Open Comput. Sci. 2016; 6:108-115

DE GRUYTER OPEN

Research Article

Jan Kollar, Michal Si¢ak*, and Milan SpiSiak

Open Access

Abstraction of Meaningful Symbolized Objects

DOI10.1515/comp-2016-0009
Received April 28, 2016; accepted June 8, 2016

Abstract: We describe the notion of abstraction and con-
ceptualization of information obtained by symbolization
of letters. We are able to recognize already observed in-
formation with those abstracted concepts. Further more,
we are also able to recognize similar meaningful objects.
Similarities identification is based on a repetition in the
structure of information symbolized as a regular language
string. We discuss approaches of repetition identification,
i.e., longest repeating non-overlapping subsequence and
longest common subsequence. Then we apply those ap-
proaches to the symbolized letters, thus obtaining ab-
stracted information in the form of concepts.

Keywords: symbolization, conceptualization, automated
abstraction, meaning inference

1 Introduction

Grammars are widely used formalisms. They allow us to
grasp the structure of a language and help us with its com-
prehension. Many existing software systems do contain
grammars, sometimes hidden and unformalized. Uncov-
ering the underlying grammar can be useful feature in fur-
ther development of such systems [1, 2]. Grammar can be
utilized on many ways. For example, they may be used
in language evolution [3] or in rapid domain specific lan-
guage (DSL) development [4]. We can obtain grammars
even from complex objects like graphical interfaces [5] and
then use them for an automated development of DSLs.
The grammar inference is a grammar rule construc-
tion process that is achieved purely with the use of input
strings. The strings belong either to positive (belonging to
that language) or negative (not belonging to the language)

Jan Kollar: Techical University of KoSice, Department of Computers
and Informatics, E-mail: jan.kollar@tuke.sk

*Corresponding Author: Michal Sicak: Techical University

of KoSice, Department of Computers and Informatics, E-mail:
michal.sicak@tuke.sk

Milan Spis$iak: Techical University of KoSice, Department of Com-
puters and Informatics, E-mail: milan.spisiak@tuke.sk

© 2016 Jan Kollar et al., published by De Gruyter Open.

sample. Gold in [6] has researched a process called regu-
lar inference in the limit. He argues, that in order to infer a
grammar, one needs both positive and negative samples.
The latter is needed to limit the regress of a regular gram-
mar. Without those samples, an inference process might
end up with the most general grammar, which can gener-
ate any sequence.

Meaningful information, such as written letters or
spoken words can be symbolized i.e. transformed into a
set of symbols that are processable by a computer. A gram-
mar can be inferred from such a set and then used for the
information recognition or reconstruction process. We de-
scribe a way to abstract strings obtained from a meaning-
ful source by a process called symbolization. We also de-
scribe how to build a concept foundation that is based on
obtained information.

Our approach leads to similar results as the regular
inference. However, we do not want to find the perfect
regular language for all input samples as in the case of
the inference. There are no negative samples in our ap-
proach, since everything that we symbolize can be viewed
as a positive sample. So the absence of negative samples
could lead to inferring the most general regular language,
as Gold [6] pointed out. Our approach is based on repe-
tition pattern search within one or many samples. There-
fore, we do not call that a language inference but rather a
language abstraction.

Main contributions of this paper are:

— We present a problem of regular language abstrac-
tion in the section 4. This results into more compact
grammar definition, as it is by means of a grammar
inference. It also results into an identification of re-
peating parts.

— We present an algorithm to obtain longest repeat-
ing non-overlapping subsequence (LRNS) in the sec-
tion 3 from an input sequence of symbols. Such a
subsequence is an asset to repetition patterns iden-
tification and helps in the process of abstraction.

— Another subsequence problem, identification of a
longest common subsequence (LCS) in multiple se-
quences is used for further improving abstraction
across input data and inside identified repeated pat-
terns. The process is described in the section 4.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

DE GRUYTER OPEN

— Those two approaches are researched and their ap-
plication on an input data set are evaluated by an
experiment reported in the section 7.

2 Information abstraction

Consider a grammar that encapsulates information as a
regular language. Our approach would "consume" those
grammars and perform abstraction on them. A greater
grammar, still regular, is created. It recognizes all avail-
able pieces of information and another samples similar
to the original one and their combinations. Since we are
using regular grammars, a finite state automaton may be
constructed for this recognition task, or we may use meta-
execution tree forms of regular expressions [7].

Symbolization is a step that is necessary when we
want to process information automatically by a computer.
We humans perceive information based on their informal
meaning, where computers process information purely as
formal symbols [7]. Formal meaning can be described by
a grammar. Data produced by our symbolization is in a
form of regular language with defined symbol alphabet.
We use test samples created by symbolization of Latin al-
phabet letters. The process itself is presented in the sec-
tion 6. The results of symbolization are strings of sym-
bols. For explanatory purpose, we use arbitrary symbols.
The terminal set of the regular grammar we use is: X =
a,b,c,d,e,...,z. We restrain ourselves only to regular
expressions, since symbolized strings obtained by the let-
ter recognition are in a simple form. We use augmented
definition of regular expressions, which use these four op-
erations:

— Concatenation operation means direct continua-
tion of symbols, i.e. r1r, accepts two regular expres-
sions that form a sequence. The concatenation oper-
ator is invisible.

— Alternative operation represents selection of only
one listed regular expression. It is represented by a
"|" sign. Therefore, in r1|r,|r3, only one expression
can be selected and others are discarded in current
computation.

— Closure operation, also known as Kleene star oper-
ation. It represents zero to n repetitions of a single
regular expression. It is a unary operation, and its
operator is represented as (r)".

— Option is an operation that represents an optional
selection of a regular expression. Either the expres-
sion is or isn’t selected. It can be rewritten as r|e,
where ¢ is an empty expression. It is designated as

Abstraction of Meaningful Symbolized Objects = 109

Figure 1: Tree form of (ab)"(c|d)(e)* regular expression

(r)*. We try to avoid empty expressions, therefore
this operation is useful for us. We note that this is
not a standard operation for minimal definition of
regular expressions.

Regular expression in a textual form, like
(ab)’(c|d)(e)*, can be transformed into a tree form. We
have expressed this notion in our previous work [7]. Ex-
ample of this regular expression as a tree is in Fig. 1. Al-
ternative and concatenation operators create n-ary nodes,
where closure and option are unary. Leaf nodes represent
symbols themselves.

Let’s have a symbol string (1).

abcabcdedef 1)

It represents a kind of information whose meaning is
now irrelevant. With the abstraction, we should obtain
more general form. We see a repetition of symbols in our
example. By generalizing this fact, we get regular expres-
sion (2).

(abc)'(de)'f @)

It is more general representation of (1) since it can rep-
resent strings like: abcf, def, abcdef, abcdededef, ...

Therefore the basic idea behind symbol string abstrac-
tion is a search for repetitive patterns and then putting
them into the closures. This may be done multiple times
over one input string. Take example (3) for instance. What
we can see are two levels of abstracted regular expression,
where the rightmost is the most abstract.

ababcdababcdgh — (ababcd) gh — ((ab)’cd) gh (3)

So far we have discussed abstraction performed on the
LRNS. But what if we have more than one input sequence,
or there are sequences in alternatives? We can then deter-
mine the LCS of each string and proceed accordingly.

An abstraction of multiple input sequences can be per-
formed. Consider sequences "abc" and "dbe". They con-
tain the same symbol, "b". An automaton that accepts the
expression abc|dbe is depicted in Fig. 2. We can abstract
both sequences into one regular expression "(a|d)b(c|e)".

110 —— JanKollar, Michal Si¢ak, and Milan Spisiak

Figure 2: Finite state automaton for abc|dbe expression

Figure 3: Finite state automaton for (a|d)b(c|e) expression

Automaton constructed from that expression is depicted in
Fig. 3. We can see that the count of states dropped from 6
to 4. The amount of transitions is lowered as well. We can
claim that the automaton in Fig. 3 is more abstract than the
automaton in Fig. 2, since the former can accept sequence
of symbols like "abe" where the latter cannot.

3 Longest repeating
non-overlapping subsequence

In order to perform an abstraction on one string, we
need to extract repeating patterns from it. This presents a
problem, commonly known as a longest repeating subse-
quence. What is more special in our case is the fact that the
subsequence must be non-overlapping. Considering an ex-
ample sequence:

ababa (%)

the longest subsequence here is "aba". However, it’s over-
lapping with itself. Therefore conducting an abstraction
over it would yield erroneous results. We need to find the
longest sequence that does not overlap. In this case, we
have two such sequences: ab and ba. For now, it’s unim-
portant which sequence is selected for an abstraction. It’s
notable that those sequences do overlap with themselves,
so both cannot be chosen at the same time. The longest
subsequence problem can be solved with suffix arrays.
Suffix array is an array consisting of all suffixes of any
string in sorted order. Construction of such an array is
rather simple process and many efficient algorithms ex-
ist [8]. Basically the input sequence is split into all of its
suffixes and then those suffixes will be sorted. The result
is however in a form of an index array, which accompa-
nies the original array. We claim it is a suffix array, where
in fact, there are two arrays present. The index array points
to the starting index of each suffix. In the case of our se-

DE GRUYTER OPEN

quence (4), the suffix array would look like:
[a’ b’ a’ b! a][4’2’0’3’1] (5)

As we still call it a suffix array, we can view those two ar-
rays as a single two dimensional array:

[a]

[aba]

[ababal 6)
[bal

[baba]

We propose an algorithm to find the LRNS with use of
a suffix array. Since suffixes in an array are sorted, we need
to compare the neighbouring pairs inside the array. While
suffix symbols are equal, this comparison runs until the
end of one suffix is reached or if we run into an overlapping
part.

The overlapping part is indicated when the compari-
son of suffix with lower starting index reaches the starting
index of a second suffix. In that case the comparison ends.
But unlike the case of the end of a suffix or in the case of a
character mismatch, in which case we just start comparing
the next neighboring pair, when overlapping occurs the
next suffix has to be compared with the first one. Taking
following sequence as an example:

abababa =[a], [abal, [ababa], [abababal],

7
[bal, [babal], [bababa]

the suffixes "aba" and "ababa" do overlap at the index
2, hence their part "ab" is LRNS. We need to compare
"aba" with "abababa" since from those two suffixes a
new, longer LRNS has been found: "aba" that does not
overlap.

The algorithm pseudo-code for the LRNS search is de-
picted on pages 111 and 112. We need to have two origi-
nal arrays in the memory, marked as vector for the se-
quence itself and array for an array of indices. The basic
variables are i; and i, the indices pointing to the symbols
inside our input sequence. We pick those indices from an
index array provided by a suffix array. We need to keep
the information about indices from that array as well. For
the purpose of our algorithm, we mark them as j; and j,.
The first one points to the first actual string processed,
the latter is used purely when sequences overlap and we
are comparing pair of strings, which are not direct neigh-
bours. The global variable of sequence length is needed,
we shall mark it as imax. Variable o contains the difference
of lengths between searched sequences. It’s used to mark
the overlapping part. The result of our function is stored

DE GRUYTER OPEN

in the values f; and f;, where the former is the length and
the latter is the starting index of the first LRNS found. Al-
gorithm can be easily rewritten to find all LRNS. We would
need to store all longest f; and f; pairs, sort them and chose
the longest ones. Variables c¢; and c; store current LRNS in
the memory. They are compared with the final ones and if
c; is longer than f}, then their values are assigned to corre-
sponding f variables.

The main part of this algorithm compares symbols in-
dexed by i; and i,. At the start of an execution, those num-
bers are found out at indices 0 and 1 of a suffix index ar-
ray. In the case of a match, the current length (c;) is in-
cremented. We then perform a test to find out whether
i1 +1 < imax. In case the test fails, we move to the next pair
of indices. If the test passes, o variable is decremented. If
o is zero, the sequences are going to overlap. We need to
compare suffixes with starting indices j; and j, + 1 (this
means that we are now comparing two non-neighbouring
suffixes). In the case they do not overlap, the next symbols
in both sequences are compared, thus we only increment
both i; and i,. The algorithm terminates when all neigh-
bouring pairs have been compared.

4 Abstraction process

We have described the process of obtaining the LRNS of
an input string of symbols. This part is then extracted from
the original input, so we’ve got a substring that is repeated
and a list of intermediate strings, "leftovers" from the sep-
arated string. Let us have an example:

abcdabceabcm = abc, g, d, e, m] (8)

The repeated string abc is identified and then the list of
rest pieces follows. The list length is r + 1, where r is the
number of repeated substring occurrences.

For an input string s and obtained LRNS I we can sep-
arate any string as:

s - ailayl...lap, 1=LRNS,1<n<r 9)

Where all a;’s are the leftover substrings. Any of them can
be empty, this is denoted by the £ symbol.

In an abstraction process, our identified LRNS is
picked from the original string and put into a closure.
The rest is then laid out according to its internal struc-
ture. From our example string (8), the regular expression
(abc(d|e|m))” is constructed, as we see that "abc" always
repeats itself. The rest in this example is straightforward,
since each LRNS is continued by one different symbol.
They are put in an alternative after our LRNS.

Abstraction of Meaningful Symbolized Objects

— 111

imax < LENGTH(array)
iy < indices[0]
i, + indices[1]
0 < |i1 - i2|
ji+0
ja+1
ci+ i1
RESETCURRENT
SETFINAL
fia
loop < true
while loop do
if arrayli1] = arrayli,] then
ag+c+1
if imax — i1 > 1 then
0+<o0-1
if o > 0 then
SHIFTINDICES
else
OVERLAPSHIFT
end if
else
NEXTPAIR
end if
else
NEXTPAIR
end if
end while

function NEXTPAIR
if cANCONTINUE(j; + 2) then
iy + indiceslj; + 1]
iy + indiceslj; + 2]
0 < |i1 - i2|
if ¢; > f; then
SETFINAL
end if
RESETCURRENT
end if
end function

function OVERLAPSHIFT
if cANCONTINUE(j, + 1) then
iy + indiceslj]
iy + indiceslj, + 1]
J2j2+1
0 < |i1 - i2|
if ¢; > f; then
SETFINAL
end if
RESETCURRENT
end if
end function

function SHIFTINDICES
i1+ i1 +1
iz < iz +1

end function

112 — JanKollar, Michal Si¢ak, and Milan Spi3iak

function SETFINAL
fi+ci
fi+a

end function

function RESETCURRENT
ci + i1
c <0

end function

function cANCONTINUE(x)
loop < X < imax
return loop

end function

The leftovers of LRNS might not be spread evenly. Con-
sidering separated string from (9), basic abstraction based
on LRNS can be written as:

a;(I(a;]. .. |an))*
(ay]...|an)D a,

ifa, =¢

10
ifa, =¢ (10)

aila,l...lay — {
If both a; # € and an # €, then selection of rule is de-
termined by further abstraction of leftover part. Generally,
the better abstraction of two possible options is selected.
So we need to find out whether to put elements before or
after LRNS in an alternative. In the case of the list [a, b, c]
and LRNS I, two possibilities arise: a(I(b|c))" or ((a|b)])"c.
Here in this selection we must use heuristic approach. Oth-
erwise we would possibly get exponentially hard problem
to solve. Therefore we always use the first option. The ab-
stracted element always generates the original input in the
both cases anyway, so there is no loss, only a danger of
choosing a slightly worse option.

A conversion needs to be done in case that an el-
ement of an alternative is an empty string. Considering
(abc(d|e|m))” as an example, and e = €,b # £,m # &,
we apply conversion rule (11), and get a result (abc(d|m))".
Simply put, if any member of an alternative is an empty
string, we need to put that alternative inside an option and
remove every empty string from it.

(Sait) = (ail|az|...|ai|...|an) — (sg¢)*
ai=&,a; ¢ Sqr-ne€N,1<i<n

(1)

So far, we have identified the LRNS and leftover parts.
There is another option possible in order to perform an ab-
straction: identification if the LCS is either found in all in-
put sequences or only in the portion of them. Those steps
cannot be applied at once, but application in sequence
may lead to the same results. Finding the LCS is an impor-
tant step in this part of abstraction.

In contrast of finding the LRNS, where we are search-
ing for the repetitions inside one string, the LCS is identi-
fied across two or more strings. The LCS identification is

DE GRUYTER OPEN

a well understood problem [9, 10], so we won’t describe it
here.

In case we have a set of sequences, we can abstract
them by using transformation:

(ai]az|...|an) = (bicdy|bacdy]. .. |bncdn) 12
— (bl‘b2| e |bn)C(d1|d2‘ e ‘dn)

Where n € Nand aj, b;,d;, 1 < i < n are substrings, ¢ #
g,a; # &, b; and d; can be empty. String c is ubiquitous
LCS of input strings abstracted with alternative operator.

In the case that there is no common substring for all
members, we can proceed to finding the LCS of at least two
strings from alternative. This is described by transforma-
tion:

(ailaz|...|an|b1|b2]...|bj) = (Salb1|ba|...|b;) (13)

Where a;, 1 < i < n are strings with common sequence and
b;, 1 < j < nare not. The symbol s, represents transforma-
tion (12) application on all a;. At least two a;s are necessary
and the set of b; may not be empty, otherwise it would be
just the transformation (12).

5 Conceptualization process

The grammar that is being created can be constructed us-
ing previously described processes in more than one way.
As we mentioned in section 2, abstraction may be per-
formed on an input set of sequences before each member
is processed. This is done by using abstraction (13) recur-
sively. On each created abstraction s,, we can apply pro-
cess (12), and if applicable, we identified shorter parts that
can be brought back on the same level as the LCS identified
earlier. This example illustrates the idea:

labcdef, abcgef] a3, abc(def|gef) (1)

a2, abc((d|g)ef) — abc(d|g)ef

The conceptualization is achieved by performed ab-
straction. The resulting grammar is the super-concept that
encapsulates the whole input set.

6 Symbolization of Letters

We designed experiments to show the results of combin-
ing approaches mentioned in the previous sections. The
abstraction is performed on meaningful data that were ob-
tained by a symbolization of Latin alphabet letters. This

DE GRUYTER OPEN

/ \
—_— —_—
Figure 4: Chain code for the letter A

process deserves a bit of explanation, so before we show
any experimental results, we present short but concise de-
scription of image object symbolization.

The basis of our abstraction is a chain code [11]. We
use our own algorithm, which has been described in [12].
As an example, on Fig. 4 we see the arrows describing the
shape of letter A. This process works on the level of pixels,
where it searches for shape directions. It obtains direction
vectors, which are subsequently transformed into a set of
eight distinct symbols. Those symbols are numbers from 1
to 8, each representing different direction. The number 1
stands for the right (or east) direction, 2 for bottom-right
(south-east) and so on.

At the end of such symbolization we get symbol
strings. Here is an example of the symbolized form of the
letter E:

(1,2,3,4,5,4,3,2,1,2,3,4,5,3,2,1,2,3,5,7]

The repetition patterns are shown by repetition of numer-
als 1, 2, 3 that roughly represents the three vertical lines
of the E letter. We have used reduces sets, where each se-
quence repetition of the same number has been replaced
by exactly one number only. We can process images with
different sizes and obtain same results with that. And the
repetitive patterns are easier to find.

7 Experimental Results

Using the symbolization explained in the previous section,
we obtain a set of symbolic strings. They now can be ab-
stracted with the use of abstraction process described in
the section 4. The purpose of these experiments is to clar-
ify, whether our abstraction process captures any mean-
ingful patterns, i.e., concepts, and is able to abstract them.
And the other important point to make is that in what order
we should perform our two distinct abstractions, namely
LCS and LRNS. A way to find out if our process captures

Abstraction of Meaningful Symbolized Objects = 113

any concepts, is to set a control group of randomly gen-
erated strings. They represent a noise, meaningless data.
Comparing random data results with our abstractions will
show us, if our process is any good in capturing meaning-
ful concepts. The actual data we have processed come from
two distinct sets of letters. Latin alphabet has 25 basic up-
percase letters, hence with the use of two distinct fonts, we
obtain 50 symbol strings in total. The length varies from 6
to 25 symbols for each string. The random data have been
also selected from this interval. Hence 50 randomly gener-
ated strings of symbols with the length from the interval
6-25 have been used.

We use three distinct approaches in our experiments.
The first approach just evaluates data as they are given,
no abstraction process has been performed upon them. We
designate this in result charts as No Process. The second
approach uses LCS as the starting point. Then, LRNS is ap-
plied on the parts of its result. We designate this process as
LCS in charts. The third is reverse of the second approach,
LRNS is used first, designated as LRNS in charts.

The first group of experimental results is depicted in
Fig. 5, where the x axis of line chart denotes the current
count of the input regular strings, while the y axis denotes
the count of the symbols within the regular expression af-
ter the process application. We selected this property, as
it shows the actual size of regular expressions. So in to-
tal, there are six different result sets, three for symbolized
strings and three for random data. On the Fig. 5 the best
results were obtained with the use of LCS first strategy. It
deviates from its random counterpart rather significantly
and even more from any other result. Note the strong lin-
ear growth on all three random data results. Interesting
thing to point out is also the poor results achieved with
LRNS first strategy. This is however easy to explain, since
LRNS breaks each string into regular expressions sepa-
rately, and then it is hard for LCS to capture similarities.
The reverse order, the LCS first strategy, shows slightly
non-linear grow, which might indicate that as the input set
grows larger, the curve might resemble logarithmic grow.

In the second experiment we measured the state
amount of finite state automata obtained from abstracted
regular expressions. We used standard algorithm for con-
version, with the use of miniaturization. Only three sets of
data were selected for evaluation this time. The LCS first
and LRNS first performed over actual symbolized data,
and LCS first performed over randomly generated data.

The results are depicted in Fig. 6. Here we see the con-
firmation of the superiority of LCS first strategy. The LCS
first random data strongly correlates with LRNS first strat-
egy, which renders LRNS first strategy no better than a
chance. On the other hand however, LCS first strategy per-

114 = Jan Kollar, Michal Si¢ak, and Milan Spisiak

No Process
Rand. No Process
-------- Rand. LCS
Rand. LRNS

Number of regular expression elements

2 4 6 8 10 12 14 16 18 20 22 24 26 23 30 32 34 36 3B 40 42 44 46 43 50
173 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 61

Total amount of symbolized strings

Figure 5: Comparison of symbol count in regular expressions

Number of states

46,8 012 1016 38 20 22 24 26 2 0 2 U %R MR M IS
10 0 0 e e 2 T 2 3 T 30 41 45 45 4T 40 51

2
135 7

Total amount of symbolized strings

Figure 6: Comparison of state count in finite state automata

formed over symbolized strings presents better abstraction
asit wasin the previous experiment. We may conclude that
this strategy achieves abstraction to a certain extent.

8 Discussion

We can see from the results in Fig. 5 and Fig. 6 that LCS
first strategy does indeed abstract meaningful data. This
abstraction is rather simple and surely can be done with
more precision. For example, after the application of LRNS
we could apply LCS once more, or apply it in different way.
But, this is important to stress out, such a process would
be either highly undeterministic, or highly computation-
ally expensive. We could fall into an exponential complex-
ity. This is the reason why we have chosen such a heuristic
method. It simplifies the process while retains abstraction
ability.

We can also see, that randomly generated data show
strong linear characteristic. This strongly indicates that
our abstraction process is capable of abstracting meaning-
ful elements out of meaningful strings, while the noise re-
mains meaningless even after abstraction. This opens the
possibility of a meaning detection with the use of our LCS
first approach.

DE GRUYTER OPEN

9 Related works

Oncina and Garcia in [13] created an algorithm, called
RPNI, for regular language inference in the limit. Their ap-
proach finds best regular grammar in theoretical search
space of all regular grammars. Dupont, Miclet and Vidal
improved on that work in [14]. Dupont in [15] extended
RPNI algorithm so that it can infer grammars incremen-
tally with ongoing stream of positive and negative sam-
ples. The inferred grammar was independent of samples
order. Evolution algorithms may be used in inference pro-
cess in order to obtain optimal results, even when inferring
context-free grammars (CFG) [16].

Fernau [17] explored algorithms for regular ingerence
basing only on a positive sample set. This approach bears
greater similarity to ours because of that fact. The Prague
Stringology Club members have been researching the as-
pects of approximate regular string matching for almost 20
years and their results relate to our work as well [18-20].
Their work relates heavily on automata however, where we
try to use meta-executable trees instead.

10 Conclusion

We presented a method of symbolized information con-
ceptualization basing on abstraction. We identified two
approaches, both combinable, to perform abstraction of
regular languages. LCS first strategy has shown signifi-
cantly better results than reverse procedure, when LRNS
were identified first.

In our results, we used fixed order of process appli-
cations. This probably lead to not optimal results. In our
future research, we plan to concentrate on exploiting evo-
lutionary algorithms in order to enhance abstraction. Ge-
netic programming [21, 22] shows us a possible direction
of our next steps. We may construct an evolutionary ma-
chine that performs abstraction with use of randomly mu-
tated sets of processes and specific application rules, then
selects the best performing ones to evolve another genera-
tion. This may lead to obtaining more precise abstractions,
which are expected to precede performance of our current
fixed best performing process, i.e., the LCS first strategy.

References

[1] Mernik M., Crepinsek M., Kosar T., Rebernak D., Zumer V.,
Grammar-based systems: Definition and examples. Informatica

DE GRUYTER OPEN

(2]

(3]

[4]

(6]

[7]

(8]

[9]

[10]

[11]

(Slovenia), 28(3):245-255, 2004.

Klint P., LimmelR., Verhoef C., Toward an engineering discipline
for grammarware. ACM Transactions on Software Engineering
and Methodology (TOSEM), 14(3):331-380, 2005.

Kollar J., Pietrikova E., Genetic evolution of programs. Central
European Journal of Computer Science, 4(3):160-170, 2014.
Chodarev S., Development of domain-specific languages based
on generic syntax and functional composition. Information Sci-
ences and Technologies Bulletin of ACM Slovakia, 4(3):47-53,
2012.

Bacikova M., Porubdn J., Lakato$ D., Defining domain language
of graphical user interfaces. In SLATE, pages 187-202, 2013.
Gold E. M., Language identification in the limit. Information and
control, 10(5):447-474, 1967.

Kollar J., Formal processing of informal meaning by abstract in-
terpretation. Smart Digital Futures 2014, 262:122, 2014.
Karkkainen)., Sanders P. Simple linear work suffix array con-
struction. In Automata, Languages and Programming, pages
943-955. Springer, 2003.

Hirschberg D. S., Algorithms for the longest common subse-
quence problem. Journal of the ACM (JACM), 24(4):664—-675,
1977.

Bergroth L., Hakonen H., Raita T., A survey of longest common
subsequence algorithms. In String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International
Symposium on, pages 39-48. IEEE, 2000.

Liu Y. K., Zalik B., An efficient chain code with huffman coding.
Pattern Recognition, 38(4):553-557, 2005.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Abstraction of Meaningful Symbolized Objects = 115

Kollar)., SpiSiak M., Direction Vector Grammar In Scientific Con-
ference on Informatics, 2015 IEEE 13th International , pages 151—
155. IEEE, 2015.

Oncina J., Garcia P., Inferring regular languages in polynomial
update time. Pattern Recognition and Image Analysis, 1:49-61,
1992.

Dupont P., Miclet L., Vidal E., What is the search space of the
regular inference? In Grammatical Inference and Applications,
pages 25-37. Springer, 1994.

Dupont P., Incremental regular inference. Grammatical Interfer-
ence: Learning Syntax from Sentences, pages 222-237,1996.
Hrn€i¢ D., Mernik M., Bryant B. R., Javed F., A memetic grammar
inference algorithm for language learning. Applied Soft Com-
puting, 12(3):1006-1020, 2012.

Fernau H., Algorithms for learning regular expressions from pos-
itive data. Information and Computation, 207(4):521-541, 2009.
Holub J., The finite automata approaches in stringology. Kyber-
netika, 48(3):386-401, 2012.

Holub J., Melichar B., Approximate string matching using fac-
tor automata. Theoretical Computer Science, 249(2):305-311,
2000.

Balik M., Dawg versus suffix array. In Implementation and Ap-
plication of Automata, pages 233-238. Springer, 2003.

Koza). R., Genetic programming: on the programming of com-
puters by means of natural selection, volume 1. MIT press, 1992.
O’Neil M., Ryan C. Grammatical evolution. In Grammatical Evo-
lution, pages 33-47. Springer, 2003.

	1 Introduction
	2 Information abstraction
	3 Longest repeating non-overlapping subsequence
	4 Abstraction process
	5 Conceptualization process
	6 Symbolization of Letters
	7 Experimental Results
	8 Discussion
	9 Related works
	10 Conclusion

