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Abstract: In their seminal work, Chen and Cheng proved a priori estimates for the constant scalar curvature
metrics on compact Kähler manifolds. They also prove C α3, -estimate for the potential of the Kähler metrics
under boundedness assumption on the scalar curvature and the entropy. The goal of this article is to replace
the uniform boundedness of the scalar curvature to the Lp-boundedness of the scalar curvature.
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1 Introduction

A fundamental theorem in the realm of complex analysis is the uniformization theorem. One of the implica-
tions of the uniformization theorem is that every compact Riemann surface admits a metric with consistent
Gaussian curvature. This principle can be extended in numerous ways to manifolds of higher dimensions.
Within complex geometry, the aspiration is to discover canonical metrics on a Kähler manifold, those that
align with the complex structure and exhibit curvature with specified characteristics. Kähler-Einstein metrics,
constant scalar curvature Kähler metrics, and extremal metrics are prime examples of such metrics.

The existence of Kähler-Einstein metrics on compact complex manifolds was proved by Yau for manifolds
with a trivial canonical class [13,14]. In the case of negative first Chern classes, both Aubin and Yau indepen-
dently affirmed the existence of Kähler-Einstein metrics [1,13,14]. However, the scenario is most challenging for
Fano manifolds, where the first Chern class is positive, and there exist known barriers to the realization of
Kähler-Einstein metrics. As conjectured by Yau, these barriers should all correlate with the stability of the
manifolds.

The challenge concerning Fano manifolds was eventually overcome by Chen et al. [4–6] and Tian [8] a few
years back. Regarding cscK metrics, the Yau-Tian-Donaldson conjecture proposes that the presence of such
metrics corresponds to a form of stability. The cscK metrics scenario is notably more intricate than that of
Kähler-Einstein metrics, primarily because the constant scalar curvature equation is a fourth-order fully
nonlinear elliptic partial differential equation (PDE), while our understanding of fourth-order nonlinear
PDEs is still limited. In contrast, the Kähler-Einstein equation is a second-order fully nonlinear elliptic PDE,
a field that has been extensively explored over the years.

Progress in the constant scalar curvature equation had been stagnant until the recent breakthrough of
Chen and Cheng [2,3], who established a priori estimates for cscK equations, providing significant insights that
the Kähler potential and all its derivatives of a cscK metric can be controlled in terms of the relative entropy.
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Let M be a Kähler manifold of dimension n and ω be its Kähler form. For any Kähler potential φ, define
= + − ∂∂ω ω φ1 ¯φ . We consider the equations

= + − ∂∂ = = = − +ω ω φ e ω φ F R η1 ¯ , sup 0, Δ tr ,φ

n n F n

M

ω ωφ φ
( ) (1)

where R is the scalar curvature of the metric ωφ, and η is a fixed smooth 1, 1( )-form. The prototype of η is the
Ricci curvature ωRic( ) of ω.

In their papers [2,3], Chen and Cheng proved the following:

Theorem 1.1. [2, 3] For any ≥p 1, there exists a constant C that depends on ∞n p ω η R, , , , ‖ ‖ , and ∫ +e F ω1
M

F n2

such that ≤F φ C, .W W
p p2, 4,‖ ‖ ‖ ‖ In particular, F andφ are uniformly bounded in α1,� and α3,� , respectively, for any

∈α 0, 1 .( )

With some modifications to the argument in [2], we slightly generalize the proceeding theorem. Namely,
we replace the uniform bound on the scalar curvature with the Lp-bound for some >p 0.

Let = +t tΦ 1 2( ) . Define AF and AR p, by

∫ ∫= =A e F ω A e R ωΦ , ΦF

n

M

F n
R p

n

M

F p n
,( ) ( )

for >p 0. AF gives an upper bound for the entropy

∫ ≤Fe ω A ,

M

F n
F

and AR p, gives an upper bound for the Lp-norm of R with respect to ωφ

∫
⎛

⎝
⎜

⎞

⎠
⎟ ≤

∕
∕

R ω A .

M

p
φ

n

p

R p

n p

1

,∣ ∣

The main results of this article are the following theorems.

Theorem 1.2. For any >p n, there exists a constant C that depends on n p ω, , ,AF , and AR p, such that ≤∞F C‖ ‖

and ≤∞φ C.‖ ‖

Theorem 1.3. Let =n Mdim . Then, there exist >p n2
n

that depends only on n such that ≤F CW
pn2,‖ ‖ and

≤φ CW
pn4,‖ ‖ for a constant C depending on n ω, , η, AF , and AR p,

n
.

Moreover, for any ≥p p ,
n

there exists a constant Cp that depend on n ω, , η, AF , and AR p, such that
≤F CW p

p2,‖ ‖ and ≤φ C .W p
p4,‖ ‖

Note that in Theorem 1.3,W p2, andW p4, are optimal regularity for φ and F , respectively, because of (1) and
the fact that R is Lp for some >p 0.

Theorem 1.3 gives a priori α3,� and α1,� estimate for φ and F , respectively for some = ∈α α p n, 0, 1( ) ( ) by
Sobolev embedding theorem.

This article is organized as follows. In Section 2, we prove Theorem 1.2. Our argument does not use the
Alexandrov maximum principle and the cut-off function as in Chen and Cheng [2,3]. Instead, we use Kołodziej’s
theorem to prove the boundedness of the auxiliary functions. We then prove the result using the classical
maximum principle.

In Section 3, we prove that there is an Lp-estimate of +n φΔ . The 2� estimate is obtained in Section 4 using
Moser iteration. The arguments in Sections 3 and 4 are essentially the same as those in [3].

Throughout this article, we shall use ∫ f
M

to denote ∫ fω
M

n, where ω is the background metric of the
manifold. We use f p‖ ‖ to denote the Lp-norm of function f with respect to the background metric ω.
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2 Proof of Theorem 1.2

The section’s main goal is to prove a uniform estimate for φ and F . This section’s constant C depends on
=n Mdim , ω, and η, which may differ line by line.

Lemma 2.1. Let →h M: � be a positive function and φ and ν be Kähler potentials such that

+ − ∂∂ =ω φ e ω1 ¯ ,n F n( )

+ − ∂∂ =ω ν e h ω1 ¯ .n F n n( )

Then, ≥ −Δ ν nh ωtr .φ ωφ
( ) Here, = + − ∂∂ω ω φ1 ¯φ and Δφ is the Laplacian with respect to the metric ω .φ

Proof. This follows by applying the AM-GM inequality to + − ∂∂ω νtr 1 ¯ωφ
( ). □

Let =α α M ω,( ) be the α-invariant of M ω, .( ) By definition, for any smooth function →φ M: � such that
+ − ∂∂ >ω φ1 ¯ 0, we have

∫ ≤
− −

e ω C

M

α φ φ
n

sup

M

1

2
( )

for some >C 0 independent to φ.

Theorem 2.1. For any >p n, there exists =δ δ0 0 depending on n p ω η A R, , , , ,F p‖ ‖ such that for any <δ δ0,
we have

∫ ≤+e C ,

M

δ F1( )

where =C C n p δ ω η A R, , , , , ,F p0( ∣∣ ∣∣ ).

Proof. For a fixed >p n, we define functions ψ and ρ as the solutions of the following:

+ − ∂∂ = = =− −
ω ψ A e F ω A F ω ψ1 ¯ Φ Φ , sup 0;n

F

n F n
F

n

φ

n

M

( ) ( ) ( ) (2)

+ − ∂∂ = = =− −
ω ρ A e R ω A R ω ρ1 ¯ Φ Φ , sup 0.n

R p

n F p n
R p

n p
φ

n

M

, ,( ) ( ) ( ) (3)

Let < ≤ε0 1 and = + + − = −u F εψ ερ λφ v λφ, where = + +v F εψ ερ and = +λ η 2ω∣ ∣ . Let >δ 0. Then,
by Lemma 2.1, we have

≥

≥ − + + − + − − +

= − + + − + − +

≥ − + + −

−

− −

− −

− −

e Δ e δΔ u

δ R η εδ nA F ω εδ nA R ω nδλ δλ ω

δ R εnA F εnA R λn δ η ε ω λ ω

δ R εnA F εnA R λn

tr Φ tr Φ tr tr

Φ Φ tr 2 tr tr

Φ Φ .

δu
φ

δu
φ

ω F ω R p ω ω

F R p ω ω ω

F R p

1

,

1

1

,

1

1

,

1

φ

n

φ

p

n

φ φ

n

p

n

φ φ φ

n

p

n

1

1

1

( )

( ) ( ( ) ) ( ( ) )

( ( ) ( ) ) ( )

( ( ) ( ) )

(4)

The last inequality holds since ≤ε 1.
Let

= −δ λ αmin , 1 ,0
1 ( )

where =α α M ω,( [ ]) is the α-invariant of M . We choose < <δ δ0 .
1

2 0 Fixing δ, we choose >ε 0 small so that

+ ⋅ <δ ε α2 1 min , 1 .( ) ( )

Let

= − ∕F εnA FΦ̂ Φ .F
n1 1( ) ( )
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Then

− ≥ −−
εA R R C ε p AΦ , , ,R p R p,

1
,

p

n( ) ( )

since AR p, is bounded and >p n. Therefore, (4) implies that

≥ −Δ e δe F CΦ̂φ
δu δu( ( ) ) (5)

for some constant >C 0. As a result, we have

∫ − ≤e F C ωΦ̂ 0.

M

δu
φ

n( ( ) )

We let

= − ≥
= − <

E x F C

E x F C

Φ̂ 1 ;

Φ̂ 1 .

1

2

{ ∣ ( ) }

{ ∣ ( ) }

On E2, F is bounded, say ≤F C . Thus, we have

∫ ∫ ∫≤ − ≤ − −+e e F C ω e F C ωΦ̂ Φ̂ .

E

δu F

E

δu
φ

n

E

δu
φ

n

1 1 2

( ( ) ) ( ( ) )

Since FΦ̂( ) is nonnegative, and on E2, we have ≤ −u C λφ, we have

∫ ∫ ∫≤ ≤ ≤+ − −e C e C e C ,

E

δu F

E

δλφ

M

δλφ

1 2

since δλ is less than half of the α-invariant. By definition of u, we have

∫ ∫≤ ≤+ + + +e e C.

E

δ F εδ ψ ρ

E

δu F1

1 1

( ) ( )

Since

+ − ∂∂
+

>ω
ψ ρ

1 ¯
2

0,

using the Hölder inequality, we have

∫ ∫

∫ ∫

= ⋅

≤
⎛

⎝
⎜

⎞

⎠
⎟ ⋅

⎛

⎝
⎜

⎞

⎠
⎟ ≤

+ ∕ + ∕ + + − +

+ + + − + ∕
∕ +

+ ∕
+

+ ∕
+

+ ∕
+

∕
+

e e e

e e C ,

E

δ F

E

δ F εδ ψ ρ εδ ψ ρ

E

δ F εδ ψ ρ

E

δ

δ
εδ ψ ρ

1 2 1 2

1
1 2

2

δ

δ

δ

δ

δ

δ

δ

δ

1 1

1 2

1

1 2

1

1

1 2

1

1

2

1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

since + ∕
∕ εδ
δ

δ

1 2

2
is less than half of the α-invariant. Combining the above with the fact that F is bounded on E2,

we have

∫ ≤+ ∕e C.

M

δ F1 2( )
□

The following proof of Theorem 1.2 is slightly different from that of Chen and Cheng [2].

Proof of Theorem 1.2. As in (2) and (3), we define functions ψ and ρ as the solutions of the following:

+ − ∂∂ = = =− −
ω ψ A e F ω A F ω ψ1 ¯ Φ Φ , sup 0;n

F

n F n
F

n

φ

n

M

( ) ( ) ( ) (6)
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+ − ∂∂ = = =′
− ′

′
− ′

ω ρ A e R ω A R ω ρ1 ¯ Φ Φ , sup 0,n
R p

n F p n
R p

n p

φ

n

M

, ,( ) ( ) ( ) (7)

where ′ = + ∕p p n 2( ) .
We shall use the result of Kołodziej [7] to prove that the functions φ ψ ρ, , are uniformly bounded.
That φ is bounded directly follows from Theorem 2.1 and Kołodziej’s theorem.
Since ≤+ −x e Cδ x1 for any real number >x 0, for < ∕δ δ 2,0 we have

∫ ≤+ +F e C n p δ ω η A RΦ , , , , , , .

M

δ δ F
F p

1 1
0( ) ( ∣∣ ∣∣ )( )

Hence, Kołodziej’s theorem implies that ψ is uniformly bounded.
Finally, we prove that ρ is uniformly bounded. Let < < < ∕σ δ δ0 20 and = +a σ1 . We have

∫ ∫

∫ ∫

∫

=

≤
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

≤
⎛

⎝
⎜

⎞

⎠
⎟

′ ′

′ −

′ −

−

−

R e R e ω

R ω e ω

C R ω

Φ Φ

Φ

Φ .

M

ap aF

M

ap σF
φ

n

M

ap
δ

δ σ
φ

n

M

δF
φ

n

M

ap
δ

δ σ
φ

n

δ σ

δ
σ

δ

δ σ

δ

( ) ( )

( )

( )

(8)

The first inequality follows from the Hölder inequality and the last inequality follows from Theorem 2.1. Now
choose σ sufficiently small such that ′ <−ap p.

δ

δ σ
Therefore, the Hölder inequality implies that

∫ ∫≤′
R e C R ωΦ Φ .

M

ap aF

M

p
φ

n( ) ( )

This, together with Kołodziej’s theorem implies that ≤ =∞ +ρ C C n ω ηA A, , , .F R n, 1‖ ‖ ( )

Let = + + −u F ψ ρ λφ, where = +λ η 2ω∣ ∣ . Then, we have

≥ − + + − ≥ −− − −+
Δ u R nA F nA R C nA F CΦ Φ Φ ,φ F R F

1 1 1
n

p n

n n
1

2

1

( ) ( ) ( )

since + ∕ >p n n2 1( ) . Let x0 be a maximum point of u. Then, by the above,

≤F x C.0( )

As a result, for any ∈x M , we have

≤ = + + − ≤u x u x F x ψ x ρ x λφ x C.0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )

This implies that ≤F x C( ) .
Now, let ′ = − + + −u F ψ ρ λφ. Then, by a similarly computation, we have

′ ≥ −−
Δ u εnA F CΦ .φ F

1
n
1

( )

The same argument would imply that ≥ −F C. This completes the proof of the theorem. □

3 W p2, estimate

In this section, we prove that for any >p 0, +n φΔ , where φ is the solution of (1), is in L Mp( ).
This section’s constants C and Ci depend on =n Mdim , >p 0, ω, and η, which may differ line by line.
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Theorem 3.1. Let = −γ
n

n 1
and >p 0 be a positive number. Then

∫ + ≤n φ CΔ .

M

p( )

where C depends on ∞ ∞n p ω η φ F, , , , ,‖ ‖ ‖ ‖ , and −R .n p

γ

1‖ ‖( )

To prove Theorem 3.1, we first prove the following gradient estimate.

Proposition 3.1. For any ≥p 1, there exist constants c1 and c2 depending on n p ω, , , η, ∞ ∞φ F,‖ ‖ ‖ ‖ , and −R n p1‖ ‖( )

such that

∇ ≤ + −
− ∕

φ c c R .p n p

n

2 1 2 1

1 2
‖ ‖ ‖ ‖( )

( )

Proof. Let

= ∇ +− + +u e φ K ,F λφ φ 2
1

2

2

(∣ ∣ )( )

where K is an absolute constant (e.g., we can take =K 10). Then, we have

≥ − +−Δ u Cu c R uφ

n

n 1 ( ∣ ∣)

by [1, p. 918, equation (2.31)], where C c, are positive constants depending on ∞ ∞n p ω η φ F, , , , ,‖ ‖ ‖ ‖ . Let >p 0

and let γ be defined in Theorem 3.1. Then, we have

+
= + ∇ ≥ ≥ − ++ − + +

p
Δ u u Δ u pu u u Δ u Cu c R u

1

1
.φ

p p
φ

p
φ

p
φ

p γ p1 1 2 1∣ ∣ ( ∣ ∣)

Using Young’s inequality ≤ ++ + − +R u R up p γ n p γ1 1∣ ∣ ∣ ∣( )( ) , we have

+
≥ − −+ + − +

p
Δ u Cu C C R

1

1
.φ

p p γ n p γ1
1 2

1∣ ∣( )( )

Integrating the above inequality to the volume form ωφ

n, we have

∫ ∫≤ ++ − +C u ω C C R .

M

p γ
φ

n

M

n p γ
1 2

1∣ ∣( )( )

Since F is bounded, ωφ

n and ωn are equivalent. Thus, we have

≤ + − +
−+u c c R .L n p γ

n
1 2 1

1
p γ‖ ‖ ‖ ‖( )( )

Thus, the proposition is valid for >p γ. But, then from the Hölder inequality, it is valid for any >p 0. □

Proof of Theorem 3.1. Let >α 2 be a constant depending on p only, and to be determined later. Let λ be a
constant depending on M . Let

= +− +u e n φΔ .α F λφ ( )( )

By Yau’s estimate, we have

≥ ⎛
⎝ − ⎞

⎠ +

− + + + + −

− + − +

− + − + − +

− −Δ u e
λα

C n φ

λαne n φ αe R n φ e F R

2
Δ

Δ Δ Δ ,

φ
α F αλφ

α F λφ α F λφ α F λφ
ω

1
n n

1

1

1

1( )

( ) ( ) ( )

( )

( ) ( ) ( )

where Rω is the scalar curvature of the metric ω. By choosing λ big enough such that − ≥C ,
λα λα

2 4
we have

≥ − + −− +Δ u C u C R u e F CΔ .φ
γ α F λφ

1 2 3∣ ∣ ( )

We then have
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+
= + ∇

≥ ∇ + − + −

+ −

− + + − − +

p
Δ u u Δ u pu u

pu u C u C R e F u C

1

1

Δ ,

φ
p p

φ
p

φ

p
φ

p γ p γ n α F λφ p

1 1 2

1 2
1 2

1
3

∣ ∣

∣ ∣ ∣ ∣( )( ) ( )

(9)

where we used Young’s inequality (with possibly different >C C0,1 2, and C3). Integrating the above to the
volume form ωφ

n and using the fact that F is bounded and R is in + −L p γ n 1( )( ), we have

∫ ∫ ∫+ ∇ ≤ −+ − − +C u p u u C e F u ωΔ .

M

p γ

M

p
φ

M

α F λφ p
φ

n
1

1 2
3∣ ∣ ( ) (10)

Let = − −F α F αλφˆ 1( ) . Using integration by parts, we have

∫ ∫

∫ ∫ ∫

− = −

= − − ∇ − ∇ ∇ + ∇ ∇

− +

−

e Fu ω Fu e

α u F e λα u F φ e p u F u e

Δ Δ

1 .

M

α F λφ p
φ

n

M

p F

p F p F p F

ˆ

2 ˆ ˆ 1 ˆ
( ) ∣ ∣

( )

(11)

By the AM-GM inequality, we have

∫ ∫ ∫−
−

∇ − ∇ ∇ ≤
−

∇
α

u F e λα u F φ e
λ α

α
u φ e

1

2 2 1
.p F p F p F2 ˆ ˆ

2 2

2 ˆ
∣ ∣

( )
∣ ∣ (12)

Since F̂ is bounded, we have

∫ ∫−
∇ ≤ ∇

λ α

α
u φ e C u φ

2 1
,p F p

2 2

2 ˆ

4
2

( )
∣ ∣ ∣ ∣

where C4 is a constant that depends on λ α, , and ∞F̂ L‖ ‖ . Using Young’s Inequality, we obtain

∫ ∫ ∫∇ ≤ + ∇+ + ∕u φ u C φ
1

2

p p γ p γ γ2
5

2∣ ∣ ∣ ∣ ( )

for a constant depending only on n. By Proposition 3.1, we have

∫ ∇ ≤ ++ ∕
− + ∕
− ∕

φ c c R .

M

p γ γ

n p γ n

n2
1 2 1

1 2
2∣ ∣ ( ‖ ‖ )( )

( ) ( )

( )

Since − + ∕ ≤ + −n p γ n p γ n1 12( ) ( ) ( )( ), from (12), we conclude that

∫ ∫−
−

∇ − ∇ ∇ ≤
α

u F e λα u F φ e C
1

2
,p F p F2 ˆ ˆ

6∣ ∣ (13)

where C6 depends on λ α, , and ∞F̂ L‖ ‖ .
On the other hand, we have

∫ ∫ ∫−
−

∇ + ∇ ∇ ≤
−

∇− −α
u F e p u F u e

p

α
u u e

1

2 2 1
.p F p F p F2 ˆ 1 ˆ

2

2 2 ˆ
∣ ∣ ∣ ∣ ∣ ∣

( )
∣ ∣ (14)

By the Cauchy-Schwarz inequality, we have

∑∇ =
⎛

⎝
⎜ + ⋅

+
⎞

⎠
⎟ ≤ + ⋅ ∇u φ

u

φ
n φ u1

1
Δ .

i

ii

i

ii

φ
2

¯

¯

2

2∣ ∣
∣ ∣

( ) ∣ ∣

Thus

∇ ≤ ∇ ≤ ∇+ −u e u u C u u eα F λφ
φ φ

F2 2
7

2 ˆ
∣ ∣ ∣ ∣ ∣ ∣( )

for = ∞C eF
L7 ‖ ‖ . Hence, we have

∫ ∫−
∇ ≤

−
∇− −p

α
u u e

C p

α
u u

2 1 2 1
.p F p

φ

2

2 2 ˆ 7
2

1 2

( )
∣ ∣

( )
∣ ∣
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We choose α large enough so that

−
≤

C p

α

p

2 1 2
.

7
2

( )

Then, we have

∫ ∫−
∇ ≤ ∇− −p

α
u u e

p
u u

2 1 2
.p F p

φ

2

2 2 ˆ 1 2

( )
∣ ∣ ∣ ∣ (15)

Thus, from (11), using (13) and (15), we have

∫ ∫− ≤ + ∇− + −e Fu ω C
p

u uΔ
2

.

M

α F λφ p
φ

n p
φ6

1 2∣ ∣( )

Combining with (10), we have

∫ ∫ ∫+ ∇ ≤ + + ∇+ − −C u p u u C C
p

u u
2

.

M

p γ

M

p
φ

p
φ1

1 2
3 6

1 2∣ ∣ ∣ ∣

Thus,

∫ + ≤n φ CΔ

M

p( )

is valid for any >p γ. By the monotonicity of the Lp-norm, the above inequality is valid for any >p 0. □

4 2� -estimate

In this section, we shall give the 2� and high-order estimates. This section’s constants C and Ci depend on n, ω,
and η, which may differ line by line. But contrary to the previous section, these constants are independent
of >p 0.

Theorem 4.1. For each n, there exist positive numbers p
n
, q

n
(depending only on n) and C such that

+ ≤∞n φ CΔ‖ ‖ . Here, C depends on ∞ ∞n ω η φ F R, , , , , p
n

‖ ‖ ‖ ‖ ‖ ‖ , and +n φΔ .q
n

‖ ‖

We start with a Sobolev-type of inequality proved in [2].

Lemma 4.1. Let n be the complex dimension of M. Then, for any ∈ +ε 0, ,
n

1

1
( ) there exists a constant C that

depends on ω and ε such that

∫≤
⎛

⎝
⎜ + ∇ +

⎞

⎠
⎟−u C n φ u uΔ ,β ε

ε
M

φ φ

2
1
2 2

1

2‖ ‖ ‖ ‖ ∣ ∣ ‖ ‖

where = ⎛
⎝ + ⎞

⎠ =− +
− +

−
− +β 2 1

n ε

n ε

n ε

n ε

1 1

1

2 1

1

( ) ( ) .

Proof. The proof is given in [2]. For the reader’s convenience, we include the argument here. We have the
following Sobolev inequality:

∫ ∫ ∫≤
⎛

⎝
⎜ ∇ +

⎞

⎠
⎟∕ −

−

u C u u .

M

n n

M M

2 2 1

n

n

2

2 1

∣ ∣ ∣ ∣ ∣ ∣( )

Replacing u by
−

u β
n

n

2 1

2 in the above inequality, and by interpolation, we obtain
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∫ ∫ ∫≤
⎛

⎝
⎜⎜ ∇ +

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟u C u u ,

M

β

M

α

M

α

2

2

β

α2

∣ ∣ ∣ ∣ ∣ ∣ (16)

where = −α ε1 .
By the Cauchy-Schwarz inequality, we have

∑∇ =
⎛

⎝
⎜ + ⋅

+
⎞

⎠
⎟ ≤ + ⋅ ∇u φ

u

φ
n φ u1

1
Δ .

i

ii

i

ii

φ
2

¯

¯

2

2∣ ∣
∣ ∣

( ) ∣ ∣

Thus, using (16), we have

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

⎛

⎝
⎜

⎞

⎠
⎟ ≤

⎛

⎝
⎜⎜ ∇ +

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟

≤
⎛

⎝
⎜⎜ ∇ + +

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟

≤
⎛

⎝
⎜ ∇

⎞

⎠
⎟

⎛

⎝
⎜ +

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟−

−

u C u u

C u n φ u

C u n φ C u

Δ

Δ .

M

β

M

α

M

α

M

φ
α α

M

α

M

φ

α

M

α

α

α

M

α

2

2

2

2

2
1

1 2

α

β

2

∣ ∣ ∣ ∣

∣ ∣ ( ) ∣ ∣

∣ ∣ ( ) ∣ ∣ □

Proof of Theorem 4.1. We let

= ∇ + + +∕u e F n φΔ 1.F
φ φ

2 2∣ ∣ ( )

Then, by [1, equation (4.13)], we have

≥ − + + ∇ ∇ − −− ∕Δ u C n φ u e F Δ F C R u CΔ 2 , .φ
n F

φ φ φ
1 2( ) ⟨ ⟩ ∣ ∣ (17)

Multiplying (17) by u p2 and integrating by parts and using the fact that F is bounded, we have

∫ ∫ ∫ ∫ ∫∇ ≤ + + + − ∇ ∇− − + + ∕p u u ω C n φ u C R u C u e F Δ F u ω2 Δ 2 , .

M

p
φ φ

n

M

n p

M

p

M

p

M

F
φ φ φ

p
φ

n2 1 2 1 2 1 2 1 2 2 2∣ ∣ ( ) ∣ ∣ ⟨ ⟩ (18)

In the above last term, we use the same idea as in the proof of Theorem 3.1 to obtain

∫

∫ ∫ ∫

− ∇ ∇

= + ∇ + ∇ ∇

∕

∕ ∕ ∕ −

e F Δ F u ω

e Δ F u ω e Δ F F u ω p e Δ F F u u ω

,

1

2
2 , .

M

F
φ φ φ

p
φ

n

M

F
φ

p
φ

n F
φ φ

p
φ

n

M

F
φ φ φ

p
φ

n

2 2

2 2 2 2 2 2 2 2 1

⟨ ⟩

( ) ( )∣ ∣ ( )⟨ ⟩

Using the Cauchy-Schwarz inequality, for any >ε 00 , we have

∫

∫ ∫

∫ ∫

∇ ∇

≤ + ∇ ∇

≤ + ∇

∕ −

− −

− −

e Δ F F u u ω

Cε Δ F u ω ε F u u ω

Cε Δ F u Cε u u

,

,

.

M

F
φ φ φ

p
φ

n

M

φ
p

φ

n

M

φ φ
p

φ

n

M

φ
p

M

φ
p

2 2 1

0

1 2 2
0

2 2 2

0

1 2 2
0

2 2 1

( )⟨ ⟩

( ) ∣⟨ ⟩∣

( ) ∣ ∣

(19)

As a result, we have

∫ ∫ ∫ ∫− ∇ ∇ ≤ ∇ + + +∕ − − +e F Δ F u ω Cε u u C ε Δ F u C p Δ F u, 1 .

M

F
φ φ φ

p
φ

n

M

φ
p

M

φ
p

M

φ
p2 2

0
2 2 1

0

1 2 2
2

2 1⟨ ⟩ ∣ ∣ ( ) ( ) ∣ ∣
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By choosing ε0 small enough, from (18), we have

∫ ∫ ∫ ∫ ∫∇ ≤ + + + +− − + + +p u u C n φ u C R u C Δ F u C p Δ F uΔ .

M

φ
p

M

n p

M

p

M

φ
p

M

φ
p2 2 1

1
1 2 1

2
2 1

3
2 2

4
2 1∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ (20)

Using equation (1), we have

≤ + ≤ + + −Δ F R η R C n φTr Δ .φ ω
n 1

φ
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

Therefore, from (20), we obtain

∫ ∫ ∫∇ ≤ + + +− − + +u u C n φ u C R uΔ 1 .

M

φ
p

M

n p

M

p2 2 1
1

2 2 2 1
2

2 2 1∣ ∣ ( ) ( ∣ ∣ )

Hence,

∫ ∫ ∫∇ ≤ ∇ ≤ + + +− + − − +p u C u u C n φ R uΔ 1 .

M

φ
p

M

p
φ

M

n p2
1

2

2

2 1 2 2 2 2 2 1∣ ∣ (( ) ∣ ∣ )

Now, we fix an ∈ +ε 0, .
n

1

1
( ) Let = +β δ2 1( ), where

=
− +

− +
δ

n ε

n ε

1 1

1

( )

as in Lemma 4.1. Then, we have

∫

∫

≤ + ∇ +

≤ +
⎛

⎝
⎜ + + +

⎞

⎠
⎟

+ + +

− +

−

−

u C n φ u C u

Cp n φ n φ R u

Δ

Δ Δ 1 .

p

β
M

φ
p

φ

p

M

n p

2 2

1

2

2 2 2 2 2 1

ε
ε

ε
ε

1

2 1

1

2

1

2

1

‖ ‖

‖ ‖ (( ) ∣ ∣ )

On the other hand, let < <θ β2 and let = − − −θ θ* 1 2 1 1( ) . Then, for any function H , by the Hölder
inequality, we have

∫ ∫≤ ⋅
⎛

⎝
⎜

⎞

⎠
⎟+ +

Hu H u .

M

p
θ

M

p
θ

2 1 2 1
2*

θ

2

‖ ‖ ( )

In particular, we have

∫ ∫≤ ⋅
⎛

⎝
⎜

⎞

⎠
⎟+ +

R u R u

M

p

θ

M

p
θ

2 2 1

2

2 2 1
2*

θ

2

∣ ∣ ‖ ‖ ( )

and

∫ ∫+ ≤ + ⋅
⎛

⎝
⎜

⎞

⎠
⎟− +

−
− +

n φ u n φ uΔ Δ .

M

n p

n θ

n

M

p
θ

2 2 2 1

2 2

2 2 2 1
2*

θ

2

( ) ‖ ‖( )
( )

Assuming ≤R Cθ2 *‖ ‖ , + + + ≤− −n φ n φ CΔ Δn θ2 2 * ε
ε

1‖ ‖ ‖ ‖( ) , we have

≤+ +u Cp u .p

β

p

θ

2

2

2
1

2

1

2

This implies that for any ≥p
1

2
, we have

≤+ ++u Cp u .p β p θ
2

p1

2

2

2 1 1

2
‖ ‖ ( ) ‖ ‖( ) ( )

Applying Moser’s iteration, one obtains
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≤∞u C u .θ‖ ‖ ‖ ‖

On the other hand

∫≤ = ≤∞ ∞
−

u C u u C u u .
θ

θ

θ

M

θ θ 1
1‖ ‖ ‖ ‖ ∣ ∣ ‖ ‖ ‖ ‖

which implies that

∫≤ ≤ ∇ + + +∞u C u C F n φΔ 1 .

M

φ φ1
2‖ ‖ ‖ ‖ (∣ ∣ ( ) )

Since

∫ + =n φ ω nΔ

M

n( )

and

∫ ∫ ∫∇ = − ≤ + + ≤−F ω FΔ F F R C n φ CΔ ,

M

φ φ φ

n

M

φ

M

n2 1∣ ∣ ∣ ∣(∣ ∣ ( ) )

we have

≤∞u C.‖ ‖ □

Remark 1. Choosing = +ε ,
n

1

2 1
we obtain = −q n4 4.

n

2 On the other hand, Theorem 3.1 implies that a bound on
− −R n n

n

1
2

4
2

4‖ ‖( ) ( ) gives a bound on + −n φΔ .n4 4
2‖ ‖ Therefore, we can show that C in the statement of Theorem 4.1

depends on ∞ ∞n ω φ F R, , , , ,p
n

‖ ‖ ‖ ‖ ‖ ‖ where = − +
p .

n

n n

n

4 1 13( ) ( )

One might hope to improve the estimate by lowering p .
n
However, we have not been able to improve the

bound yet.

Now, the proof of Theorem 1.3 is straightforward.

Proof of Theorem 1.3. Suppose that φ satisfies equation (1). Then, Theorems 1.2, 3.1, and 4.1 imply that there
exists p

n
such that

+ ≤ =∞n φ C C n ω η RΔ , , , .p
n

‖ ‖ ( ‖ ‖ )

This implies that eigenvalues of = + − ∂∂ω ω φ1 ¯φ are bounded from above by C . On the other hand, by
Theorem 1.2, ≤∞F C.‖ ‖ Therefore, eigenvalues of = + − ∂∂ω ω φ1 ¯φ are bounded below by a positive constant
that only depends on n ω η R, , , .p

n
‖ ‖ Hence, the equation

= − +F R ηΔ trω ωφ φ

is uniformly elliptic. Therefore, DeGiorgi-Nash-Moser theorem implies that there exists ∈α 0, 1( ) such that
≤F C.C

α‖ ‖ This together with the 2� bound on φ, we obtain that φ is bounded in α2,� [11].
Hence, the Carlderon-Zygmond estimate implies that F is bounded in W .p2,

n Now differentiating the
Monge-Ampere equation implies that φ is bounded in W .p4,

n □
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