DE GRUYTER OPEN

Open Comput. Sci. 2015; 5:41-50

Research Article

Open Access

Reza Asgari, Milad Gholipoor Moghadam, Mehregan Mahdavi*, and Aida Erfanian
An ontology-based approach for integrating heterogeneous

databases

DOI 10.1515/comp-2015-0002

Received June 19, 2011; accepted July 20, 2015

Abstract: Integrating heterogeneous data in distributed
databases has been a research issue for many years. In
this paper, we discuss some of these problems and pro-
pose a solution using a semantic model. This semantic
model is built upon the semantic relationships between
existing data. Applying these semantics enables us to take
into account different dimensions of user queries and find
the best possible answer for them. The proposed approach
leads us to introducing "a common language that is under-
standable for all databases". We use such a common lan-
guage in order to return an effective response to the user’s
query, as well as reducing the problems of integration.

Keywords: data integration; ontology; data heterogeneity;
distributed databases

1 Introduction

Nowadays, everyone can realize that the amount of avail-
able information and the number of information resources
are increasing. Many of these resources are in the form
of databases. A group of related data sources may form
a heterogeneous database. Users of such heterogeneous
databases need a common framework that is understand-
able by all of them [1]. From this point of view, the user
feels a need for bi-directed relationships among these
databases and the concepts within them. Generally, de-
sign and implementation of separated and heterogeneous

Reza Asgari, Milad Gholipoor Moghadam: Department of Com-
puter Science and Engineering, University of Guilan, Iran, E-mail:
rezaasgari.68@gmail.com

*Corresponding Author: Mehregan Mahdavi: Department of
Computer Science and Engineering, University of Guilan, Iran, E-
mail: mehregan.mahdavi@gmail.com

*Corresponding Author: Mehregan Mahdavi: School of Com-
puter Science and Engineering, The University of New South Wales,
Sydney, Australia

Aida Erfanian: Department of Computer Engineering, Azad
University-Lahijan Branch, Guilan, Iran, E-mail: erfanian@iau-
lahijan.ac.ir

() TETETM| © 2015 R. Asgari et al., licensee De Gruyter Open.

databases cause many problems and challenges during
the communication phase of these systems [2, 3].

In the last two decades, there were many approaches
to solve the semantic inconsistencies among the relational
databases. Although, all of these approaches were used
to solve the inconsistencies in different levels of data,
schema and application, they had a common problem
which is overlooking the issue of lacking of semantic rela-
tionships among the databases [2]. Since, some databases
share the same fields but with different titles, in many
cases, we have to find a way to define semantics for such
fields, so that the required information can be retrieved.

Ontology is one way for addressing the problem. On-
tologies play an important role in information exchange.
They can be used for the development and enrichment
of databases semantically. These ontologies are used as
a common means of understanding a domain. This facil-
itates the communication between the users and the het-
erogeneous distributed systems. Ontology is a conceptual
model that forms the actual entities and their relations in
a specific domain, explicitly and formally [1].

Our proposed approach to the integration problem is
to use ontology as a standard facility for all parts of a sys-
tem. We try to reduce the heterogeneity as much as possi-
ble with keeping the costs low and the framework flexible
in order to adapt it to the new circumstances it confronts.

This paper is organized as follows: In Section 2, we
discuss the problems related to heterogeneous distributed
databases and present existing solutions. Our proposed
approach is introduced in Section 3. The proposed method
is further analyzed and discussed in Section 3.4. Finally,
Section 5 concludes the paper.

2 Related works

There are many theoretical obstacles in the real world
which prevent the effective integration of heterogeneous
distributed database [4]. This means that different vari-
eties are used in the schemas, naming conventions, and
abstract levels of the data that are semantically the same.
Nevertheless, there exist other theoretical challenges such
as optimization of elements in query translation and ex-

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

The article is published with open access at www.degruyter.com.

42 —— R.Asgarietal

ecution of database servers that are managed indepen-
dently [5]. Many of such problems regarding distributed
databases are further discussed in [6]. The most important
problems in distributed databases can be organized in four
categories [5, 7]:

1. Different structures

2. Different contents

3. Different naming conventions

4. Different semantics

The structural differences origin from a strict structure that
is posed on the values of one attribute. As an example the
"name" attribute can have different structures in different
databases such as: "firstName- lastName" or "lastName-
firstName". Such databases suffer from structural hetero-
geneity because of the different structure of titles for es-
sentially the same type of values.

The content differences arise when we observe one
type of data in different forms. For example in an attribute
like "age" one can use "birth-date" in which the "age" can
be calculated by reducing the value from the current date.
Another one can use "age" which shows the numeric value
of the age.

The naming differences origin from the different nam-
ing conventions for the same values, like the attributes
"Telephone number", "contact number" or "phone".

But the most important problem that we face with is
the semantic differences. This problem arises from the var-
ious descriptions given for just one concept. There are sit-
uations in which missing some information is inevitable
during the application of mapping functions. Consider the
attribute "grade" which can be filled with a value between
0 and 20 in some educational systems and can be filled
with "A", "B", "C", "D" or "F" in other educational sys-
tems. Both of these types of values demonstrate a com-
mon concept. If we are going to integrate these two kinds
of databases we have to face with the semantic differences.

Many approaches currently exist for database integra-
tion. In [8] authors propose a method to work on Intelligent
Networks based on their properties. In [9] authors propose
a new pattern based on the integration of resources. This
approach is somewhat different from the other framework
and supports the patterns of natural programming lan-
guages.

Most of these approaches endeavor to integrate data
based on structural relations between entities and do not
apply semantic selections among data to solve the prob-
lems of data heterogeneity.

In [10] authors developed a model to manage data
heterogeneity based on ontology and used semantic web
services to extract the necessary information. Since, this
approach generates the ontology automatically, it cannot

DE GRUYTER OPEN

model the real word relations correctly. Generally, an on-
tology can be made of the following components: (i) Rela-
tions among the classes (concepts), (ii) Relations among
the instances, and (iii) Relations among the instances and
classes [11].

In [12] the authors use ontology and algebraic meth-
ods to introduce an approach for the integration of het-
erogeneous databases. They assume that the ontology of
database exists and it is formed and created to be used in
away they need and also it is consistent with their method.
Authors in [2] define a new ontology graph that can repre-
sent all of the relations in a database and use the ontology
graph for data integration and query processing. A method
is proposed in [11] that uses query rewriting by creating a
global query answering schema for data integration.

Some methods use ontology alignment techniques for
integrating distributed ontologies that are created from
databases [13-15]. These methods generally define simi-
larity factors and then merge ontologies for creating one
global integrated ontology [16-18].

Generally, there are three ways of using ontologies for
database integration: (i) the methods based on a unique
ontology; (ii) the methods based on multiple ontologies;
and (iii) the methods based on hybrid ontologies [19].

The methods that are based on a unique ontology use
a universal ontology to present common vocabularies for
the description of concepts. In this approach, all of the in-
formation resources of an ontology are related together.
However, if these information resources have been derived
from different schemas then finding an appropriate and
common ontology would be cumbersome.

In the multiple ontologies method, each information
resource will be described with its own ontology. So, in-
formation resources can be changed and modified eas-
ily. However, the weakness of this architecture is the lack
of common vocabularies which makes comparison of re-
sources difficult.

Hybrid methods are used to address the weakness of
the two above-mentioned methods. Similar to the multiple
ontologies approach, in this method, each information re-
source describes its own semantics. In addition, there is
a common universal ontology which can be used to com-
pare the ontologies. The advantage of hybrid methods is
that new resources can be added easily and without mod-
ifying the mappings or even the common vocabularies.

3 The proposed method

Application of ontologies in the area of distributed
database integration enables us to query a distributed

DE GRUYTER OPEN

Universal Ontology ‘

An ontology-based approach for integrating heterogeneous databases = 43

 —

o F__,-' | '\-\..___h ey
Pl b4 Y
| Transformer | Transformer | | Transformer |
1 2 3
L | N
Omtology Omtology Omtology
DE 1 DE 2 DE 3 |
'lq_j_‘_z' _1__.»' I‘h_‘___,-"
9 p # :
DB 1 DB 2 ‘ DB 3
j —— e 4 —__#

Figure 1: The combination of GAV (Global As View) and the hybrid architecture.

database in a way we are familiar with and receive the right
response in the form which we expect, i.e., without any
concern about the consistency problems.

In this section, we propose our ontology-based
method and describe the necessary rules for the graph
construction of the ontology. Then we demonstrate the
way users communicate with the system.

3.1 System architecture

The architecture that is used in this research is composed
of GAV (Global As View) and hybrid architectures. This ar-
chitecture is shown in Figure 1. According to this archi-
tecture, the user queries the virtual (universal ontology)
database (which is a view on the actual database) and re-
ceives a response.

The universal database sends a query in an accept-
able standard form for each of the database transformers.
These transformers transform the input ontology (the on-
tology that is gained from the user’s queries) into a stan-
dard form of their own virtual database and resend a re-
sponse to the virtual database. Then, the virtual database

sends the answer to the output in a standard form. This

can result in the following advantages:

— Redundancy reduction in the hybrid method: because
the virtual database does not store any information
and just standardizes user’s queries, it sends them to
the databases and receives the returned response and
shows them as output. In addition, this method has all
of the advantages of the hybrid method.

— Using this kind of architecture we can eliminate the
wrong responses made up from the ontological graph.
This issue is further discussed in the next section.

3.2 The rules for constructing the ontology

Because graphs have a good capability of expressing con-
cepts, we use a graph to describe the ontology rather than
the plain text. The graphical method that we use for ex-
pressing our ontologies is a modified version of what is
presented in [2]. However, the graph used in [2] may result
in some unwanted and wrong answers with some queries.
For example, as shown in Figure 2, if a user queries "com-
puter" ("pc" and "computer" in the ontology graph are de-
fined as the same) the first tuple, that is not desirable,

44 —— R, Asgarietal

T1 ™
D Article T
ro 104 Computer N 104
v s Chipset ™" 101
101 Computer

Figure 2: The result of "Select ID from T1 where Article = "com-
puter" ("pc" and "computer" in the ontology graph are defined as
the same).

will be included in the response. To address this problem,
we optimized this graph according to the architecture dis-
cussed in the next section.

We formally define ontology "0" as:

0={C,A,I,R}, 6]

where ’C’ is a set of concepts, ’A’ is a set of attributes of con-
cepts, 'I’ is a set of instances, and R is a set of all relations
that exist between ’C’, ’A’, and ’I’. The set of 'R’ is defined
as:

R = {isA, synOf, partOf, atr, val}, 2)

where "isA" is used for Inheritance relations, “synOf” is
used for relations between concept °c’ and all of its Syn-
onyms, “partOf” is used for Aggregation relations, “atr” is
used for showing attributes of a concept and “val” is used
for accessing instances of a concept. Finally, the ontology
graph in shown as:

OntologyGraph = {V, L, R}, 3

where ’V’ is a set of nodes that contain ’C’, ’L’ is a set of all
Linked-Lists that are represented by ’A’ and 'I’. Head of the
list is represented by ’A’ and body of the list is represented
by ’T’.

As an example, in Table 1, we denote each data repre-
sented by column "Name" as a concept in our database,
and the set of A = Model, Type by the data in repre-
sented columns "Model" and "Type" as instances. In real
world, concepts "Computer" and "PC" almost have the
same meaning, and as a result we denote them as syn-
onyms and represent their relation with "SynOf". On the
other hand, both concepts "Computer" and "Calculator"
are data processors, so we define new concept "Data Pro-
cessor" and create a link between "Computer" - "Data Pro-
cessor" and also "Calculator"” - "Data Processor" by the la-
bel "synOf". The concept "Notebook" has many properties
of concept "PC" and it can inherit them from "PC", so we
represent their relation by "isA". The concepts "Desktop",

DE GRUYTER OPEN

Table 1: A sample table that contains product information.

Type Model Name
LCD S1227i Desktop
Single processor Dell Notebook
Usb port L11h23 Keyboard
Programmer M19 Calculator
LED 121g2 Monitor
Scientific N34 Calculator
Desktop pc Intel PC
Multi processor IBM Computer
Scientific N45 Calculator

"Keyboard" and "Monitor" are part of "PC", so we can rep-
resent their relation with "PC" by "part of". On the other
hand, "Keyboard" is part of "Notebook" too, so we use
"part of" for the relation between "Keyboard" and "Note-
book".

In Figure 3, we have shown the product ontology
graph for Table 1. However, not all the instances are
shown. For example, two instances of concept "Calcula-
tor" are shown. The node "Calculator" € V has relation
with linked-list L1 € Lby "atr". Head of L11is represented by
set ’A’ that belongs to the concept "Calculator", this means
that head of L1 contains two fields (Model, Type). The body
of L1 is represented by set °I’ that belongs to concept “Cal-
culator”, this means that it contains three nodes (M19, Pro-
grammer), (N34, Scientific) and (N45, Scientific), that are
represented in Figure 3. We use relation “val” between the
nodes of of linked-list L1 € L. Also, we define the ontology
of the discussed database similar to the picture shown in
Figure 3.

One of the advantages of applying this graph is the
possibility capability of update. If we insert a new tuple
into a table or delete a tuple, what we have to do is updat-
ing the linked-list of the values of the related table.

3.3 Integration and responding the user
based on the proposed method

When a user queries the universal ontology, he/she starts
to build a set called F. F is a tuple composed of five at-
tributes as:

F=(ca,i,s,acc), (4)

where "c" is the set of all concepts in an ontology, "a"
demonstrates the attributes related to "c", "i" is the set of
all instances related to "a", "s" is the set of all synonyms
(these synonyms are defined in the universal ontology),
and "acc" is the list of all verified accesses of a user to the

DE GRUYTER OPEN

An ontology-based approach for integrating heterogeneous databases

— 45

smOf
ar

v v
.

Figure 3: Part of product ontology graph for Table 1.

attributes (this set is constructed based on a predefined
and constraint domain). The transformer applies the set
F’, on the local ontology. The local ontology traverses the
existing graph and finds the best answer. Then, it returns
the answer to the transformer. Therefore, the transformer
sends the responses to the universal ontology in the form
of F”. The definitions of F’ and F” are in Section 3.4. The
universal ontology compares the returning responses and
deletes the items that are exactly the same and then sends
the response to the output.

3.4 Integration

In the proposed method, the following steps have to be

done for the integration process:

— Constructing one ontology for each database

— Constructing transformer as an intermediate language
and as a communication bridge among the local on-
tologies and the universal ontology

— Constructing one connector between the local ontolo-
gies and the users (universal ontology)

We have discussed the first item before. Regarding the
second item, that is the construction of transformers, the
main idea in applying the transformers is the same as what
is done in Java programming language (that is the interme-
diate language, byte code, is used besides a hybrid trans-
lator (language processor) for the purpose of portability).
Making the use of transformers enables us to have
communications between the local ontology and the uni-
versal one. The transformers can control the returning
responses and filter them, when it is necessary. Fur-
thermore, it can add/drop a database to/from the sys-

Mode.l T)'pe

|;,-1’M19| ng:rammer__|/ |

s
-

PR

-

(5 [somie | |

Find Mappings()
EBegin
EQ = tmpEQ := (DO}
For each query gi in tmpEQ Do
For eachriin Sm Do
if Match (gi, #;) is true
add r; ta MR
End For
For eachr; in MR
Add Replace(y;, ;) to EQ and tmpEQ
Remove gi from tmpEQ
IftmpEQ is Empty return EQ
End For
End

Figure 4: The algorithm for finding all semantics of input query to
create the final query used by the Local Ontology.

tem with fewer modifications to the system. That is be-
cause adding/dropping a database can be implemented
by adding/dropping its transformer and we do not need to
change the universal ontology or the common vocabulary.

The third item is the construction of a universal ontol-
ogy which is a virtual environment and maintains a set of
rules. It enables the user to search and query in the entire
system without any problem.

3.5 Response to the user’s query

In order to respond to a user, we should use F, F’, and F”.
After sending a query to the transformers and verifying a
user with acc, we can remove this parameter from F and
define F’. This means that F' = (c, a, i, s). We have intro-
duced F in the previous section. Here we define F’ and F”.

Assuming an ontology ’K’, a query q is sent to this on-
tology in the form of gF; = (c;, a;, ij, s;) (where ¢; € c,

46 —— R.Asgarietal.

Match(g;, i)

Begin
I Number of F'in g is equal to Number of F'in »;
Then
Foreach F'in gi Do
For each edge erthat has relationship with F'in gi
I Ifer € gi) is not equal to Ifer€ r;)
Return false
End for
Return true
End if
Return false
End

Figure 5: The algorithm for function Match(q;, r;).

Remove Extra()
Begin
For each 5j in F Do
For each i; in F*Do
Ife; € Fequal with5; € F and 5;g F"
Remove F%5= (t;, aj, i, 5;) from F~
End

Figure 6: The algorithm for removing extra answers after applying
input query to the local transformers.

ajea,ijei,s;e s) and the response will be in the form
of F' = (c, a, i, s) where °c’, ’a’, ’i’ and ’s’ have the same
meaning as in Equation (4).

In order to generate all the responses given to the user,
we need to process the user’s query based on the "synOf*"
set and find the suitable semantic mappings that corre-
spond to it. To find all the semantic mappings of a query,
we have applied an algorithm which is a modified version
of the algorithm presented in [11]. This algorithm is shown
in Figure 5.

In Figure 4, EQ is the final query set that is used in
the local ontologies, DQ is the set F’ resulted from the
user’s query and Sm is set of semantic solutions using
Match(qg;, r;) function (introduced in Figure 5). The func-
tion Replace(q;, r;) replaces the left side of relation r; with
relation g;.

The algorithm shown in Figure 5 ensures us to have the
following conditions in the returned semantic mappings:
— The same number of sets in both relations
— Existence of corresponding relations for each of the

variables of F’ in the resulting relation from the se-

mantic mapping

According to the conditions, only the relations that corre-
spond to the user’s query will be chosen as the semantic
mappings. After finding appropriate semantic mappings,
the transformer sends these mappings to the local ontolo-
gies in order to give a response. When the responses are

DE GRUYTER OPEN

received, the transformer deletes the wrong responses by
applying the algorithm presented in Figure 6, similar to the
reply that can be seen in Figure 2. Then the final response
set will be sent to the universal ontology and the response
given to the user will be generated as an output.

According to the algorithm presented in Figure 6, all
the responses resulted from synonym concepts, that are
defined in the universal ontology and returned by the local
ontologies, are sent to the output if they are the members
of the same synonym.

When the responses are sent to the universal ontology
by the transformers, all pairs of the returned responses
have to be compared in order to eliminate the repeated
items. In addition, the redundant operations have to be
curbed by comparing the different databases.

4 Case study

In order to demonstrate the proposed method, we have
implemented a prototype system using the Java program-
ming language. In the prototype system, we assume that
the corresponding system contains two databases related
to two computer utility stores. We demonstrate how these
two databases can be integrated.

This system contains two databases. The first database
(DB1) contains a table (TBL1), as shown in Table 2, and the
second database (DB2) contains a table (TBL2), as shown
in Table 3. The ontology graph of DB1and DB2 can partially
seen in Figure 7. When a user sends a query it will be ap-
plied on each of the graphs in the form of some sets that
are the representative of various probable semantics.

In this approach, we break the user’s query into sub-
queries and find all semantics of these sub-queries by
traversing the ontology graph and finding the answers of
sub-queries and merging them in order to obtain the final
answer. This results in increasing the capabilities of the
system in generating the response to the user’s queries.
Moreover, by using such architecture, we can reduce the
redundancy and increase the ability applying updates by
the system.

Suppose that a user wants to find a list of proces-
sors that can be used in the personal computers, then
he applies a query like "Select Name, Cost, Rate from UO
where Application =PC". All semantics can be extracted
from the query based on Figure 4, and query will be
sent to each of the local databases as the standard form:
"F = (Processor,{Application = ”PC”},{Name =
?, Cost =?, Rate =?}, {PC, CPU, Server, Micro}, True)".

DE GRUYTER OPEN An ontology-based approach for integrating heterogeneous databases =— 47

Table 2: The information contained in TBL1

Rate Cost Type Model Company Id

7.5 $22 Desktop i3-5157u Intel 3034
5.8 $26 Personal i3-3210 Intel 3007
8.3 $32 Desktop i5-5287u Intel 2432
8.8 $47 Personal i7-5600u Intel 2592
8.3 $43 Personal i7-3770k Intel 1109
7.9 $45 Mobile i7-4590 Intel 1074
9.1 $110 Server E7-8850 Intel 1037
8.6 $122 Server E7-8850 Intel 1044
6.5 $36 Desktop Fx-4100 AMD 2737
7.6 $42 Personal Fx-6300 AMD 3470
9.2 $55 Mobile Fx-8370 AMD 3473
6.5 $3 Micro ATtiny 10 AVR 4156
7.2 $4 Micro ATtiny 25 AVR 4493

6.8 $7 Micro ATMega 8535 AVR 6789

Table 3: The information contained in TBL2.

Rate Price CPU Id

C+ £19.64 Inteli3-5157u 267
B++ £30.00 Intel i5-5300 274
B+ £28.58 Inteli5-5287u 296
B++ £41.97 Inteli7-5600u 335
C++ £37.40 Inteli7-4765 337
D+ £40.19 AMD Fx-4100 622
C £22.00 AMD X3-460 768
A+ £51.50 AMD X6-1075 777
D+ £2.76 AVR ATtiny 10 778
C £3.57 AVR ATtiny 25 910
D++ £6.25 AVRATMega 8535 911
B £18.00 ARM Cortex-A72 965
C+ £13.00 ARM Cortex-R5 970
A £9.00 ARM Cortex-M4 971

48 —— R.Asgarietal DE GRUYTER OPEN

|.‘ | ID |Compa:1§-‘|ModellC_g§t.

i7-8850

|<-rr03?]"]me1 5122 |
-—-» pantQf a. Part of ontology graph for DB1
— s A
—» 3mof
—» At
—.-» yal

r | jin] |Compan}-‘|!\a10del_|gqgt_| |

|‘1|3.3.5—i“;tel |i'."-5600u|.f41.97'| |

b. Part of ontology graph for DB2

C. Part of ontology graph (Synonyms) for Universal

Figure 7: Part of ontology graph of DB1, DB2 and Universal Ontology.

Transformer i1:
Fli= (Processor, CPU, {Compary=7. Model=7?, Cost=?, Rate="}, Personal)
Fi12= (Processor, CPU, {Company=7, Model=7?, Cost=?, Rate=7}, Mobile)

F173= (Processor, CPU, {Company=?, Model=?, Cost=?, Rate=?), Personal)
Transformer 2:

F2°1 (Processor, PC, {CPU=?, Price=?, Rate=?}, PC)

Figure 8: Transformers convert input query to the local queries.

DE GRUYTER OPEN

File
Safact DB Diractory: o wmenty | Ny jects\Ontology_DEs Brows |
Enter input Query or select your seript file:
] Query | Brows |
Select Name, Cost, Rate =
From UQ [‘ Run ‘
where Application ="PC" X
F(UniversalQntology)
(Processor, {Application="PC"}, {Name=?, Cost=?, Rate=?}, {PC, CPU, Server, Mic;*
< J A
F' {Ontology)
(Processor, CPU, {Company=?, Model=?, Cost=7, Rate=1}, Personal)} =
(Processor, CPU, {Company=?, Model=?, Cost=?, Rate=1}, Mohile}
(Processor, CPU, {Company=", Model=?, Cost=", Rate=1}, Desktop)
v
F' {Ontology-2)
(Processor, PC, {CPU=?, Price=7, Rate=7}, PC) -

Answer

Mo | Name | Price (§) | Rate (100%)

T AMD FX-4100 36 65 A
8 AMD FX-6300 42 76

Q AMD FX-8370 55 92

10 Intel i5-5300 33.58 85

11 Intel i7-4765 41.87 75]

Figure 9: A sample query and extracting its semantics.

After that, transformers 1and 2 interpret the user’s request
as shown in Figure 8.

Each database returns its response to the transformers
based on its local queries, after refining answers based on
Figure 6 (removing concepts which are considered synony-
mous in universal ontology, but are not synonyms in local
ontology). Transformers convert answers to the standard
form of universal ontology and send them. After remov-
ing similar answers, responses are displayed to the user as
shown in Figure 9. In this query “U0” represents the uni-
versal ontology “=?” represents what entity the user wants
to find.

5 Conclusion

In this paper, we expanded the semantic relationships in
the concepts of databases using ontologies. In order to re-
duce the redundancy and increase the ability of the sys-
tem for applying updates, we represented a new architec-
ture by combining the methods that are based on data
repository and ontology. The advantage of this method can
be seen when the new database is added to the system.
For this work, there is no need to change or modify the
structure of the universal ontology. Moreover, we designed

An ontology-based approach for integrating heterogeneous databases =—— 49

a transformer to coordinate the local ontology with the
universal ontology. In addition, when we drop a database
from the system, we need to cut the relation between the
corresponding transformer and the universal ontology.

Since the databases are created and maintained lo-
cally, using the ontology graph and adding connections
of synonyms and definitions of the lexemes enables us
to have connections between the users and all of the
databases without any knowledge of the structural form
of these databases.

For increasing the capabilities of the system in gener-
ating the response to the user’s queries, we made use of
semantic mappings. Therefore, all the concepts that can
be extracted from the user’s request can be replied in an
appropriate way. Additionally, we included the capabil-
ity of security control issues such as access levels for the
users, which is not considered in previous research. As a
result, the proposed method represents a more powerful
approach for integrating databases.

References

[1] S. Staab, R. Studer, Handbook on Ontologies, Springer, Berlin,
2004

[2] C.B. Necib,). Freytag, Ontology based query processing in
database management systems, Proceeding on the 6th Interna-
tional Conference on ODBASE, Springer, Italy, 2888, 839-859,
2003

[3] .M. Fielding, J. Simon, W. Ceusters, B. Smith, Ontological the-
ory for ontological engineering: biomedical systems informa-
tion integration, Ninth International Conference on the Princi-
ples of Knowledge Representation and Reasoning (KR2004),
Canada, 2004

[4] W. Sujansky, Heterogeneous Database Integration in
Biomedicine, J. Biomed. Inform. 34, 285-298, 2001

[5] H.T. El-Khatib, M.H. Williams, L.M. MacKinnon, D.H. Marwick, A
framework and test-suite for assessing approaches to resolving
heterogeneity in distributed databases, Inform. Software Tech.
42,505-515, 2000

[6]). Euzenat, P. Shvaiko, Ontology Matching, Springer-Verlag,
Berlin Heidelberg, 37, 40-42, 2007

[71).Y. Tao,). Qu-Feng, W. Huijuan, Ontology-based Research on
Heterogeneous Database Semantic Integration Strategies, Sec-
ond Proceedings of 2010 Second International Workshop on Ed-
ucation Technology and Computer Science, Seattle, USA, 477-
480, 2010

[8] A. Stephanik, R. Hofestddt, M. Lange, A. Freier, Metabolic Infor-
mation Control System, In Proceedings of the World Multicon-
ference on Systemics, Cybernetics and Informatics, Orlando,
Florida, USA, July 22-25, 2001

[9]1 J.T. McDonald, M.L. Talbert, S.A. DelLoach, Heterogeneous
Database Integration Using Agent Oriented Information Sys-
tems, The International Conference on Artificial Intelligence (I1C-
Al’2000), Monte Carlo Resort, Las Vegas, Nevada, June 26-29,

50 —— R.Asgarietal.

[10]

[11]

[12]

[13]

[14]

2000

L. Xia, W. Bei, A Framework for Ontology based management of
Heterogeneous resources, International Joint Conference on Ar-
tificial Intelligence, Hainan Island, April 25-26, 2009

J. Lee, J.H. Park, M.). Park, C.W. Chung, J.K. Min, An intelligent
query processing for distributed ontology,). Syst. Softw. 83,
85-95, 2010

J. Wang, Y. Zhang, Z. Maio,). Lu, Query Transformation in
Ontology-based Relational Data Integration, Asia-Pacific Con-
ference on Wearable Computing Systems, Shenzhen, 17-18 April
2010

L. Juanzi, J. Tang, Y. Li, Q. Luo, RIMOM: A Dynamic Multistrat-
egy Ontology Alignment Framework, IEEE Trans. Knowl. Data 21,
1218-1232, 2009

C. Xie, Semantic Similarity-Based Ontology Alignment for Enter-
prise Ontologies, Proceedings of 6th International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD *09), Tianjin,

[15]

[16]

(17]

[18]

[19]

DE GRUYTER OPEN

386-390, 2009

A. Mazak, M. Lanzenberger, B. Schandl, iweightings: Enhancing
Structure-based Ontology Alignment by Enriching Models with
Importance Weighting, Proceedings of 2010 International Con-
ference on Complex, Intelligent and Software Intensive Systems
(CISIS), Poland, 992-997, 2010

F. Natalya Noy, Semantic Integration: A Survey Of Ontology-
Based Approaches, SIGMOD Record 33(4), 65-70, 2004

Ch. Namyoun, S. Il-Yeol, H. Hyoil, A Survey on Ontology Map-
ping, SIGMOD Record 35(3), 34-41, 2006

P. Shvaiko, J. Eenat, A Survey of Schema-Based Matching Ap-
proaches, Journal on Data Semantics IV, Springer-Verlag, Berlin
Heidelberg, LNCS 3730, 146-171, 2005

H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster,
H.Neumann, S. Hubner, Ontology-based integration of informa-
tion - a survey of existing approaches, Proc. of IJCAI-01 Work-
shop: Ontologies and Information Sharing, USA, 108-117, 2001

	1 Introduction
	2 Related works
	3 The proposed method
	3.1 System architecture
	3.2 The rules for constructing the ontology
	3.3 Integration and responding the user based on the proposed method
	3.4 Integration
	3.5 Response to the user's query

	4 Case study
	5 Conclusion

