
std 2.132E+00 2.431E+00 1.9247E+00 1.835E+09 5.825E−01

F20
I Mean 1.976E+04 4.662E+02 1.00E+00 1.027E+01 4.125E+02

std 1.901E+02 2.587E+02 7.0189E−01 1.527E+01 3.214E+01

II Mean 1.458E+02 7.794E+01 1.3089E+01 2.373E+03 1.408E+02
std 1.6045E+01 5.289E+01 7.3523E+00 664.4802 1.026E+01

F21
I Mean 2.326E+04 2.593E+02 3.141E+02 2.133E+02 3.063E+02

Std 2.021E+03 2.192E+02 2.387E+01 2.817E+02 2.015E+02

II Mean 2.143E+02 2.071E+02 2.0719E+02 2.070E+02 2.154E+02
Std 2.325E+00 4.5212E+00 2.5616E+00 102.2813 1.157E+00

F 22
I Mean 3.716E+04 3.318E+03 1.00E+00 1.023E+02 1.02E+02

Std 2.314E+04 2.014E+03 0.657E−01 1.016E+01 1.024E+02

II Mean 1.647E+02 1.000E+02 1.0000E+02 9.860E+03 1.00E+02
Std 4.956E+00 0.00E+00 1.0047E−13 925.4715 1.202E−03

F23
I Mean 1.647E+04 4.216E+02 7.702E+02 5.604E+02 4.331E+02

std 1.140E+03 3.147E+02 6.146E+01 2.475E+02 2.482E+02

II Mean 4.313E+02 3.560E+02 3.4488E+02 2.815E+03 3.412E+02
std 1.905E+00 2.980E+00 3.7319E+00 167.5846 4.971E+00

I Mean 2.445E+04 6.276E+02 6.505E+02 6.221E+02 5.371E+02
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F24 std 1.874E+03 4.572E+02 3.298E+01 5.146E+02 2.461E+02

II Mean 4.418E+02 4.286E+02 4.180E+02 2.910E+03 4.180E+02
std 1.951E+00 2.349E+00 2.948E+00 236.9077 6.802E+00

F25
I Mean 3.142E+07 5.036E+02 3.846E+02 3.871E+02 4.509E+02

std 2.598E+05 4.014E+02 3.713E+02 2.428E+02 2.152E+02

II Mean 4.812E+02 3.867E+02 3.8666E+02 2.878E+03 3.871E+02
std 2.305E−02 0.008E+00 8.8975E−03 3.109E+03 1.027E+00

F26
I Mean 2.693E+05 2.412E+03 3.00E+02 3.238E+03 2.231E+03

std 2.016E+03 2.414E+02 8.426E+01 2.124E+02 2.018E+03

II Mean 1.201E+03 9.352E+02 8.4588E+02 4.873E+03 8.739E+02
std 4.302E+01 5.077E+01 8.4588E+02 1.395E+03 5.162E+01

F27
I Mean 5.186E+02 5.307E+02 4.831E+02 5.078E+02 5.548E+02

std 6.014E+01 4.193E+02 3.729E+01 4.824E+02 2.184E+02

II Mean 5.143E+02 5.062E+02 4.8815E+02 3.200E+03 4.981E+02
std 5.165E+00 4.407E+00 6.6996E+00 264.5246 7.374E+00

F28
I Mean 5.00E+02 5.292E+02 4.026E+02 4.089E+02 4.958E+02

std 3.857E+02 2.387E+01 6.249E+01 3.758E+02 3.095E+02

II Mean 3.416E+02 3.172E+02 3.0000E+02 3.300E+03 3.00E+02
std 5.602E+01 4.004E+01 3.8592E+01 1.683E+03 2.241E+01

F29
I Mean 4.168E+11 7.576E+02 8.897E+02 1.215E+03 1.296E+03

std 6.846E+06 2.017E+01 6.624E+01 1.145E+02 1.624E+02

II Mean 4.471E+02 4.152E+02 4.1850E+02 4.542E+03 4.462E+02
std 7.024E+01 1.206E+01 7.3625E+00 1.922E+03 2.157E+01

F30
I Mean 2.904E+12 8.473E+02 6.836E+03 7.590E+03 1.272E+07

std 2.913E+08 6.148E+01 3.489E+02 6.425E+02 1.241E+06

II Mean 2.684E+03 2.001E+03 1.9414E+03 1.495E+06 2.675E+03
std 6.875E+01 7.409E+01 4.1663E+01 3.223E+08 5.912E+01

Table 4: Parameter assumptions in the simulation of considered algorithms

Algorithm Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value
MHDA SA 30 β 1.5 wmax 0.9 wmin 0.2
DA SA 50 β 1.5 wmax 0.9 wmin 0.4
DE SA 50 F 0.5 CR 0.9
PSO SA 50 C1 0.12 C2 1.2 wmax 0.9 wmin 0.4
GWO SA 50 r1 [0,1] r2 [0,1]
FEP SA 100 SD 3
SSA SA 30 C2 [0,1] C3 [0,1]
GSA SA 50 Rnorm 2
WOA SA 30 p [0,1] |Ā| >1
DMPSADE SA 50 Setp 0.175 Msp 0.02
L-SHADE SA 30 F [0,1] MCR 0.5 MF 0.5
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Table 5: Summary of Friedman’s Test and Wilcoxon Test of functions F1 to F23

Functions 1 to 23 (Friedman Test) Functions 1 to 23 (Wilcoxon Test)
Algorithm Mean Rank Rank BIMA Vs − + p-value
MHDA 3.9783 3 MHDA 12 8 0.37109
DA 5.4783 4 DA 15 4 0.01162
PSO 6.8913 8 PSO 15 4 0.01162
GWO 5.5217 5 GWO 19 4 0.00176
DE 3.3261 2 DE 9 8 0.47102
FEP 6.7826 7 FEP 21 2 0.00007
SSA 6.5000 9 SSA 15 4 0.01162
WOA 6.2174 6 WOA 18 3 0.00106
GSA 7.0435 10 GSA 18 3 0.00106
BIMA 3.2609 1

Table 6: Statistical results of BIMA on the 30D CEC2017 Benchmark function Suit, Average over 51 independent runs

Function Best Worst Median Mean Std
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F4 5.786E+01 7.21E+01 6.26E+01 6.48E+01 0.00E+00
F5 8.628E+01 8.92E+00 8.78E+00 8.76E+00 1.891E+00
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 3.743E+01 3.826E+01 3.75E+01 3.79E+01 1.835E+00
F8 9.765E+00 9.87E+00 9.79E+00 9.82E+00 3.759E+00
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 1.534E+03 1.87E+03 1.59E+03 1.58E+03 1.638E+02
F11 3.847E+01 4.08E+01 3.89E+01 3.99E+01 1.326E+01
F12 9.462E+01 9.70E+01 9.47E+01 9.64E+01 5.892E+01
F13 1.832E+01 1.96E+0l 1.86E+0l 1.89E+01 3.261E+00
F14 2.571E+01 2.60E+01 2.59E+01 2.59E+01 1.250E+00
F15 8.896E-01 9.32E-01 8.92E-01 8.95E-01 7.826E-01
F16 4.537E-01 4.77E-01 4.61E-01 4.66E-01 6.724E-01
F17 2.569E+02 2.69E+02 2.63E+02 2.58E+02 6.361E+00
F18 2.031E+01 2.35E+01 2.12E+01 2.19E+01 2.936E+00
F19 3.793E+00 4.36E+01 4.14E+00 4.04E+00 5.825E-01
F20 1.408E+02 1.56E+02 1.49E+02 1.53E+02 1.026E+01
F21 2.154E+02 2.67E+02 2.33E+02 2.39E+02 1.157E+00
F22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.202E-03
F23 4.412E+02 4.60E+02 4.51E+02 4.51E+02 7.971E+00
F24 4.180E+02 4.38E+02 4.32E+02 4.28E+02 6.802E+00
F25 3.871E+02 3.92E+02 3.87E+02 3.87E+02 1.027E+00
F26 8.739E+02 9.24E+02 8.80E+02 8.97E+02 5.162E+01
F27 4.981E+02 5.14E+02 5.04E+02 5.06E+02 7.374E+00
F28 3.00E+02 4.54E+02 4.21E+02 4.28E+02 2.241E+01
F29 4.462E+02 4.72E+02 4.50E+02 4.58E+02 2.157E+01
F30 2.675E+03 2.91E+03 2.77E+03 2.79E+03 5.912E+01
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Table 7: Statistical results of BIMA on the 50D CEC2017 Benchmark function Suit, Average over 51 independent runs

Function Best Worst Median Mean Std
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 0.00E+00 1.95E-01 0.00E+00 0.00E+00 2.00E-01
F3 1.02E+01 1.63E+01 1.37E+01 1.31E+01 2.87E+01
F4 1.64E+01 1.72E+02 2.85E+01 3.25E+0l 2.34E+0l
F5 3.72E+00 2.04E+01 7.95E+00 6.47E+00 1.35E+00
F6 1.02E+00 5.53E+01 2.73E+00 2.31E+01 7.43E+00
F7 3.47E+01 7.23E+01 4.67E+01 6.16E+01 2.63E+00
F8 5.22E+01 6.37E+01 6.98E+01 6.87E+01 3.41E+01
F9 2.00E+00 7.03E+00 3.01E+00 2.08E+00 1.01E+00
F10 1.12E+02 3.17E+02 2.17E+02 1.81E+02 3.27E+02
F11 1.93E+01 3.64E+01 2.82E+01 2.36E+01 2.52E+00
F12 3.25E+03 7.34E+03 2.67E+03 3.67E+03 5.27E+02
F13 4.31E+01 5.26E+02 5.42E+01 4.83E+01 4.27E+01
F14 1.27E+01 5.57E+01 4.04E+01 3.37E+01 6.18E+00
F15 7.32E+01 2.07E+02 8.92E+01 8.94E+01 2.27E+01
F16 1.85E+01 5.91E+01 3.63E+01 3.46E+01 1.25E+01
F17 5.31E+01 6.69E+01 5.67E+01 6.01E+01 5.33E+01
F18 2.67E+01 4.31E+01 3.35E+01 3.74E+01 6.13E+00
F19 1.38E+01 4.26E+01 3.72E+01 2.94E+01 4.37E+00
F20 6.12E+01 9.61E+01 6.97E+01 6.53E+01 1.34E+0l
F21 3.01E+02 3.72E+02 3.29E+02 3.24E+02 2.16E+01
F22 1.00E+02 3.14E+02 1.91E+02 2.63E+02 6.24E+02
F23 3.86E+02 4.13E+02 3.97E+02 4.00E+02 2.57E+01
F24 3.81E+02 4.92E+02 3.89E+02 4.01E+02 3.05E+01
F25 5.31E+02 5.83E+02 5.61E+02 5.46E+02 6.19E+0l
F26 2.10E+02 3.57E+02 2.31E+02 2.24E+02 3.84E+02
F27 7.39E+02 8.23E+02 7.41E+02 7.47E+02 1.51E+01
F28 3.94E+02 4.13E+02 4.00E+02 4.03E+02 2.72E+01
F29 3.12E+02 3.89E+02 3.53E+02 3.24E+02 5.18E+01
F30 4.32E+04 4.79E+04 4.76E+04 4.63E+04 3.95E+03

Table 8: Comparison between BIMA and the other algorithms

Algorithm I DA GWO PSO DE SSA
II L-SHADE L-SHADE SPACMA L-SHADE-cnEpSin CMA-ES BIMA

w/l/t I 0/30/0 1/29/0 6/24/0 0/30/0 0/30/0
II 0/26/4 3/23/4 7/18/5 1/29/0 7/18/5

4.2 Statistical Analysis

In general, the performance of the algorithm is tested with
the results of mean and standard deviation. But in order
to check the variation of the results in comparison to other
algorithms, we also perform a statistical analysis of the re-
sults. In order to find the statistical significance of the re-
sults, we perform Friedman’s test and Wilcoxon ranksum
test. The Friedman’s test is used for finding the rank of the

algorithm [50]where the best performing algorithmgot the
lowest rank and the worst one got the highest rank. On the
other hand,Wilcoxon’s ranksum test [51] is performed con-
sidering the lowest ranking algorithm resulting fromFried-
man’s as the control algorithm. The result of the tests indi-
cates the number of times the proposed BIMA offers a bet-
ter result (+) or a worse result (−) in comparison to other
algorithms presented in Table 5.
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From the statistical result of the Friedman’s test, it
is clear that BIMA outperforms other state-of-the-art algo-
rithms with a mean rank of 3.2609 for a 5% level of sig-
nificance in benchmark functions listed in Table 1. Thus,
BIMA’s rank is 1 among the 10 optimization algorithms pre-
sented in Table 2. From the results of Wilcoxon Test as
shown in Table 5, it can be observed that the performance
of BIMA is significantly superior to the considered well-
known algorithms.

The statistical results of BIMA are shown in Table 6
and Table 7 for D=30 and 50, respectively. Results show
the best, worst, median, mean and standard deviation
over the 51 runs of the error value. Friedman’s Test and
Wilcoxon Test of functions F1 to F23 are performed with a
0.05 level of significance in order to assess the importance
of the results as shown in Table 5. Table 8 shows the out-
come of win/lose/tie (w/l/t) or scalability test performance
comparison of the proposed BIMA with some of the other
state-of-the-art algorithms in literature. It is observed that
BIMA wins in 7 cases; in 23 cases it performs inferior and
having zero tie with other algorithms presented here. The
result indicates that BIMA is the superior algorithmamong
themost popular and standard optimization algorithms in
literature.

4.3 Analysis of BIMA

The superior performance of BIMA in auni-modal function
depicts its significant exploration rate. Tracking the parti-
cle best (pBest) of each buyer to evaluate the quality of the
product is the key component responsible for exploitation
capability of the algorithm. The random initialization of
population, levy flight search, particle best (pBest), global
best (gBest) and global worst solution (gWorst), are the
prime components for balancing the exploration and ex-
ploitation rate of the algorithm. The performance of the al-
gorithm in multi-modal and fixed dimension multi-modal
functions shows the ability of the algorithm in balancing
the exploration and exploitation rate.

On the other hand, the performance of the algorithm
in CEC-2017 benchmark functions shows the capability of
the algorithm to avoid local convergence in the search
space and finding the global optima. The evolutionary se-
lection of the finest product from the best shop and the
high exploration and exploitation rate of BIMA plays an
important role in achieving the global optimal solution.

5 Convergence Analysis
In this section, the performance of the proposed BIMA is
tested for observing the convergence of the benchmark test
functions, namely Quadric (F3), Rosenbrock (F5), Func-
tion F7, Griewank (F11) and Levy (F13) functions.

Here, we consider 100 search agents (population of
buyers) in 2, 10 and 30 dimensions and run the evalua-
tion for 300 iterations, considering the average best-so-far
in each iteration over 30 runs. We compare the BIMA al-
gorithm for convergence analysis with DA, GWO, PSO and
WOA as shown in the Figures 6-15.

• From Figure 7, it is observed that the convergence
of BIMA is superior to DA and WOA algorithms with
a little behind the GWO and PSO algorithms in the
short run. Over the long run, the convergence of
BIMA to global optima is better than the other algo-
rithms presented.

Figure 6: Parameter space of function F3

Figure 7: Convergence graph of F3 in 30D
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Figure 8: Parameter space of function F5

Figure 9: Convergence graph of F5 in 30D

Figure 10: Parameter space of function F7

Figure 11: Convergence graph of F7 in 30D

Figure 12: Parameter space of function F11

Figure 13: Convergence graph of F11 in 30D
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Figure 14: Parameter space of function F13

Figure 15: Convergence graph of F13 in 30D

• In Figure 9, for Rosenbrock (F5) function we find
that the convergence characteristics of the proposed
BIMA is considerably better than all the algorithms
in the long run but lags in the short run behindGWO,
WOA and PSO algorithms.

• In function F7 as shown in Figure 11, it can be ob-
served that the convergence rate of BIMA is better
than DA and PSO.

• The results of the algorithms onGriewank (F11) func-
tion is represented in Figure 13. The figure shows
that BIMA offers significant convergence in compar-
ison to all the algorithms presented here. However,
in the initial phase of the evaluation, GWO andWOA
are able to converge better than BIMAbut in the long
runof 300 iterationBIMAable to performbetter than
the other algorithms used for comparison.

• Lastly, the test results on Levy (F13) function is
shown in Figure 15, show the performance of BIMA
for 300 iterations, where it can be observed that the
performance of BIMA is better than DA and WOA
in 30D but the characteristics of BIMA are worse in
comparison to GWO and PSO.

The low convergence rate of the algorithm is the ini-
tial phase of the iteration is the main weakness of BIMA.
The convergence of the algorithm mainly depends on the
fast searching of the global solution in the search space.
In BIMA, every buyer has their own set of neighborhood
buyers in the respective zone created by the neighbor-
hood radius. Each buyer in the search space learns from
their neighbor buyers and then share the right informa-
tion with all the buyers in the search space to find the
global optimal solution, which requires considerable time
to reach the global optima. An Individual buyer performs
self-learning through pBest and mutual learning through
gBest and gWorst. The self-learning strategy is compara-
tively slow but has good impact in the long run, whereas
mutual learning becomes fast but reliant on buyer infor-
mation. In BIMA, as a buyer undergoes both the self and
mutual learning, the convergence rate of the algorithm is
slightly sluggish. However, this comes with an advantage
of increasing the exploration ability of BIMA in finding the
global optimal solution in the large search space. Though
initially it is sluggish, the algorithm offers a very competi-
tive exploration rate in general. Therefore the overall per-
formance of the algorithm is found to be satisfactory in
terms of global optima. The convergence performance of
BIMA in 3 uni-modal and 2 multimodal functions depicts
the acceptability of the algorithm.

6 Testing of the Proposed
Algorithm on benchmark design
problems

To validate the performance of any optimization algo-
rithm, it needs to be checked with benchmark engineer-
ing design problems [52]. The performance of BIMA is
tested on three popular constraint engineering design
problems, namely Welded Beam, Tension/Compression
Spring, and Speed Reducer Design Problems and the re-
sults are comparedwith thewell-knownoptimization tech-
niques namely MHDA [40], DA [19], DE [27], PSO [3], GWO
[13], WOA [12], SSA [18], DMPSADE [53] and LSHADE [46].
The parameters preset for simulation of all the algorithms
including BIMA are consistent and are as follows: 100
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search agents, 30 independent evaluations and 1000 itera-
tions per evaluation. Also, results of 30 independent eval-
uations are used for statistical analysis of the engineering
design problem by Friedman and Wilcoxon test.

6.1 Welded beam design problem

This engineering problem is formulated forminimizing the
fabrication cost for a given bar length (l), height (t), thick-
ness (b) and the thickness of the welding part (h) as pa-
rameters in the function. In the formulation of the design,
themajor constraint of the design is formed on the basis of
shear (τ) and bending stress in the beam (b), beam deflec-
tion (δ) and the load corresponding to buckling (Pc). As
shown in Figure 16 [54], the variable corresponding to h is
x1, l is x2, t is x3, and b is x4, respectively.

Figure 16:Welded beam design problem

The cost function for welded beam optimization prob-
lem can be written as

f (X⃗) = 1.10471x2x21 + 0.04811x3x4(14 + x2)

Subject to constraints

g1(X⃗) = τ(X⃗) − τmax ≤ 0, g2(X⃗) = σ((X⃗)) − σmax ≤ 0,

g3((X⃗)) = δ(X⃗) − δmax ≤ 0, g4(X⃗) = x1 − x4 ≤ 0,

g5(X⃗) = P − Pc(X⃗) ≤ 0, g6(X⃗) = 0.125 − x1 ≤ 0,

g7(X⃗) = 1.10471x21 + 0.04811x3x4(14 + x2) − 5 ≤ 0

Where, τ(X⃗) =
√︁
(τ′)2 + 2τ′τ′′ x22R + (τ′′)
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Where, P = 6000 lb, L = 14 in, δmax = 0.25 in, E = 30E6

psi, G = 12E6 psi, τ′max = 30,000 psi.
Where, 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10and

0.1 ≤ x4 ≤ 2.
Table 9 shows the comparison of the results obtained

for the proposed BIMA algorithm with some of the popu-
lar and most widely used algorithms in the literature. The
result shows that BIMA outperforms other algorithms in
terms of finding the optimal cost of the problem.

From the Friedman Test result, as shown in Table 10,
it can be observed that BIMA ranks first among all the com-
pared algorithms and from the result of the Wilcoxon Test
it can be concluded that the performance of BIMA is signif-
icantly better compared to all the considered state-of-the-
art algorithms. InWilcoxonTest the (+) sign is used to show
the significantly better and (−) sign shows the significantly
worse test count among the total test performance.

Table 9: Results of the welded beam design problem of various optimization algorithms

Algorithm Variables Optimum costh l t b
BIMA 0.194288 3.16681 9.03743 0.205695 1.6675
MHDA 0.2057296 3.2531200 9.0366239 0.2057296 1.6952471
DA 0.194288 3.46681 9.04543 0.205695 1.70808
DE 0.20573 3.470489 9.0336624 0.205730 1.724852
PSO 0.20573 3.47049 9.03662 0.20573 1.7248508
GWO 0.1990 3.1632 9.0304 0.2060 1.6746
WOA 0.205396 3.484293 9.037426 0.206276 1.730499
SSA 0.2057 3.4714 9.0366 0.2057 1.7249
DMPSADE 0.20573 3.47049 9.03662 0.20573 1.72485084
LSHADE 0.194288 3.16681 9.03743 0.205695 1.6675
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Table 10: Statistical Test of the welded beam design problem

Friedman Test Wilcoxon Test
Algorithm Mean Rank Rank BIMA Vs − + p-value
MHDA 6.075 3 MHDA 66 0 .00338
DA 6.850 5 DA 210 0 .00008
DE 5.225 2 DE 210 0 .00008
PSO 6.050 4 PSO 210 0 .00008
GWO 8.250 7 GWO 210 0 .00008
WOA 9.100 9 WOA 210 0 .00008
SSA 6.900 6 SSA 210 0 .00008
DMPSADE 8.625 8 DMPSADE 210 0 .00008
LSHADE 1.950 1 LSHADE 0 0 1.00
BIMA 1.950 1

6.2 Tension/compression spring design
problem

The schematic of the problem is shown in Figure 17, where
the design variables are wire diameter d (x1), mean coil di-
ameter D (x2), and number of active coils P (x3) and the
objective is to minimize the weight f (x) [55].

The objective function of the said problem can be de-
fined as:

f (X⃗) = (x3 + 2)x2x21

Subject to constraints

g1(X⃗) = 1 −
(︂

x32x3
71785x41

)︂
≤ 0,

g2(X⃗) =
(︂

4x32 − x1x2
12566(x2x31 − x41)

)︂
+
(︂

1
5108x21

)︂
− 1 ≤ 0,

g3(X⃗) = 1 −
(︂
140.45x1
x22x3

)︂
≤ 0,

g4(X⃗) =
(︁ x1 + x2

1.5

)︁
− 1 ≤ 0

Where, 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.30, and 2 ≤ x3 ≤ 15

Figure 17: Tension/compression spring design problem

The results in Table 11 show that the performance of
the proposed BIMA algorithm is considerably better than
some of the popular algorithms presented in this article.
Here, from the Friedman and Wilcoxon tests, it can be ob-
served that the statistical performance of BIMA in the Ten-

Table 11: Comparison Results of Tension/compression spring design problem

Algorithm
Variables

Optimum costWire Diameter (d) Coil Diameter (D) Active Coils (P)
BIMA 0.05 0.4759 4.1634 0.00727
MHDA 0.05 0.4797 4.0640 0.00727
DA 0.05 0.47998 4.0574 0.00727
DE 0.05 0.4798 4.0693 0.00728
PSO 0.05 0.5001 3.5846 0.0070
GWO 0.05 0.4797 4.0640 0.00727
WOA 0.0516 0.3525 11.3332 0.01266
SSA 0.05 0.345 12.004 0.0125
DMPSADE 0.05 0.48 4.0557 0.0073
LSHADE 0.05 0.4768 4.0796 0.00727
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Table 12: Statistical test of Tension/compression spring design problem

Friedman Test Wilcoxon Test
Algorithm Mean Rank Rank BIMA Vs − + p-value
MHDA 4.075 2 MHDA 19 2 N/A
DA 7.875 5 DA 210 0 .00008
DE 2.950 1 DE 0 0 1.00
PSO 6.450 3 PSO 210 0 .00008
GWO 9.650 7 GWO 210 0 .00008
WOA 8.300 6 WOA 210 0 .00008
SSA 6.850 4 SSA 210 0 .00008
DMPSADE 6.450 3 DMPSADE 210 0 .00008
LSHADE 2.950 1 LSHADE 0 0 1.00
BIMA 2.950 1

sion/Compression spring design problem is superiorwhen
compared to all the considered algorithms.

6.3 Speed Reducer Design Problem

The aim of the speed reducer design problem [56] is tomin-
imize the weight of speed reducer subject to constraints
on bending stress of the gear teeth, surface stress, trans-
verse deflections of the shafts, and stresses in the shafts.
The variables x1 to x7 represent the face width (b), module
of teeth (m), number of teeth in the pinion (z), length of
the first shaft between bearings (l1), length of the second
shaft between bearings (l2), and the diameter of first (d1)
and second shafts (d2), respectively. The schematic of the
problem is shown in Figure 18.

f (X⃗) = 0.7854x1x21(3.3333x23 + 14.9334x3 − 43.0934)
− 1.508x1(x26 + x27) + 7.4777(x36 + x

3
7)

Figure 18: Speed Reducer Design Problem

+ 0.7854((x4x26 + x5x27))

Subject to

g1(X⃗) =
27

x1x22x3
− 1 ≤ 0, g2(X⃗) =

397.5
x1x22x23

− 1 ≤ 0,

g3(X⃗) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(X⃗) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(X⃗) =
[(745(x4/x2x3))2 + 16.9 × 106]

1/2

110x36
− 1 ≤ 0,

Table 13: Results of Speed Reducer Design Problem of various optimization algorithms

Algorithm Variables Optimum costX1 X2 X3 X4 X5 X6 X7
BIMA 2.6 0.7 17 7.3 7.3 2.9 5.00 2352.403
MHDA 2.6 0.7 17 7.3 7.3 2.9 5.00 2352.4481
DA 2.6 0.7 17 7.529 7.38 2.9 5.00 2854.596
DE 3.5 0.71 17 7.48 7.715 3.35 5.21 2992.2
PSO 3.5 0.71 17 7.3 7.79 3.345 5.286 2996.35
GWO 2.6 0.7 17 7.38 7.3 2.9 5.00 2851.4936
WOA 3.5 0.7 17 7.35 7.715 3.35 5.286 2994.499
SSA 2.6 0.7 17 7.3 7.3 2.9 5.00 2352.4478
DMPSADE 3.5 0.7 17 7.3 7.715 3.35 5.286 2994.710
LSHADE 2.6 0.7 17 7.3 7.3 2.9 5.00 2352.4478
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Table 14: Statistical test of Speed Reducer Design Problem

Friedman Test Wilcoxon Test
Algorithm Mean Rank Rank BIMA Vs − + p-value
MHDA 4.87500 5 MHDA 15 6 N/A
DA 5.10000 8 DA 15 6 N/A
DE 4.87500 7 DE 19 2 N/A
PSO 5.77500 9 PSO 49 6 .02852
GWO 4.87500 6 GWO 15 6 N/A
WOA 4.87500 4 WOA 11 3 N/A
SSA 4.87500 3 SSA 11 4 N/A
DMPSADE 10.0000 10 DMPSADE 210 0 .00008
LSHADE 4.87500 2 LSHADE 15 6 N/A
BIMA 4.87500 1

g6(X⃗) =
[(745(x5/x2x3))2 + 157.5 × 106]

1/2

85x37
− 1 ≤ 0,

g7(X⃗) =
x2x3
40 − 1 ≤ 0, g8(X⃗) =

5x2
x1

− 1 ≤ 0,

g9(X⃗) =
x1

12x2
− 1 ≤ 0, g10(X⃗) =

1.5x6 + 1.9
x4

− 1 ≤ 0,

g11(X⃗) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

The comparison results are given in Table 13.
From Table 13, it can be observed that among the com-

pared optimization algorithms BIMA, DA and GWO opti-
mization have the best minimum results and detected best
solution with considerably less function evaluations. The
statistical performance result is shown in Table 14, where
from Friedman test it can be observed that the rank of
BIMA is one among all the 10 considered algorithms.

7 Conclusion
In this paper, we proposed a novel optimization technique
BIMA inspired by the bargaining nature of human beings
in buying the required product with the best quality and
at optimum price. The buyer hops between shops in order
to purchase products and bargains to ensure the best qual-
ity at minimum cost with the choicest product based on
the reviews made by neighbor buyers about the product.
The proposed BIMA thus provides an appropriate balance
between exploration and exploitationwhich are necessary
and essential features of optimization algorithms. The per-
formance of the proposed BIMA is tested on 23 (Unimodal,
Multi-modal and Fixed dimensional multi-modal) well re-

ported benchmark functions as well as on 30 benchmark
functions of CEC2017 and the results are compared with
some of the most popular optimization algorithms. The re-
sults show that the proposed BIMA outperformed some of
the recent and most popular optimization algorithms as
cited in the manuscript in the majority of the tests and of-
fered very competitive results in the other cases. We tested
theperformanceofBIMAon threewell-knownengineering
design problems and the results show the superiority of
BIMA in comparison to other prominent and recognized al-
gorithms in the literature. The results comprehensively val-
idate the applicability of the algorithm in solving real-life
engineering problems like other standard meta-heuristic
optimizers. The initial convergence rate of the proposed
model is a little sluggish compared to some of the reported
algorithms and may be improved by some innovative, fast
and efficient search mechanisms in the future.
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