
Open Access. © 2018 Francesc D. Muñoz-Escoí and Rubén de Juan-Marín, published by De Gruyter. This work is licensed under
the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

Open Comput. Sci. 2018; 8:154–164

Research Article Open Access

Francesc D. Muñoz-Escoí* and Rubén de Juan-Marín

On synchrony in dynamic distributed systems
https://doi.org/10.1515/comp-2018-0014
Received February 22, 2018; accepted July 10, 2018

Abstract: Many modern distributed services are deployed
in dynamic systems. Cloud services are an example. They
are expected to provide service to a potentially huge
amount of users and may require a wide geographical de-
ployment in multiple data centres. Their service processes
vary in volume in accordance with workload variations,
showing an adaptive behaviour in order to minimise eco-
nomical costs.
Dynamic distributed systems may be classi�ed consider-
ing two axes: (a) the number of processes that compose the
system, and (b) the diameter of the networking graph that
interconnects those processes. Other important features of
dynamic systems can be derived from these two charac-
teristics, e.g., their attainable synchrony. We analyse the
level of synchrony that may be achieved in each dynamic
system class and revise the existing techniques for trans-
forming an initially asynchronous large dynamic system
into another one with a higher synchrony level. With this,
a larger set of problems may be handled in dynamic dis-
tributed systems. This facilitates the implementation and
provision of additional services in those systems.

Keywords:distributed system, dynamic system, system in-
terconnection, synchrony, failure detector, participant de-
tector

1 Introduction
Service continuity has traditionally been one of the objec-
tives in many distributed applications. To this end, pro-
cesses and data should be replicated, but replication, con-
currency and failures should be transparent to users [1],
since another goal of those distributed applications is to
provide a single-system image, i.e., to achieve distribu-

*Corresponding Author: Francesc D. Muñoz-Escoí: Institut Uni-
versitari Mixt Tecnològic d’Informàtica, Universitat Politècnica de
València, 46022 València, Spain; E-mail: fmunyoz@iti.upv.es
Rubén de Juan-Marín: Institut Universitari Mixt Tecnològic
d’Informàtica, Universitat Politècnica de València, 46022 València,
Spain; E-mail: rjuan@iti.upv.es

tion transparency. Unfortunately system components may
fail. Failed components may eventually recover and be re-
integrated in the system. As a result, a �rst level of dy-
namism is introduced in distributed algorithms when a re-
coverable system model is assumed, since the set of par-
ticipating processes may evolve along the algorithm exe-
cution.

Peer-to-peer collaborative applications [2], where
nodes may join and leave the system at will, mobile ad-
hoc networks [3] in which the participating elements may
temporarily be out of reach, elastic cloud computing ser-
vices [4] that manage variable and potentially huge work-
loads, and several kinds of IoT services [5] (e.g., vehicular
monitoring and reporting services for driving/routing as-
sistance in smart tra�c systems) have shown thatmultiple
types of distributed systems are dynamic. So, a de�nition
for dynamic distributed systems is needed.

Baldoni et al. [6] provide that de�nition with a com-
plementary classi�cation of those systems. Its two key pa-
rameters (degree of concurrency and networking graph di-
ameter) condition the characteristics of eachpossible class
of dynamic distributed system. We revise that classi�ca-
tion considering in which classes a synchronous or par-
tially synchronous system model may be assumed. This
identi�es the set of classes where some distributed prob-
lems, like consensus, are solvable when the set of partici-
pating processes may vary while those dynamic services
run. In order to transform an initially asynchronous dy-
namic system into another one with a higher level of syn-
chrony, twoapproaches exist: (a) to identify a stable subset
of processes, or (b) to organise the system into a hierarchy
of interconnectable subsystems. Those approaches make
possible the implementation of additional services in dy-
namic systems, since the applications that provide those
services may run in an apparently synchronous environ-
ment.

The rest of this paper is structured as follows. Section
2 summarises the existing de�nition and classi�cation of
dynamic distributed systems. Section 3 re�nes that clas-
si�cation considering synchrony and states some conse-
quences of that study. Section 4 revises some relatedwork.
Finally, Section 5 concludes the paper.

https://doi.org/10.1515/comp-2018-0014


On synchrony in dynamic distributed systems | 155

2 Classi�cation of dynamic
distributed systems

According to Baldoni et al. [6], a dynamic distributed sys-
tem is:

De�nition 1 (Dynamic System). Acontinually running sys-
tem in which an arbitrarily large number of processes are
part of the system during each interval of time and, at any
time, any process can directly interact with only an arbitrary
small part of the system.

This de�nition provides a characterisation of dynamic dis-
tributed systems that is accompanied with a classi�cation
of them. Several considerations arise from De�nition 1:

C1: Applications developed for dynamic systems are un-
able to know the identity of all processes that currently
belong to their system.

C2: Because of C1, the communication topology in a sys-
tem cannot be a fully connected graph. This means
that algorithms should use a multi-hop communica-
tion mechanism in order to reach all processes when
messages should be broadcast to all participants.

Since dynamism implies that processes may join and
leave the system at will, the concepts of system run, system
graph and graph sequence are de�ned [6].

De�nition 2 (System run). A system run is a total order on
the join and leave events issued by processes that respects
their real time occurrence order.

De�nition 3 (System graph). A distributed system can be
represented by a graph G = (P, E), where P is the set of
processes that compose the system and E is a set of edges
(pi , pj), representing bidirectional reliable channels con-
necting processes pi and pj.

System graphs do not need to be fully connected, and the
addition or removal of any node or edge generates a di�er-
ent graph. So, these graph updates de�ne a sequence of
graphs in a given system run.

De�nition 4 (Graph sequence). Let {Gn}run denote the se-
quence of graphs throughwhich the systempasses in a given
run. Each Gn ∈ {Gn}run is a connected graph whose diam-
eter can be greater than one.

Based on these concepts, the classi�cation given by Bal-
doni et al. [6] considers these two dimensions:

Table 1: Dynamic models considering the P and D parameters.

Number of Network diameter
processes Db Dn D∞

Pb Mb,b – –

Pn Mn,b Mn,n –

P∞ M∞,b M∞,n M∞,∞

– Number of concurrent entities (P). Assuming systems
with in�nitely many processes, as they were identi-
�ed and classi�ed in [7], these variants can be distin-
guished:
– Pb: The number of processes that concurrently be-

long to the system is bounded by a constant b in
all system runs.

– Pn: The number of processes that concurrently be-
long to the system is bounded in each system run,
but may be unbounded when the union of all sys-
tem runs is considered.

– P∞: The number of processes that concurrently
belong to the system in a single run may grow to
in�nity as time passes.

– Diameter of the interconnecting graph (D). This param-
eter models the “geographical” dynamism of the sys-
tem. To this end, {Dn}run denotes the set of diameters
of the graphs in {Gn}run. The alternatives to be consid-
ered regarding the graph diameter are:
– Db, bounded and known diameter: The diameter is

bounded by b and that bounds value is known by
the algorithms, i.e.: ∀Dn ∈ {Dn}run , Dn ≤ b.

– Dn, bounded and unknown diameter: All diame-
ters {Dn}run are �nite in each run, but the union of
all Dn in {Dn}run may be unbounded. Therefore,
an algorithm has no information on the diameter.

– D∞, unbounded diameter: The diametermay grow
inde�nitely in a run.

With those parameters, the MP,D set of models is de-
�ned. Both parameters can assume values b, n and ∞ to
indicate their three variants. From the nine possible mod-
els, Mb,n, Mb,∞ and Mn,∞ are not possible since their di-
ameter is bounded by the number of processes, with a
maximum value Dmax =| P | −1. As a result, we may only
have six models that correspond to the following combi-
nations: Mb,b, Mn,b, M∞,b, Mn,n, M∞,n and M∞,∞. Those
models are depicted in Table 1.



156 | Francesc D. Muñoz-Escoí and Rubén de Juan-Marín

3 Classi�cation re�nement
Let us re�ne in Section 3.1 dimension P from the clas-
si�cation given in [6]. To this end, we present the con-
currency subclasses proposed in [8]. Section 3.2 analyses
which level of synchrony may be achieved in each class of
dynamic distributed system. That analysismay be used for
studying in which classes some distributed system prob-
lems (e.g., consensus)may be solved. Section 3.3 describes
which techniques may increase that inherent level of syn-
chrony in non-synchronous classes. Later on, Section 3.4
discusses the place of static distributed systems in that
classi�cation.

3.1 Concurrency re�nement

Let S be a distributed system. Marcos K. Aguilera [8] pro-
poses an alternative classi�cation of distributed systems
with in�nitely many processes. In it, he focuses on the
arrival of processes, since this is another source of dy-
namism. The identi�ed classes are:

– Mn
1: S has a �nite number (n) of processes. This model

is called the n-arrival model. Algorithms know the n
value in this model.

– M2: S has in�nitely many processes, but each run has
only �nitely many. This model is called the �nite ar-
rival model. Algorithms do not know how many pro-
cesses will participate in each run.

– M3: S has in�nitely many processes, runs can have in-
�nitely many processes, but only �nitely many pro-
cesses take steps in each �nite time interval. This
model is known as the in�nite arrival model and con-
tains two subsets:
– Mb

3: AnM3modelwhere every runhas amaximum
concurrencyboundedby constant b (knownbyal-
gorithms). In this model, there may be in�nitely
manyprocesses onlywhenprocesses depart at the
same rate that new processes join S. It is known
as the in�nite arrival model with b-bound concur-
rency. It is the Pb model in [6].

– M�nite
3 : An M3 model in which every run has a

maximumconcurrency that is �nite. It is knownas
the in�nite arrival model with bound concurrency.
It is the Pn model in [6].

– M4: S has in�nitely many processes, runs can have in-
�nitely many processes, and a �nite time interval may
have in�nitely many processes. This is the in�nite con-
currency model. This is model P∞ in [6].

Figure 1: Relations among process system classes.

The classi�cation of in�nitely many concurrent pro-
cesses proposed byMerritt and Taubenfeld [7], assumed in
[6], considers similar sets than the one given in [8]. How-
ever, Aguilera [8] identi�es more classes and carefully de-
scribes the inclusion relations among classes, as we sum-
marise hereafter (They are depicted in Figure 1):

– Mn
1 ⊂ M2 ⊂ M�nite

3 ⊂ M3 ⊂ M4;
– Mb

3 ⊂ M�nite
3 ;

– M2 ⊄ Mb
3;

– Mn
1 ⊂ Mb

3, if n ≤ b.

These inclusion relations also arise in the P* models
identi�ed in [6], since Pb = Mb

3, Pn = M�nite
3 and P∞ = M4.

Therefore, in order to avoid ambiguity, whenwe refer here-
after to a model Px, the following consideration should be
assumed:

C3: P∞ refers to its set of runs not included in Pn. Pn refers
to its set of runs not included in Pb.

A dynamic system consists of in�nitely many pro-
cesses; i.e., classes M2, M3 andM4 in [8]. Those classes de-
�ne di�erent process arrival models. Therefore, our clas-
si�cation re�nement can be depicted as a third axis that
re�nes the �rst one: the arrival model (A), either �nite (f)
or in�nite (i). So, the resulting classi�cation generates a set
of models M P,D,A. The two arrival variants that de�ne the
A axis should be understood as follows:

– Af (�nite arrival): In amodelM p,d,f , where p ∈ {b, n}
and d ∈ {b, n}, that model encompasses the subset
of runs with �nite processes (i.e., complying with M2)
that belong to the corresponding Mp,d model de�ned
in [6].

– Ai (in�nite arrival): In a model M p,d,i, where p ∈
{b, n, ∞} and d ∈ {b, n, ∞}, thatmodel encompasses
the subset of runswith in�nite processes (i.e., comply-



On synchrony in dynamic distributed systems | 157

Table 2: Dynamic models considering the P, D and A axes.

Number of Network diameter Process
processes Db Dn D∞ arrival

Pb M b,b,f – – Af

M b,b,i – – Ai

Pn M n,b,f M n,n,f – Af

M n,b,i M n,n,i – Ai
P∞ M∞,b,i M∞,n,i M∞,∞,i

ing with M3 or M4) that belong to the corresponding
Mp,d model de�ned in [6].

In speci�c cases,wemay also refer to the n-arrival (An)
variant (i.e., a subset of runs in the �nite arrival one) that
corresponds to the Mn

1 model identi�ed in [8].
When this third axis is considered, the resulting set of

dynamic system models contains the following elements:
M b,b,f , M b,b,i, M n,b,f , M n,b,i, M n,n,f , M n,n,i, M∞,b,i,
M∞,n,i, M∞,∞,i, as depicted in Table 2.

Note that both Pb and Pn, as depicted in Figure 1, con-
tain runs that belong either to the M2 or the M3 concur-
rency models. However, P∞ only contains runs in M4 and
in M3 \ Pn because of consideration C3. Therefore, P∞ may
only assume an in�nite arrival model.

3.2 Achievable synchrony

Several degrees of asynchrony may be distinguished. To
this end, Dolev et al. [9] (based on [10]) identify three pos-
sible axes of asynchrony in a distributed system:

1. Processor asynchrony allows a processor to remain in
the same execution step for arbitrarily long �nite in-
tervals while other processors continue to run.

2. Communication asynchrony does not allow message
delivery time to be limited.

3. Message order asynchrony allows messages to be de-
livered in an order di�erent from the order in which
they were sent.

It can be argued that the message order asynchrony is
a consequence of the other two axes; i.e., when both pro-
cessors and communications are asynchronous it is im-
possible to order the delivery of messages sent by di�er-
ent processors since there is noway to know their concrete
sending order.

From the other two remaining axes, communication
asynchrony seems to be the principal one. It is accepted
that processor synchrony can be simulated with a reason-
able e�ort in a system that uses logical bu�ering [11]; i.e.,
an algorithm that assumes synchronous processes can be
executed using asynchronous processes if the algorithm
steps are appropriately numbered in each processor and
messages are bu�ered until their receiver has reached the
appropriate step. Communication may be asynchronous
to this end. Although there are also general synchronis-
ers (i.e., algorithms that simulate both synchronous pro-
cessors and synchronous communications) they cannot be
easily implemented in a real system (e.g., they require un-
bounded space). As a result, let us revise in the following
sections all these dynamic models regarding whether syn-
chronous communication may be achieved in them, since
this is a key property in order to decide whether or not
the studied systemmodels could be synchronous. Besides,
communication is considered partially synchronous when
there are bounds on message transmission time but the
bounds value is unknown [12], and it is considered syn-
chronous when the bounds value is known [9].

Let us assume that each point-to-point communica-
tion link is synchronous, and δ is its knownbound onmes-
sage transmission time. This assumption provides the best
scenario for ensuring that interprocess communication is
synchronous, but we will see that even in this ideal sce-
nario most dynamic system models are asynchronous.

According to consideration C2, if any algorithm step
requires that a given process (for instance, a coordina-
tor) sends a message to every other process, such mes-
sage propagation will need epidemic broadcasting [13],
i.e., each receiver forwards the message to every neigh-
bour and remembers the message identity. Later on, if the
same message is received again, it is not resent. Eventu-
ally, thosemessages become propagated to all system pro-
cesses.

Let us analyse whether or not processes may assume
bounds on message transmission time. To this end, two
dimensions may be considered: process concurrency and
network diameter. Process concurrency is more restrictive
than network diameter in regards to communication syn-
chrony. For instance, M b,b,i models assume an in�nite ar-
rival of processes and such in�nite arrival rate may de-
lay without any bounds the propagation of messages. On
the other hand, the network diameter may only endan-
ger a �nite and known message transmission time when
the M *,n,* or M∞,∞,i models are considered, but in those
models Pn or P∞ should be used and both admit longer
message propagation delays than Pb. Therefore, let us fo-



158 | Francesc D. Muñoz-Escoí and Rubén de Juan-Marín

cus our attention on process arrival models [8] since they
re�ne process concurrency:

– Mn
1 (n-arrival) model: There are n processes in the sys-

tem, and n is known by the algorithms. In this case,
the communication paths between those n processes
may be found using epidemic broadcasts. Therefore,
we may state the following theorem:

Theorem 1 (Mn
1 synchronous communication). As-

suming a δ upper limit on message propagation time
through a link, the message transmission time between
every pair of processes in a distributed system S that
follows the Mn

1 model with a bounds value b on the
network diameter is bounded and its bounds value is
known.

Proof. The proof of this theorem is immediate, given
the bounds value on the network diameter (b), the
known and bounded size of the process set (n) and the
link transmission time (δ).

Note that if thenetworkdiameter is b, an epidemic
broadcast will be able to reach all current system pro-
cesses in b steps. Since b and δ are known, the result-
ingboundsvalueonmessage transmission time is also
known. It is bδ in the general case, in which there is at
least a stable path between p1 and p2.

– M2 (�nite arrival) model: In this model, algorithms
do not know how many processes will participate in
each run, but it is guaranteed that there is a time t′

after which no new processes are started [8]. In this
concurrency model, communication is partially syn-
chronous:

Theorem 2 (M2 partial synchronous communic.).
The message transmission time between every pair of
processes p1 and p2 in a distributed system S in model
M2 is bounded but that bounds value is unknown.

Proof. Let p1 and p2 be placed on two opposite edges
of the interconnecting network. Let pi1 be the initial
process that holds a link between S − {p2} and p2.

Without loss of generality, let pk be the single pro-
cess that directly precedes pi1 in the communication
path between p1 and p2. (If there were many pi1 pro-
cesses, what is described hereafter would apply for
each one of them, with the same overall result.) Pro-
cess pk forwards m to pi1 at time t0. At time t0 + δ1,
with δ1 < δ, pi1 leaves the system. As a result of this,

m is lost. At time t0 + δ2, with 0 < δ2 joins the system,
de�ning a path (pk , pi2 , p2).

Eventually, pk detects that m has been lost and it
retries at time t1 to forward m to pi2 . However, in the
interval [t1 + δ1, t1 + δ2], pi2 is replaced by pi3 and
m is lost again. Indeed, those message sending reat-
tempts and process replacements may still occur mul-
tiple times from now on. In spite of this, since the pro-
cess arrival is �nite in this model, there will be a time
t′ after which no other process arrival will happen. At
that moment, the links between pk and p2 stabilise,
and m is �nally delivered to p2. However, we cannot
forecast how many reattempts will be done. Thus, the
delivery time of m to p2 is bounded, but its bounds
value cannot be known.

– Mb
3 (in�nite arrival with b-bound concurrency)model:

Processes depart from the system at an in�nite rate
and each time a process leaves the system, another
new process replaces that leaving one. Communica-
tion is asynchronous in that kind of model, as proven
in this theorem that assumes a system network diam-
eter greater than 1:

Theorem 3 (Mb
3 asynchronous communication). The

message transmission time between processes p1 and
p2 has no bounds in a distributed system S that follows
theMb

3 model.

Proof. Let us look for a case where the arrival of new
processes in�nitely extends the communication time
between p1 and p2. Without loss of generality, let us
assume that p1 and p2 are placed on two opposite
edges of the interconnecting network and that a sin-
gle communication link connects p2 to the remaining
processes in S. Let pi1 be the initial process that holds
the unique link between S−{p2} and p2. If there were
other links, the same would happen to them.

Let us imagine that another process pk in the com-
munication path between p1 and p2 is forwarding m
to pi1 at time t0. At time t0 + δ1, with δ1 < δ, pi1
leaves the system and m is lost. At time t0 + δ2, with
0 < δ2 ≤ δ1 < δ, pi2 joins the system such that it is
able to receive the messages sent by pk and propagate
those messages to p2.

Eventually, pk detects that m has been lost and it
retries at time t1 to forwardm to pi2 . However, at times
t1 + δ1 and t1 + δ2, pi2 is replaced by pi3 and m is lost
again. Indeed, those message sending reattempts and
process replacements may still occur in�nitely often
from now on (in general, ∀j > 0, at times tj +δ1, tj +δ2,



On synchrony in dynamic distributed systems | 159

being pij+1 replaced by pij+2 ). Thus, the delivery ofm to
p2 is delayed in�nitely often. Thismeans thatmessage
propagation time has no bounds in this scenario. So,
the resulting communication model is asynchronous.

– M�nite
3 (in�nite arrival with bound concurrency)

model: In�nite arrival model in which each run has
a maximum concurrency that is �nite. Its commu-
nication is also asynchronous, as proven in this
corollary:

Corollary 1 (M�nite
3 asynchronous communication).

The message transmission time between processes p1
and p2 has no bounds in a distributed system S that
follows theM�nite

3 model.

Proof. Immediate from Theorem 3. The scenario de-
scribed in its proof is directly applicable in thismodel,
too, since Mb

3 ⊂ M�nite
3 .

– M4 (in�nite concurrency)model: In�nite arrivalmodel
in which each run has no bounds on its concurrency.
Its communication is also asynchronous, as proven in
this corollary:

Corollary 2 (M4 asynchronous communication). The
message transmission time between processes p1 and
p2 has no bounds in a distributed system S that follows
theM4 model.

Proof. Immediate from Theorem 3. The scenario de-
scribed in its proof is directly applicable in thismodel,
too, since Mb

3 ⊂ M4.

Once those concurrency models have been analysed,
let us translate those results to our M P,D,A re�ned set of
models:

Corollary 3. The M b,b,n model may assume synchronous
communication.

Proof. Since an M b,b,n system assumes an Mn
1 process

model, then Theorem 1 directly implies that M b,b,n may
assume synchronous communication.

Corollary 4. The M b,b,f , M n,b,f and M n,n,f models may
assume partial synchronous communication.

Proof. Since all �nite arrival systems assume an M2 pro-
cess concurrency model, then Theorem 2 determines that
all thosemodelsmay assumepartial synchronous commu-

nication. Note that Theorem 2 has made no assumptions
on the network diameter value. Therefore, its results may
be applied in all those models.

Corollary 5. The M b,b,i, M n,b,i, M∞,b,i, M n,n,i, M∞,n,i

and M∞,∞,i models should assume asynchronous commu-
nication.

Proof. Since all cited systems assume either an M3 or M4
process model, then Theorem 3 (or its corollaries 1 or
2) is applicable in each system. All those cases generate
the same result: the asynchronous communication model
should be assumed.

Note that Theorem 3 has made no assumptions on the
network diameter value. Therefore, its results may be ap-
plied in all those models.

Figure 2 shows graphically which level or levels of com-
munication synchrony correspond to each process concur-
rency class.

Figure 2:Maximum level of synchrony for each system class.

3.3 Consequences

Our classi�cation re�nement implies that some classical
problems that are not solvable [14] in traditional asyn-
chronous reliable distributed systems where processes
may fail, will not be solvable in M∞,∞,i or in any M *,n,i

or M *,b,i dynamic systems. This includes consensus [10]
and many others [14]. On the other hand, problems solv-
able in (partially) synchronous systems require that the re-
sulting dynamicmodel becomes one of theM n,n,f ,M n,b,f

or M b,b,f subclasses.
Therefore, we need a useful framework for structur-

ing any general (and potentially unbounded) dynamic dis-
tributed system into a set of smaller and synchronous dy-



160 | Francesc D. Muñoz-Escoí and Rubén de Juan-Marín

namic subsystems. In this way, traditional algorithms that
assume a known number of processes or that need some
degree of synchrony could be used in a large dynamic
system. In this regard, several basic approaches may be
found:

– The �rst one sets a hierarchical organisation of sys-
tem processes, de�ning multiple subsystems and in-
terconnecting them using inter-subsystem channels.
Each subsystem uses its own subnetwork and con-
nects with other subsystems using bridges. Therefore,
the algorithms in each subsystem see a fully con-
nected networkwith a logical network graph diameter
of length 1. On the other hand, when a process sends a
message to another process in a di�erent subsystem,
it needs at least one forwarding step driven by some
“bridge” process or a path along several bridges. Thus,
the global network graph diameter is greater than 1 in
that scenario.

Rodrigues and Veríssimo used those principles in
their causal separators [15] proposal. Causal separa-
tors are a scalability mechanism for causal message
multicasting. With them, each subsystem may use its
own internal (and di�erent) causal multicast algo-
rithm. Each internally delivered message is forwarded
to other subsystems by a specialised bridge process
that knows the addresses of the remaining bridges. In
order to reach a global causal ordering, such message
inter-subsystem forwarding needs FIFO (i.e., �rst in,
�rst out) order when there are only two subsystems
[15] or causal order in other cases [16]. This provides
a �rst example of how to use a classical algorithm in-
tended for a M b,1,f system (those to be used in each
subsystem) combined with another one of the same
kind (the interconnecting algorithm, that is also for
M b,1,f systems) in order to manage an M n,b,f sys-
tem, since the resulting global system has a large and
potentially bounded but unknown set of processes.
This �rst kind of hierarchical architectures was used
in the context of interconnectable message broadcast
protocols [15–19] and interconnectable memory con-
sistency models [20]. A hierarchical organisation pro-
vides a solid basis for building large dynamic systems
in order to solve problems with a decomposable do-
main (e.g., support of fast consistency models [21] in
case of using replicated data elements, implementa-
tion of FIFO or causal message broadcast algorithms
[17]...).

In this �rst example, the resulting overall system
belongs to the M n,b,f class. Let us revise whether any
M *,n,i system may be handled with this same strat-

egy. To this end, each started process is compelled to
be integrated in any of the already existing subsys-
tems. That was the principle that drove partially cen-
tralised P2P systems [2]. In those systems, a supernode
(or super-peer) is the only process known by all pro-
cesses in a given area. Supernodes index all resources
in that system subset and they forward the requests
that cannot be answered in that subset to other su-
pernodes in order to get an answer. Thus, all system re-
sources may be accessed by every process. The popu-
lation in each subset varies with time and there are no
upper bounds on the global amount of participating
processes. In this second example, the resulting sys-
tem belongs to the M∞,n,i class since all supernodes
do not know each other: each supernode only needs
to know a few other supernodes and their communi-
cation is driven by an epidemic broadcast. Besides,
each supernode does not need to know the addresses
of all the nodes that may use its services. That set of
user nodes varies dynamically and cannot bebounded
nor knownwith precision. The supernode only knows
which resources have been published or downloaded
by those processes, i.e., it only knows the addresses of
a subset of processes that use its services.

Another example of global M *,n,i system that
may rely on simpler M *,1,i algorithms in each subsys-
tem is an interconnectable FIFO multicast algorithm
[22]. FIFOmulticasting hasmore relaxed requirements
than causal multicasting. Thus, FIFO multicasting
only needs FIFO propagation through the inter-bridge
channels. If messages are tagged with their initial
bridge forwarder identi�er in order to avoid repeated
delivery, inter-bridge propagation can be achieved us-
ing an epidemic propagation. In that case, the bounds
on the amount of subsystems that compose the dis-
tributed systemmay be unknown by the participating
processes.

– The second approach was proposed by Mostéfaoui et
al. [23]. It de�nes a stable subset of processes able
to ensure algorithm progress. This stable set should
comply with some constraints: a minimal number of
processes (α) that remain in the system long enough
(stability), and a strong cooperation among those α
processes (and this suggests that they assume a fully-
interconnecting network among them). Note that α
simulates the static-system requirement of maintain-
ing at least n − f correct processes, where n is the ini-
tial number of system processes and f is the current
number of failed processes. Additionally, two com-
plementary communication primitives are provided: a
query-response that broadcasts a query and waits for



On synchrony in dynamic distributed systems | 161

α answers, and a broadcast operation that is able to
propagate information to all system processes. At a
glance, this implies that the stable subset conforms
to the M b,b,f system model, whilst the overall sys-
temmay assume even theM∞,∞,i one. Algorithms are
executed in an M b,b,f subpart, propagating their ad-
vancements to the remaining processes that may join
the distinguished subset if they are su�ciently stable.
To this end, they only need to be one of the �rst α repli-
ers to the query-response primitives being executed in
the corresponding algorithm.

Fortunately, not all problems demand a synchronous
system in order to be solved. So, each problem should be
carefully studied to analyse inwhich kinds of dynamic sys-
tem it is solvable. An example is presented in [6] where the
one-time query problem [24] is initially solved in an M*,b

system with the WildFire algorithm [24], but its speci�ca-
tion is later slightly relaxed in order to build the Depth-
Search algorithm [6] that solves it also in any M*,n model
but not in an M∞,∞ one.

3.4 Static and dynamic frontier

A question that arises from the properties outlined above
is where to place the frontier between static and dynamic
systems. According to De�nition 1, each process in a dy-
namic system is unable to know the identity and location
of all other processes since that system may have a po-
tentially very large number of processes that is dynami-
cally changing. Because of this, the resulting communi-
cation graph has a diameter greater than one, since each
process is usually unable to directly communicate with ev-
ery other. Thus, a static system should break both condi-
tions. This means that: (S1) the identity and address of all
the remaining processes are known by each process (i.e.,
the amount of processes in the system is bounded and the
bounds value is known); and (S2) this allows a logically
fully connected network among all system processes (i.e.,
a network graph diameter of length 1). Those two charac-
teristics de�ne an M b,1,n submodel of static distributed
systems in theM b,b,f model from our classi�cation re�ne-
ment. The n-arrival concurrency model (i.e., model Mn

1 in
[8]) enables processes to know each other, and a value 1
for the network diametermatches its assumed logical fully
connected network.

Therefore, that hypothetical frontier cannot be drawn
on a grid of distributed system classes as that depicted in
Table 2, since static distributed systems are only a subpart
of the minimal set that can be de�ned in that MP,D,A tax-

Table 3: Models in the re�ned MP,D,A taxonomy.

# Network diameter Proc
Proc D1 Db Dn D∞ arriv

Pb
M b,1,n M b,b,n – – An

M b,1,f M b,b,f – – Af

M b,1,i M b,b,i – – Ai

Pn M n,1,f M n,b,f M n,n,f – Af

M n,1,i M n,b,i M n,n,i – Ai
P∞ M∞,1,i M∞,b,i M∞,n,i M∞,∞,i

onomy. Thus, in order to represent it, we need to explicitly
consider the An arrival model that does not comply with
condition C1 and we should also de�ne a D1 class (i.e.,
the assumed system network graph has diameter 1) that
implicitly breaks condition C2. This means that a new re-
�nement step is needed for considering static distributed
systems. That new An arrival model only makes sense in
the Pb process model, since it stipulates that the overall
number of processes in a run is bounded and known by
the algorithms, and that requirement is only met in the Pb

model.
Table 3 shows the resulting grid of distributed system

models with this re�ned MP,D,A taxonomy.
All models in Table 3 that are also in Table 2 corre-

spond to dynamic distributed systems. On the other hand,
model M b,1,n corresponds to static distributed systems.
But there are several other cells in the grid that are not in
any of those two sets. They may be considered as partially
dynamic distributed systems, because:

– Those models placed in the �rst row and not in the
�rst column (i.e., model M b,b,n) comply with condi-
tion C2 but do not comply with C1. This means that
they are not entirely dynamic. However, they comply
with condition S1 but not with S2. So, they are not en-
tirely static.

– Thosemodels placed in the �rst column and not in the
�rst row (i.e., models M b,1,f , M b,1,i, M n,1,f , M n,1,i,
M∞,1,i) do not comply with C2. So, they are not en-
tirely dynamic. However, they comply with condition
S2 but not always with S1 (those runs with Af will
eventually comply with S1 once no other processes
arrive to the system). Therefore, they are not entirely
static, either.

There have been several examples of those partially
dynamic distributed systems. For instance, the system de-



162 | Francesc D. Muñoz-Escoí and Rubén de Juan-Marín

scribed in [25] belongs to theM b,1,i class, since it assumes
a known upper value in the amount of system processes
(Pb), an in�nite arrival of them (Ai) and IP-multicasting
in order to intercommunicate the currently running pro-
cesses (D1).

On the other hand, the M∞,1,i class cannot be imple-
mented in a real system. In�nite concurrent processes in a
�nite interval of time cannot exist. If theywere, theywould
neither have an interconnecting network of diameter 1. It
is only a theoretical model.

4 Related work
As it is explained in Consideration C1 and De�nition 1, not
all processes in a dynamic distributed system know each
other. We have analysed the level of synchrony that can
be guaranteed in each class of dynamic system. Synchrony
may be needed for solving some problems in a distributed
system and consensus is an example of those problems.
There have beenmultiple previous papers that have solved
consensus with unknown participants. They also studied
the needed level of synchrony, although implicitly, since
the failure detectors [26] used in each paper were di�er-
ent, and each one required a given level of synchrony in or-
der to be implemented. For instance, according to Larrea et
al. [27], W , Q, S and P detectors demand a synchronous
model, while ◊W , ◊Q, ◊S and ◊P demand at least a par-
tial synchronous model when processes may fail.

To begin with, Jiménez et al. proved in [28] that none
of the eight failure detector classes proposed in [26] may
be implemented in a system with unknown membership,
but the Ω [29] failure detector can be implemented [30]
there. In order to circumvent that impossibility, Cavin et
al. [31] introduced the concept of participant detectors. In
that scope, each process calls its local participant detec-
tor in order to obtain an approximation on the current set
of participating processes. Participant detectors have two
properties:

– Information inclusion: The information returned by
each detector is non-decreasing over time.

– Information accuracy: A detector never returns a pro-
cess that does not belong to the system.

In the system assumed in [31] processes cannot fail.
That paper proves that consensus may be solved in that
system with a one sink reducibility (OSR) participant de-
tector. OSR is a participant detector that requires that the
detected network graph is connected and that its directed

acyclic graph obtained by reducing the original directed
interconnection graph to its strongly connected compo-
nents has only one sink.

In practice, this means that the interconnecting net-
work should be stable and the set of processes respects an
Mn

1 model [8]. Since failures are not tolerated in that pa-
per, nothing is mentioned about the failure detector being
needed for supporting consensus in that scenario or about
the actual level of synchrony required for implementing
consensus in that system.

In a subsequent technical report [32], the same au-
thors extend their results to a crash-prone model and pro-
vide a solution for the consensus problem with unknown
participants. In that case, they explicitly recognise that the
OSR participant detector should be complemented with
a perfect (P) failure detector. According to Larrea et al.
[27], P may only be implemented in a synchronous sys-
tem. This matches what we have outlined in our previous
sections, since the system being assumed in [32] is an ex-
ample of anM b,b,n system and those systemsmay assume
synchronous communication.

Later, Greve and Tixeuil [33] explicitly combine an Ω
failure detector with a k-OSR participant detector in order
to solve consensus on an asynchronous system with un-
known membership. In that case, a �nite process set is
assumed and processes may fail by crashing. The k-OSR
participant detector ensures a k-connected network graph
and the system tolerates up to f concurrent failures, with
f < k. With our results, this corresponds to a M b,b,f model
that admits up to a partial synchronous communication
model. The usage of an Ω failure detector matches that
level of synchrony, according to [27, 28].

Recently, Alchieri et al. [34, 35] have addressed the
problem of Byzantine consensus with unknown partici-
pants for systems with n processes where the n value is
unknown (i.e., these systems follow the M2 model) and
up to f concurrent failures. The interconnecting network is
k-strongly connected, and the algorithm requires a k-OSR
participant detector where f < k

2 < n and the sink graph
component should have at least 3f +1 processes. When all
those requirements are met, Byzantine consensus may be
solved like in any distributed system with known partici-
pants. This means that any of the Byzantine-speci�c fail-
ure detectors proposed in [36]may be assumed. Those fail-
ure detectors require apartial synchronous system inorder
to be implemented, according to [36].



On synchrony in dynamic distributed systems | 163

5 Conclusions
Baldoni et al. [6] identify six di�erent classes of dynamic
systems (speci�ed as MP,D), crossing two axes: the de-
gree of concurrency (P) and the network diameter (D). The
resulting classes are: Mb,b, Mn,b, M∞,b, Mn,n, M∞,n and
M∞,∞. We have analysed the highest degree of system syn-
chrony achievable in each class. To this end, a new A (i.e.,
arrival model) axis has been added to that classi�cation
(M P,D,A).

Our analysis of the attainable degree of synchrony in
every dynamic system class has shown that six classes are
inherently asynchronous, even when synchronous links
are assumed:M∞,b,i,M∞,n,i,M∞,∞,i,M n,b,i,M n,n,i and
M b,b,i. The algorithms that require at least a partially syn-
chronous model cannot be run in those classes, but there
are some system structuring techniques that allow the
transformation of asynchronous classes into others that
admit a synchronous model. Those techniques are based
on two principles: (1) a division of the initial system in
multiple interconnectable subsystemswith aboundednet-
work graph diameter and a global hierarchical structure,
imposing a �nite arrival model in each subsystem, and (2)
the de�nition of a stable group of processes that sets the
needed level of synchrony for allowing algorithmprogress.
With those techniques, a larger set of services may be im-
plemented in dynamic systems.

The degree of synchrony thatmay be attained in di�er-
ent classes of dynamic systems has been implicitly studied
in previous works focused on solving consensus with un-
knownparticipants. In that scope, synchrony is embedded
in the implementation requirements of the failure detec-
tors being needed for solving consensus. Our results pro-
vide an alternative way of discussing synchrony in these
systems, being more direct than determining synchrony
based on failure detectors.

References
[1] Traiger I. L., Gray J., Galtieri C. A., LindsayB.G., Transactions and

consistency in distributed database systems, ACM Transactions
on Database Systems, 1982, 7(3), 323–342

[2] Androutsellis-Theotokis S., Spinellis D., A survey of peer-to-
peer content distribution technologies, ACM Computing Sur-
veys, 2004, 36(4), 335–371

[3] Ruiz P., Bouvry P., Survey on broadcast algorithms for mobile ad
hoc networks, ACM Computing Surveys, 2015, 48(1), 8:1–8:35

[4] Muñoz-Escoí F. D., Bernabéu-Aubán J. M., A survey on elastic-
ity management in PaaS systems, Computing, 2017, 99(7), 617–
656

[5] Gubbi J., Buyya R., Marusic S., Palaniswami M., Internet of
things (IoT): A vision, architectural elements, and future direc-
tions, Future Generation Comp. Syst., 2013, 29(7), 1645–1660

[6] Baldoni R., Bertier M., Raynal M., Tucci-Piergiovanni S., Looking
for a de�nition of dynamic distributed systems, In: 9th Interna-
tional Conference on Parallel Computing Technologies (PaCT),
LNCS, Springer, 2007, 4671, 1–14

[7] Merritt M., Taubenfeld G., Computing with in�nitely many pro-
cesses, In: 14th International Conference on Distributed Com-
puting (DISC), LNCS, Springer, 2000, 1914, 164–178

[8] Aguilera M. K., A pleasant stroll through the land of in�nitely
many creatures, SIGACT News, 2004, 35(2), 36–59

[9] Dolev D., Dwork C., Stockmeyer L. J., On the minimal synchro-
nism needed for distributed consensus, Journal of the ACM,
1987, 34(1), 77–97

[10] Fischer M. J., Lynch N. A., Paterson M., Impossibility of dis-
tributed consensus with one faulty process, Journal of the ACM,
1985, 32(2), 374–382

[11] Welch J. L., Simulating synchronous processors, Information
and Computation, 1987, 74(2), 159–170

[12] Dwork C., Lynch N. A., Stockmeyer L. J., Consensus in the pres-
ence of partial synchrony, Journal of the ACM, 1988, 35(2), 288–
323

[13] Gupta I., Kermarrec A. M., Ganesh A. J., E�cient epidemic-style
protocols for reliable and scalable multicast, In: Proceedings of
21st IEEE Symposium on Reliable Distributed Systems (SRDS),
IEEE-CS Press, 2002, 180–189

[14] Fich F., Ruppert E., Hundreds of impossibility results for dis-
tributed computing, Distributed Computing, 2003, 16(2-3), 121–
163

[15] Rodrigues L., Veríssimo P., Causal separators for large-scale
multicast communication, In: Proceedings of 15th International
Conference on Distributed Computing Systems (ICDCS), 1995,
83–91

[16] Baldoni R., Friedman R., van Renesse R., The hierarchical daisy
architecture for causal delivery, In: Proceedings of 17th Interna-
tional Conference on Distributed Computing Systems (ICDCS),
1997, 570–577

[17] Johnson S., Jahanian F., Shah J., The inter-group router ap-
proach to scalable group composition, In: Proceedings 19th
IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), 1999, 4–14

[18] de Juan-Marín R., Cholvi V., Jiménez E., Muñoz-Escoí F. D., Par-
allel interconnection of broadcast systems with multiple FIFO
channels, In: On theMove toMeaningful Internet Systems (OTM
2009), LNCS, Springer, 2009, 5870, 449–466

[19] de Juan-Marín R., Decker H., Armendáriz-Íñigo J. E., Bernabéu-
Aubán J.M.,Muñoz-Escoí F. D., Scalability approaches for causal
multicast: a survey, Computing, 2016, 98(9), 923–947

[20] Fernández A., Jiménez E., Cholvi V., On the interconnection
of causal memory systems, In: Proceedings of the 19th an-
nual ACM Symposium on Principles of Distributed Computing
(PODC), ACM Press, 2000, 163–170

[21] AttiyaH., FriedmanR., Limitationsof fast consistency conditions
for distributed shared memories, Information Processing Let-
ters, 1996, 57(5), 243–248

[22] Álvarez Á., Arévalo S., Cholvi V., Fernández A., Jiménez E., On
the interconnection of message passing systems, Information
Processing Letters, 2008, 105(6), 249–254



164 | Francesc D. Muñoz-Escoí and Rubén de Juan-Marín

[23] Mostéfaoui A., Raynal M., Travers C., Patterson S., Agrawal D.,
El Abbadi A., From static distributed systems to dynamic sys-
tems, In: 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), IEEE-CS Press, 2005, 109–118

[24] Bawa M., Gionis A., Garcia-Molina H., Motwani R., The price of
validity in dynamic networks, Journal of Computer and System
Sciences, 2007, 73(3), 245–264

[25] Tucci-Piergiovanni S., Baldoni R., Eventual leader election in in-
�nite arrivalmessage-passing systemmodel with bounded con-
currency, In: 8th European Dependable Computing Conference
(EDCC), 2010, 127–134

[26] Chandra T. D., Toueg S., Unreliable failure detectors for reliable
distributed systems, Journal of the ACM, 1996, 43(2), 225–267

[27] Larrea M., Fernández A., Arévalo S., On the implementation of
unreliable failure detectors in partially synchronous systems,
IEEE Transactions on Computers, 2004, 53(7), 815–828

[28] Jiménez E., Arévalo S., Fernández A., Implementing unreliable
failure detectors with unknown membership, Information Pro-
cessing Letters, 2006, 100(2), 60–63

[29] Chandra T. D., Hadzilacos V., Toueg S., The weakest failure de-
tector for solving consensus, Journal of the ACM, 1996, 43(4),
685–722

[30] Aguilera M. K., Delporte-Gallet C., Fauconnier H., Toueg S.,
On implementing omega with weak reliability and synchrony
assumptions, In: Proceedings of the 22nd annual Symposium
on Principles of Distributed Computing (PODC’03), ACM Press,
2003, 306–314

[31] Cavin D., Sasson Y., Schiper A., Consensus with unknown par-
ticipants or fundamental self-organization, In: 3rd International
Conference on Ad-Hoc, Mobile, and Wireless Networks (ADHOC-
NOW), 2004, 135–148

[32] Cavin D., Sasson Y., Schiper A., Reaching agreement with un-
known participants in mobile self-organized networks in spite
of process crashes, Technical report IC/2005/026, École Poly-
technique Fédérale de Lausanne, Lausanne, Switzerland, 2005

[33] Greve F., Tixeuil S., Knowledge connectivity vs. synchrony re-
quirements for fault-tolerant agreement in unknown networks,
In: 37th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN’07), 2007, 82–91

[34] Alchieri E. A. P., Bessani A. N., da Silva Fraga J., Greve F.,
Byzantine consensus with unknown participants, In: 12th In-
ternational Conference on Principles of Distributed Systems
(OPODIS), 2008, 22–40

[35] Alchieri E. A. P., Bessani A., Greve F., da Silva Fraga J., Knowl-
edge connectivity requirements for solving Byzantine consen-
sus with unknown participants, IEEE Transactions on Depend-
able and Secure Computing, 2018, 15(2), 246–259

[36] Kihlstrom K. P., Moser L. E., Melliar-Smith P. M., Byzantine fault
detectors for solving consensus, The Computer Journal, 2003,
46(1), 16–35


	1 Introduction
	2 Classification of dynamic distributed systems
	3 Classification refinement
	3.1 Concurrency refinement
	3.2 Achievable synchrony
	3.3 Consequences
	3.4 Static and dynamic frontier

	4 Related work
	5 Conclusions

