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Abstract: This paper develops the nonlinear model pre-
dictive control (NMPC) algorithm to control autonomous
robots tracking feasible paths generated directly from the
nonlinear dynamic equations. NMPC algorithm can secure
the stability of this dynamic system by imposing addi-
tional conditions on the open loop NMPC regulator. The
NMPC algorithm maintains a terminal constrained region
to the origin and thus, guarantees the stability of the non-
linear system. Simulations show that the NMPC algorithm
can minimize the path tracking errors and control the au-
tonomous robots tracking exactly on the feasible paths
subject to the system’s physical constraints.

Keywords: Nonlinear model predictive control; au-
tonomous robots; nonlinear dynamic system; feasible
path generation; system stabilization

1 Introduction

Autonomous robots have been studied and developed ex-
tensively in recent years for new systems that can be able to
drive the robot automatically from any start points to any
destination points generated online from the global posi-
tioning system (GPS) maps and subject to the robot physi-
cal constraints and obstacles. This paper develops a non-
linear model predictive control (NMPC) scheme for con-
trolling autonomous robot tracking referenced paths gen-
erated online and to control the robot to track on them.
This system can be used for unmanned ground robots or
for auto-parking/driving passenger robots.

Motivation for the use of model predictive control
(MPC) controller is its ability to handle the constraints on-
line within its open-loop optimizer control calculations
while most of other control techniques are unfavorable
in handling the online constraints and try to avoid them,
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thus, losing the best achievable performance. MPC can
provide the real-time optimal inputs and make the close
loop system operating near the constrained limits and
hence, yield much better performances.

To deal with the system uncertainties and the model-
plant mismatches, some robust MPC schemes are being
developed accounting for the modeling errors at the con-
troller design. Robust MPC can forecast all possible mod-
els in the plant uncertainty set and then, an optimal ac-
tion can be determined through the min-max optimiza-
tion. Schemes for robust MPC tracking setpoints can be
read in Minh V and Hashim F (2011) [1], where the system
uncertainties are represented by a set of multiple models
via a tree trajectory and its branches. And the robust MPC
problem is to find the optimal control actions that, once
implemented, cause all branches to converge to a robust
control invariant set.

To deal with the realistic movements of autonomous
robots, some mathematical algorithms for finding feasible
paths of nonholonomic robots including flatness, polyno-
mial, and symmetric polynomial trajectories subject to the
robot dynamical constraints and obstacles can be read in
Minh V and Pumwa J (2014) [2].

Online generation of feasible paths for autonomous
ground robots from the GPS maps and/or from their on-
board 3D cameras have been studied in a number of arti-
cles. The robot can go off road subject to the robot physi-
cal constraints on speed, steering angle, and the environ-
mental obstacles, etc. A recent genetic algorithm to opti-
mize the path for navigation of agricultural mobile robots
in fields involving obstacles can be read in [3].

A new path tracking algorithm using the future pre-
diction control for autonomous robots can be read in [4]
for nonlinear nonholonomic dynamic equations. This ap-
proach consists of steering wheel control and lateral move-
ment. This control algorithm is applied for the nonholo-
nomic navigation problem to track a referenced trajectory.
The controller consists of the relationship among the fu-
ture lateral error, the linear velocity, the heading error, and
the referenced yaw rate.

NMPC algorithms are referred in Minh V and
Afzulpurkar N (2006) [5], where three NMPC performances
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with zero terminal region, quasi-infinite horizon, and soft-
ened state constraints are presented and compared. In
these NMPC schemes, all the online inputs solution from
the NMPC optimizer is implemented for the close-loop
control by solving on-line the robot nonlinear dynamics
ODEs.

There have been already several usefully control tech-
niques to control the robot tracking desired paths. How-
ever the idea of using a full MPC controller for robot track-
ing online from the robot nonlinear dynamic equations
(ODEs) with time variant system is still missing. A study of
a simple MPC scheme for autonomous ground robot can
be read in Falcon P. et al. (2008) [6], where an initial work
based on MPC controller is presented. However, this paper
failed to mention the real-time solving of the robot nonlin-
ear dynamic equations (ODEs) and the calculation to ob-
tain the optimal inputs for the robot velocity and its steer-
ing velocity. Similarly, another paper used MPC controller
for autonomous robots tracking is presented by Lei L. et al.
(2011) [7], where the robot movements are approximately
linearized from the robot coordinates and the heading an-
gle. The paper failed to include the steering angle limits
and other physical constraints into its dynamic equations.

A paper on MPC for mobile robot trajectory control can
be read in Baharonian M. et al. (2011) [8]. This paper comes
out with an assumption that there is already a virtual ref-
erenced trajectory and then, the control problem becomes
too simple and trivial. Another adaptive trajectory track-
ing control of wheeled mobile robot is developed by Wang
J. et al. (2011) [9]. However, this paper did not mention how
a feasible trajectory can be generated and how an optimal
control action can be achieved for the best tracking perfor-
mance. Another article by Shim T. et al. (2012) [10] derives a
NMPC to control the front steering and the wheel torque for
an autonomous ground robot. However, the paper failed to
apply the on-line solving of the nonlinear dynamics ODEs
for this NMPC.

Therefore, this paper develops a comprehensive
NMPC scheme for tracking referenced trajectories gener-
ated online by nonlinear ODEs from the robot dynamics
subject to its constraints and obstacles. The robot posi-
tion data can be updated online from the GPS or the on-
board 3D camera, and then, the feasible trajectory paths
can be automatically generated onboard subject to the
robot constraints on speed, steering angle, sideslip, and
the environmental obstacles, etc.. This paper is organized
as follows: Section 2 describes the system modeling; Sec-
tion 3 develops NMPC algorithms; Section 4 presents track-
ing simulations; And finally, some study remarks are con-
cluded in section 5.
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Figure 1: A simplified robot model.

2 System modeling

Consider a robot rolling without slipping, the robot dy-
namics can be written in a set of first-order differential
equations from its configuration variables. If the robot has
the rear-wheel driving, the robot kinematic model, shown
in figure 1, can be derived in equation (1):

X cosT 0
y| _|sint 0
A talzl o | ULt 0 U 1)
) 0 1

In figure 1, r is the robot wheel radius and ! is the base
length; x and y are the Cartesian coordinates of the rear
wheel, T measures the orientation of the robot body with
respect to the x axis, and ¢ is the steering angle. The robot
motion is controlled by two inputs, u; is the linear driv-
ing velocity v = Or (6 is the vehicle wheel angular veloc-
ity), and, u, is the angular steering velocity (¢). There are
four (4) state variables, namely the position of the robot
x1 = x and x, = y; the angle of the robot body orientation
with respect to the x axis, x3 = 1; and the steering angle,
X4 = Q.

The system in (1) is a nonholonomic and if ¢ # 7, this
system is fully controllable. This robot model is nonlinear
and has the first order derivative form:

X=f(x,u ®)

where the state variables are x = [x, y, T, ¢]’, and the in-
putsare u = [u1, u]". The nonlinear equation in (2) can be
expanded in Taylor series around the reference setpoints
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(xr, uy) at Xr = f(Xr, u,), that:
X =~ fOxr, uy) + frr(x = x0) + fur(u—uy) 3)

where fy.r and f; x are the Jacobean of f corresponding to x
and u, evaluated around the reference setpoints (x;, ur).

Subtraction of (3) and X, = f(x;, u,) results a lin-
earized system in continuous time (t):

X(H) = A®X(6) + B(Oa(t) %)

where X(¢) = X(t) - X,(t), and 1(£) = u(t) - u, (o),

0 0 -un(t)sint,(¢t) 0

0 0 un(t)costi(t) 0
A(D) = 0 0 " 0 ' up (t) ’

Icos2 p,(t)

0 0 0 0

[cosT,(t) O

sint.(t) O
B(t): tan ¢,(t) 0 ’

I
o0 1

The continuous time system in (4) can be transformed to a
discrete-time (k) with a sampling interval, k + 1 = k + At,
and, At is the length of the sampling interval. The inputs
u(k)are held constant during this time interval (k + 1) and
(k). The symbols of x; = x(k) and u; = u(k) are also used:

X(k+1) = AU)X (k) + Bl Y (k) =CcXk) (5)

where,
[1 0 -upn(k)sint, (k)(Af) 0
0 1 up(k)cost,(k)(At) 0
A(k) = 1 k )
0 0 1 e ;} I5At
0 o 0 1
[cos T, (k)(At) O
sint,(k)(At) O
B(k) = tan (Ip,(k) (At) 0 )
i 0 Aav)

C(k) = [1], and, X(k) = X(k) - X,(k), (k) = u(k) - u(k).

In this discretized form, the two control inputs are the
difference in the actual and the desired velocity, u; (k) —
ur1(k), and, u, (k) — u,2 (k). The four outputs, y(k) = ¥(k) =
C(k)X(k), are assumed to be measured and updated in real-
time from the GPS. It is noted that the robot discretized
model in (5) is a time variant system and its transfer func-
tion is depending on the dynamic positions and the sam-
pling speeds. Linearized equations (5) are used to develop
MPC schemes in the next part.
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3 Model Predictive Control Design

This part presents the design of NMPC algorithms for the
discretized linearized model. The NMPC works out based
on the fundamental MPC objective functions for hard con-
straints, softened constraints and constraints in regions.

For the MPC with hard constraints, from (5), the pre-
diction horizon for the outputs, y;.;, and the input incre-
ments, Au k+ik» €AN be rewritten as,

CB

Vit |k ca CAB + CB

Yis2)k CA’

. = . Xilk + Uk-1
: Ny .
S CA™B

i=1
CB 0 e 0
CAB+CB CB 0 0

YN, |k cAM

N, . Ny-1 . N,,—N,ﬁ-l. .
S CA™'B 3 CA"'B S CA™B
i=1 i=1 i=1
Auk
Auk+1

Auk+N,,—1

then, the tracking setpoints MPC objective function with
hard constraints is:

N1
,min J(U, x(k)) = Z [(Ykﬂ'\k - Teite)”
U={Aug,...,AUuksn, -1} i=0
QW kesifk = Tierifi) + Au;<+i|kRAuk+i\k} },
subject to:
up € U, and uy,; € [Umin, Umax] » (6)

Aup,i € [Aumin, Aumax], fori=0,1,...,N, -1,
Yk € Y, and Y,k € [Vmin,» Ymax] »
fori=0,1,...,N, -1,
Auy = Uy — up_1 € AU, and Auy,; = 0, fori = N,
Xigke = X0, Xppisafic = AUXpin + B,
Uperifk = Uneict |k T Dierifies Viewifke = CUX i
where x(k) denotes the state variables at the current dis-
crete time (k) : U 2 {Auy, ..., Auyy, , } is the solution of
input increments, N, is the inputs predictive horizon; Ny
is the outputs predictive horizon; y,.; are the predictive
outputs at the current discrete time (k), Tiilic Are the cor-

responding reference output setpoints; Au k+i|k Ar€ the in-
put increments prediction with Aug, i = Uik = Usioa)is
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Q=Q' 20,R =R >0 are the weighting penalty matrices

for predicted outputs and input increments, respectively.
N,-1

By substituting Xy, = AN (l)x(k) + i Al(k)B(k)

i=0
Up:N,-1-i» €quation (6) can be rewritten as a function of

only the current state x(k) and the current setpoints r(k):
1,
¥ (x(k), r(k)) = 5X (k) Yx(k) @
+ mgn { % U'HU + x’(k)r(k)FU}

constraints  of
A

subject to the hard combined
GU < W + Ex(k), where the column vector U
[Auy, ..., Aukwp_l}' € AU is the prediction optimization
vector; H = H' > 0, and H, F, YG, W and E are matrices
obtained from Q, R and given constraints in (6). As only
the optimizer U is needed, the term involving Y is usually
removed from (7).

For the MPC with softened constraints, if the outputs
constraints are the tracking positions which are not strictly
imposed and can be violated somewhat during the evolu-
tion of the performance. To guarantee the system stabil-
ity once the outputs violate the constraints, the hard con-
strained optimization in (6) can be modified to a new MPC
objective function with softened constraints as:

N,-1
min JU, x(k)) = Z [(Yk+i|k - rkﬂ'\k)/ (8)
Ué‘{Auk ..... Aukwu,l} i=0

QU ki = Tiesilie) + Dl RAU ey + €§(k)/1€i(k)] }

where €;(k) > O are the new penalty terms added to the
MPC objective function, &;(k) = [ey; €u], Ymin — €y < Viesific S
Ymax + &y and Unin ~ Eu € Upyjj < Umax + Ey. And A = A” >
0 is the new penalty matrix (usually A > O and set with
small values). These terms, €;(k), will keep the constrained
violations at low values until the solution is returned. A
new MPC algorithm for softened constraints to select the
optimal inputs u”(k +i|k) can be conducted similarly to (7)
with the new added penalty terms &} (k)Ag; (k).

For the MPC with constraints in regions, robustness
of MPC can be also increased if some setpoints can be
relaxed into regions rather than in some specific values.
Then, a new MPC algorithm can be developed if the set-
points r(k) now can be changed into some regions. An out-
put region is defined by the minimum and maximum val-
ues of a desired range. The minimum value is the lower
limit, and the maximum value is the upper limit and satis-
fied Yiower < Visilk < Yupper- The modified objective function
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Figure 2: NMPC control system.

for the MPC with output regions is:

Ny,-1

min JU, x() = [Z;ﬁileZk”\k ©)

Ui{Auk ..... Au)ﬂNu,l} i=0
/
+Auk+i\kRAuk+i|k:| }

where zj;x 2 05 Ziyijk = Yiwijk — Yupper 0T Yiriji > Yuppers
Zi+ilk = Yiower —Yk+ik for)’k+i\k < Yiowers Zk+ilk = Oforyiower <
Vie+ilk < Yupper

As long as the outputs still lie inside the desired re-
gions, no control actions are taken because none of the
control objectives have been violated, all z,;; = 0. But
when an output violates the desired region, the control ob-
jective in the MPC regulator will activate and push them
back to the desired regions.

As per Minh V.T and Afzulpurkar N (2006) [5], the
NMPC schemes now can be developed from MPC schemes
in (6), (8), and (9) by imposing some additional stabi-
lized conditions on the open-loop optimal regulator. These
conditions make a terminal constrained region to the ori-
gin. For the NMPC perfromances in this paper, we ap-
ply the zero terminal equality or zero terminal region at
the end of the prediction horizon i.e. adding the zero

constraint for the terminal prediction state at X
. Ny_l .
Al(k)xk|k + > Al(k)B(k)ukJ,Ny_l_i‘k = 0 in the MPC objec-
>N,
tive functions. Numerical experiments of the NMPC perfor-

mances are presented in the next part.

4 NMPC performances

The diagram of the NMPC for the robot nonlinear kine-
matic model is shown in figure 2.

The online optimization problem for this NMPC is
taken place at real-time (within some milliseconds de-
pending on the complexity of the system and the power of
the computer). The NMPC regulator determines an optimal
future input trajectory and then implements only the first
element of the current inputs for the close-loop control by
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Figure 3: NMPC tracking for a full circle.

solving directly on-line the ordinary differential equations
(ODEs) for the robot kinematics in (2) repeatedly

NMPC for a full circle trajectory

We now use the NMPC regulator to run the autonomous
robot to track a full circular trajectory. For this sim-
ulation, the initial positions of the robot are set at
Xo = [—0.5 -0.5 O 0} /; The constraints are set at
Upin = [-1,-1], umax = [1,1], Auyn = [-0.5,-0.5],
Aumax = [0.5,0.5], Ymin = [-1,-1,-1,-1], and ymax =
[1, 1, 1, 1]’; The predictive horizons are set at N, = 10 and
Ny = 10; Penalty matrices are set at Q = diag{1,1,1,1}
and R = diag{1, 1}. Performance of the NMPC is shown
in figure 3. The NMPC optimizer minimizes the tracking er-
rors and tracks the robot with very small errors left at the
end of the trajectory. The inputs look also good since they
are physically smooth enough for controlling the robot.

If the prediction horizon is shortened, the calculation
burden will be considerably reduced but will lead to faster
changes in the inputs, then, cause bad performance of the
outputs. With short prediction horizons, the system may
become instable. Figure 4 shows the NMPC performance
with shortened horizons to N, = 4 and Ny, = 4. We can see
the worse performance from the final tracking errors and
the sharp inputs movement at the start time.

In NMPC, we can regulate the control performance by
changing the predictive horizon length, penalty matrices,
softened constraints or time scanning intervals. We can
also regulate by changing reference setpoint errors (y;.j—
Twijk) to offset the robot sideslip or to compensate the
model-plant mismatches. To offset the robot sideslips or
the model-plant mismatches, we can dynamically change
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Figure 5: NMPC with new setpoint offsets.

these setpoint errors. For example, if we set the setpoint
errors at r, = [-0.1, 0.3, 0, 0]’, the NMPC performance is
shown in figure 5 and we can see some better tracking per-
formances:

In the next part, we will investigate the ability of the
NMPC to track other feasible trajectories generated directly
from the robot kinematic differential equations.

NMPC for tracking flatness trajectory

Generation of flatness trajectory equations is presented [2].
Figure 6 shows a flatness trajectory for the robot from the
initial position, [xo, Yo] [0, 0], to the final position,
[xF, yF] = [10, 10], and the development of the orientation
angle, 0, and steering angle, ¢, during the travel. The time
for completing this travel is set for T = 100 sec;
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Figure 7: NMPC for tracking flatness trajectory.

For this NMPC tracking, the initial positions of the

robot are set at Xo = [O -0.5 0 0} /; The predictive
horizons are set at N, = 10 and N, = 10; Penalty matri-
cesaresetat Q = diag{1,1,1,1} and R = diag{60, 60};
The reference velocity inputs are set at, u; = % (u; is set at
0 at starting point, during the first 1/5 time length, u; will
gradually increase and maintain at 1/3 for 60 sec, during
the final 1/5 time length, u; will decrease back to 0), and,
u, = 0. Performance of this NMPC tracking is shown in fig-
ure 7. The robot starts with an initial velocity of u; = 0 and

/
from the initial position of X, = [O -0.5 0 O] grad-
ually tracks to the reference tracking trajectory in 15 sec.

Next, we shorten the horizon prediction length to N, =
6 and Ny, = 6 while maintain other parameters unchanged.
We can see that this shortened prediction horizon can de-
grade the performance because it causes the deterioration
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Figure 9: NMPC with R = diag{1, 1}.

of the inputs. In this example, the system becomes unsta-
ble (infeasible) for the inputs as shown in figure 8.

The above instable system is due to the too heavy
penalty values imposed on the input matrix (R =
diag{60, 60}). This heavy penalty causes too slow and too
small changes in the inputs. If we release this penalty on
the inputs to R = diag{1, 1}, the system returns stable as
shown in figure 9.

The above NMPC can run with longer predictive hori-
zon and achieve better performance. Figure 10 shows this
NMPC performance with N, = 16 and Ny, = 16. We can see
the very small tracking errors at the end of the travel.

Next, we continue to test the NMPC for tracking the
polynomial trajectory since the polynomial trajectories
can be generated faster and smoother than the flatness tra-
jectories.
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Figure 10: NMPC with N, = 16 and N, = 16.
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Figure 11: Polynomial trajectory references.

NMPC for tracking polynomial trajectory

Generation of polynomial trajectory is presented in [2]. Fig-
ure 11 shows a polynomial trajectory for the robot from
the initial position, [xo, ¥o] = [0, O], to the final position,
[xF, yr] = [10,10], and the development of its orienta-
tion angle, 6, and steering angle, ¢, during the travel. Sim-
ilarly, the time for completing this travel is set for T =
100 sec;
The initial positions of the robot are set at Xy =
0O -0.5 0 O /;The predictive horizons are setat Ny, =
10 and Ny = 10; Penalty matrices are set at Q =
diag{1,1,1,1} and R = diag{60, 60}; The reference ve-
locity inputs are set at u; = 1 (u; is set at 0 at the starting
point, during the first 1/5 time length, u; will gradually in-
crease and maintain at 1, during the final 1/5 time length,
u; will decrease back to 0), and, u, = 0. Performance of
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Figure 12: NMPC for tracking polynomial trajectory.
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Figure 13: NMPC with shorten horizon

this NMPC tracking is shown in figure 12. The robot gradu-
ally tracks exactly the reference setpoints in 28 sec.

Next, we shorten the horizon prediction length to N, =
5and Ny = 5, we can see that the too short prediction hori-
zon can degrade the performance. The system becomes
instable as shown in figure 13. The performance is worse
due to the sensitiveness of the inputs and the robot cannot
reach the output setpoints.

The above shortened horizon NMPC becomes instable
at the end of the trajectory since the input increments are
too slow and too small due to the too heavy penalty im-
posed on the inputs matrix, R = diag{60, 60}. If we re-
lease this penalty and the inputs can variate more freely,
the system will return stable with R = diag{1, 1} as shown
in figure 14.

Now we can lengthen the predictive horizon for the
above NMPC to N, = 16 and Ny = 16. The system per-
formance becomes much better as shown in figure 15. The
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Figure 15: NMPC with lengthen horizon.

robot tracks rapidly and exactly on the reference setpoints
in 28 sec.

The above NMPC performances show that the robot
can track all trajectories from the different initial posi-
tions. This difference can be considered as the possible
errors of the measured outputs or the initial model-plant
mismatches. NMPC regulator can overcome those errors
and track the robot exactly along the desired reference set-
points.

5 Conclusion

In this paper, NMPC schemes for tracking setpoints have
been developed and tested for controlling the robot track-
ing to different trajectories. Simulations show that NMPC
can control very well the tracking setpoints subject to con-
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straints. The NMPC performance, stabilization as well as
the robustness can be regulated and improved by vary-
ing NMPC parameters as well as modifying NMPC objec-
tive functions to softened constraints or to output regions.
NMPC schemes are able to guarantee the system stability
even when the initial conditions lead to violations of some
constraints.

Even though simulations show that NMPC algorithms
are successful in controlling the robot tracking, model of
uncertainty and the model-plant mismatches that may af-
fect to the closed loop stability are still open issues. Fur-
ther analysis is needed for the effectiveness of the modi-
fied NMPC schemes to softened constraints and to output
regions. Real experiments and other validations for this
technique are also needed in the next step of the project.
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