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Abstract: In their seminal work, Chen and Cheng proved a priori estimates for the constant scalar curvature
metrics on compact Kihler manifolds. They also prove C3%-estimate for the potential of the Kéihler metrics
under boundedness assumption on the scalar curvature and the entropy. The goal of this article is to replace
the uniform boundedness of the scalar curvature to the LP-boundedness of the scalar curvature.
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1 Introduction

A fundamental theorem in the realm of complex analysis is the uniformization theorem. One of the implica-
tions of the uniformization theorem is that every compact Riemann surface admits a metric with consistent
Gaussian curvature. This principle can be extended in numerous ways to manifolds of higher dimensions.
Within complex geometry, the aspiration is to discover canonical metrics on a Kahler manifold, those that
align with the complex structure and exhibit curvature with specified characteristics. Kdhler-Einstein metrics,
constant scalar curvature Kéahler metrics, and extremal metrics are prime examples of such metrics.

The existence of Kahler-Einstein metrics on compact complex manifolds was proved by Yau for manifolds
with a trivial canonical class [13,14]. In the case of negative first Chern classes, both Aubin and Yau indepen-
dently affirmed the existence of Kahler-Einstein metrics [1,13,14]. However, the scenario is most challenging for
Fano manifolds, where the first Chern class is positive, and there exist known barriers to the realization of
Kéhler-Einstein metrics. As conjectured by Yau, these barriers should all correlate with the stability of the
manifolds.

The challenge concerning Fano manifolds was eventually overcome by Chen et al. [4-6] and Tian [8] a few
years back. Regarding cscK metrics, the Yau-Tian-Donaldson conjecture proposes that the presence of such
metrics corresponds to a form of stability. The cscK metrics scenario is notably more intricate than that of
Kéhler-Einstein metrics, primarily because the constant scalar curvature equation is a fourth-order fully
nonlinear elliptic partial differential equation (PDE), while our understanding of fourth-order nonlinear
PDEs is still limited. In contrast, the Kdhler-Einstein equation is a second-order fully nonlinear elliptic PDE,
a field that has been extensively explored over the years.

Progress in the constant scalar curvature equation had been stagnant until the recent breakthrough of
Chen and Cheng [2,3], who established a priori estimates for cscK equations, providing significant insights that
the Kéhler potential and all its derivatives of a cscK metric can be controlled in terms of the relative entropy.
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Let M be a Kdhler manifold of dimension n and w be its Kahler form. For any Kéhler potential ¢, define
Wy =w+ -1 83¢. We consider the equations

wy = (w + =1 099)" = efw", s;p(p =0, AyF=-R+tr,n, )

where R is the scalar curvature of the metric w,, and 7 is a fixed smooth (1, 1)-form. The prototype of 1 is the
Ricci curvature Ric(w) of w.
In their papers [2,3], Chen and Cheng proved the following:

Theorem 1.1. [2, 3] For any p = 1, there exists a constant C that depends onn, p, w, , ||R||, and JMeF V1+ P2t
such that ||E||yze, ||@|lw+e < C.In particular, F and ¢ are uniformly bounded in C*¢ and C>%, respectively, for any
a € (0,1).

With some modifications to the argument in [2], we slightly generalize the proceeding theorem. Namely,
we replace the uniform bound on the scalar curvature with the LP-bound for some p > 0.

Let ®(t) = V1 + t2. Define Ar and Ag, by
Al = IeF O(F)w", A, = jeF O(R)Pw"
M M
for p > 0. Ap gives an upper bound for the entropy
IFeF w" < Ap,
M

and Agp gives an upper bound for the LP-norm of R with respect to w,
1/p
< AR

[IRPwg
M
The main results of this article are the following theorems.

Theorem 1.2. For any p > n, there exists a constant C that depends on n, p, w,Ar, and Ag , such that ||F||. < C
and ||¢]l. < C.

Theorem 1.3. Let n = dimM. Then, there exist p, > 2n that depends only on n such that ||F|jy2»n < C and
ll@llwsen < C for a constant C depending on n, w, n, Ar, and Agy, .

Moreover, for any p 2 p,, there exists a constant C, that depend on n, w, 1, Ar, and Ag, such that
Fllyze < G and gl < G

Note that in Theorem 1.3, WP and W*? are optimal regularity for ¢ and F, respectively, because of (1) and
the fact that R is L? for some p > 0.

Theorem 1.3 gives a priori C3* and C'“ estimate for ¢ and F, respectively for some a = a(p, n) € (0, 1) by
Sobolev embedding theorem.

This article is organized as follows. In Section 2, we prove Theorem 1.2. Our argument does not use the
Alexandrov maximum principle and the cut-off function as in Chen and Cheng [2,3]. Instead, we use Kolodziej’s
theorem to prove the boundedness of the auxiliary functions. We then prove the result using the classical
maximum principle.

In Section 3, we prove that there is an LP-estimate of n + Ag. The C? estimate is obtained in Section 4 using
Moser iteration. The arguments in Sections 3 and 4 are essentially the same as those in [3].

Throughout this article, we shall use IMf to denote fow”, where w is the background metric of the

manifold. We use ||f]|, to denote the LP-norm of function f with respect to the background metric w.
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2 Proof of Theorem 1.2

The section’s main goal is to prove a uniform estimate for ¢ and F. This section’s constant C depends on
n = dimM, w, and 1, which may differ line by line.

Lemma 2.1. Let h : M — R be a positive function and ¢ and v be Kdhler potentials such that
(0 + -1 3d9)" = ef ",
(w + V-1 33v)" = eFhwn.

Then, A,v 2 nh - tr,(w). Here, w, = w + V-1 339 and 4, is the Laplacian with respect to the metric w,.
Proof. This follows by applying the AM-GM inequality to tr,(w + V-1 3dv). O

Let a = a(M, w) be the a-invariant of (M, w). By definition, for any smooth function ¢ : M —» R such that
w + /-1 3¢ > 0, we have
Loto-
J’e L sEpw)wn <c
M

for some C > 0 independent to ¢.

Theorem 2.1. For any p > n, there exists &, = &, depending on n, p, w, n, Ar, ||R||, such that for any § < &,
we have

[eror s c.
M

where C = C(n, p, 8o, w, 1, Ar, |IR||p).

Proof. For a fixed p > n, we define functions ¥ and p as the solutions of the following:
(w + V-1 93Y)" = A" O(F)w" = A" (F)wy, supy = 0; %)
M
(w + V-1 38p)" = A" eF DR w" = A" ®(R)Pwy, sﬂu/[pp = 0. G)
LetO<e<landu=F+ep+ep-Ap=v-Ap,wherev=F+ e +¢epandA = |n|, +2.Let§ > 0. Then,
by Lemma 2.1, we have
e%uA,(e) 2 SAyu
> 8(-R + tr,, ) + eS(NAFIO(F)" - try,w) + 85(HA§,1I,‘I)(R)% = try,0) = NA + S try,w
4
= 8(-R + enAp®(F) + enAzh ®(R)" - An) + 8(tr, ) — 26 tr, 0 + A th, ©)
> 8(-R + enAp@(F) + enAzL ®R)" - An).

The last inequality holds since € < 1.
Let

8o = A min(a, 1),
where a = a(M, [w]) is the a-invariant of M. We choose 0 < § < %60. Fixing &, we choose ¢ > 0 small so that
2(1 + ) € < min(a, 1).
Let

O(F) = enAF @(F)n,
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Then
- ]
AR, ®(R)" — R 2 =C(&, p, Apyp),
since Ag is bounded and p > n. Therefore, (4) implies that
A¢e5” > §eSU(G(F) - ©) )
for some constant C > 0. As a result, we have

_[eﬁu(cb(F) - O)w! <0,
M

We let

E ={x|oF) - C=1}
E, = {x|®(F) - C < 1}.

On E,, F is bounded, say F < C. Thus, we have

Je6u+F < J'eﬁu((i)(l:') - C)(x)(zl < _J—eéu((i)([‘) - C)a)(;,l.
E E; E;

Since Ci)(F ) is nonnegative, and on E,, we have u < C - A¢p, we have

Ie5“+F < CJ‘e“W’ < CJe“W <C,
E E M

since 62 is less than half of the a-invariant. By definition of u, we have

Ie(1+6)F+£6(l,b+p) < IeSu+F <cC.
Ey Ey

Since
_ +
w+ -1 aa% >0,
using the Hélder inequality, we have

J'e<1+s/z>F = Jeaﬂs/zw Goesw+p) . o= 15 esw+p)

Ey E;
1+68/2 82
148 5/2 146
< Je(l+6)F+86(t/1+p) . J'e-ljg,z e8(y+p) <C
E; E
. 8 . . . .. . .
since 1; /4285 is less than half of the a-invariant. Combining the above with the fact that F is bounded on Ej,
we have
Ie(1+5/2)1r <cC. .
M

The following proof of Theorem 1.2 is slightly different from that of Chen and Cheng [2].

Proof of Theorem 1.2. As in (2) and (3), we define functions ¢ and p as the solutions of the following:

(w + V-1 30Y)" = AF"eF O(F)w" = AF"O(F)w?, supy = 0; )
M
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(w + /=1 89p)" = Agly e dR) " = ARl ®(R)P vy, s;pp =0, 0

where p’ = (p + n)/2.
We shall use the result of Kotodziej [7] to prove that the functions ¢, ¥, p are uniformly bounded.
That ¢ is bounded directly follows from Theorem 2.1 and Kolodziej’s theorem.
Since x1*%¢™ < C for any real number x > 0, for § < §y/2, we have

[y eeaor < cn,p, 8o, w,n, A, IRI]).
M
Hence, Kolodziej’s theorem implies that ¢ is uniformly bounded.
Finally, we prove that p is uniformly bounded. Let 0 < g < § < §y/2 and a = 1 + 0. We have

J'cp(R)“P’eaF = J'q:(R)“P’eﬂng
M M

5-a i
5 5
5
< I@(R)“p 50w _[eéFw;; ®
M M
S-o
5
<C

, 6
_[cp(R)“P =
M

The first inequality follows from the Holder inequality and the last inequality follows from Theorem 2.1. Now
choose o sufficiently small such that ap’% < p. Therefore, the Holder inequality implies that

Icp(R)“P’eaF < cj¢(R)ng.
M M
This, together with Kolodziej’s theorem implies that ||p|l. < C = C(n, w, NAr, Ag n+1).
Letu = F+ ¢ + p - Ap, where A = ||, + 2. Then, we have
At = =R + NAFO(F) + nAz'®(R)= - C 2 nA;'®(F)r - C,
since (p + n)/2n > 1. Let Xy be a maximum point of u. Then, by the above,
F(xp) < C.
As a result, for any x € M, we have
u(x) < u(xp) = F(xp) + ¥(xp) + p(xo) = A9(xo) < C.

This implies that F(x) < C.
Now, let u’ = =F + ¢ + p — Ag. Then, by a similarly computation, we have

A, 2 EnAFB(F) - C.

The same argument would imply that F > -C. This completes the proof of the theorem. O

3 W2P estimate

In this section, we prove that for any p > 0, n + Ag, where ¢ is the solution of (1), is in LP(M).
This section’s constants C and C; depend on n = dimM, p > 0, w, and 1, which may differ line by line.



6 —— Zhigin Lu and Reza Seyyedali DE GRUYTER

Theorem 3.1. Let y = % and p > 0 be a positive number. Then

j(n + Ap)P < C.
M
where C depends on n, p, w, , ||@|le, ||F|l», and ||R||@-vp.
y
To prove Theorem 3.1, we first prove the following gradient estimate.

Proposition 3.1. For any p 2 1, there exist constants ¢ and ¢, depending on n, p, w, 1, ||@|lw, ||F|l~, and ||R]|x-1p
such that

(n-1)/2
IVollp < & + GlIR|in-1yp -

Proof. Let
u = e FH920' (Vg + K),
where K is an absolute constant (e.g., we can take K = 10). Then, we have
Ayu 2 Curi - (¢ + |R)Du

by [1, p. 918, equation (2.31)], where C, ¢ are positive constants depending on n, p, w, 1, ||@|> ||F||~- Let p > 0
and let y be defined in Theorem 3.1. Then, we have

1
p+1

ApuP*t = uPAyu + puP™! [Vpu? 2 uPA,u 2 CuP*y - (c + |R|)ub*L.
Using Young’s inequality |R|uP*! < |R|(P*(=D + yP*Y | we have

ﬁﬂq,ul“l > CuP*Y — C; — G [R|-D@*),

Integrating the above inequality to the volume form w,, we have

CIup+Vw$ <G+ CZI|R|(H—1)(p+V)_
M M

Since F is bounded, wq’,’ and w" are equivalent. Thus, we have
lullerr < @ + GlIRIG 1 pey)-
Thus, the proposition is valid for p > y. But, then from the Holder inequality, it is valid for any p > 0. O

Proof of Theorem 3.1. Let a > 2 be a constant depending on p only, and to be determined later. Let A be a
constant depending on M. Let

u = e 1F*9)(n + Ag).

By Yau’s estimate, we have

A(pu > e‘(a’fnll)F-a/\(o[A?a -C|n+ A(D)“ﬁ

- dane ®F*9)(n + Ap) + ae *FAOR(n + A@) + e *FHAOYAF - R,),

where R, is the scalar curvature of the metric w. By choosing A big enough such that %a -C=2 %a, we have
Apu 2 C — Cy|R|u + e FHA9AF — (.

We then have
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1
b+ 1A¢ul’+1 = uPAyu + puP~t |Y,ul?
> pup! |v¢u|2 + QUP*Y = C, |R|(P+Vn=D) 4 g=aE+ADAF yp —

€)]

where we used Young’s inequality (with possibly different C; > 0, G, and C3). Integrating the above to the

volume form w(;’ and using the fact that F is bounded and R is in L®M-D we have

CJuPW + pJ’ul"l [Vpuf? < Cs - Je‘“(F YOAF uPw,.
M M M
Let F = (1 - a)F - alg. Using integration by parts, we have

- Ie‘“(F ONFUPw, = - IAFuPeF
M M

= —(a- 1)J’up \VEPef - Aa_[upvao of + p_[up-lva ef.

By the AM-GM inequality, we have

22

2a - 1)

1 ) )
Iup |VF|%et - AaIuPVF Vo el <

Iul’ IVo2ef.

Since F is bounded, we have

2a?
20a-1)

[w 1wopef < cifw vgp,
where C, is a constant that depends on A, a, and ||F||;=. Using Young’s Inequality, we obtain
1
p 2 < —\urty 2p+y)ly
Juw wop < 2 fur + f1vgl
for a constant depending only on n. By Proposition 3.1, we have

2 (n-1)/2
Jivope 1 < (g + Ry
M

Since (n - 1)%(p + y)/n < (p + y)(n - 1), from (12), we conclude that

1 ] .
Iup |VF[2et - AaIuPVFV(p et < G,

where C; depends on A, a, and ||F||=.
On the other hand, we have

2
p 2 ,F p-1 F < p p-2 2,F
uP |VF|“e* + p|uP~|VF| |Vu| e* < m uP~4 |Vul*e*.

2(a -

By the Cauchy-Schwarz inequality, we have

2
|uil
VupP = |2 1+ o7 - ——| < (n+ Ap)|Vul.
i RN
Thus
IVu2 < e®F+29) y |ul2 < Cu [Vyuf? et

for C; = ||ef||;~. Hence, we have

| - PGPt
Vupef < — = |up~t |Vup.
2(a _ 1)Iu | ul e 2((1 _ 1)_[“ | (pul

(10)

11

(12)

13)

(14)
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We choose a large enough so that

Gy p? b
20a-1) " 2°
Then, we have
pz -2 2.8 < P -1 2
TR G qup IGpul. (15)

Thus, from (11), using (13) and (15), we have

—Ie‘“(F”(")AFupw(;’ <G+ g‘[ul"l |Vq,u|2.
M

Combining with (10), we have

. pr.
Cl}v[uw + pAJ;up VP < G+ G+ Ej'up L vup.

Thus,

[+ npp<c
M

is valid for any p > y. By the monotonicity of the LP-norm, the above inequality is valid for any p > 0. O

4 C’-estimate

In this section, we shall give the C? and high-order estimates. This section’s constants C and ; depend on n, w,
and n, which may differ line by line. But contrary to the previous section, these constants are independent
of p>0.

Theorem 4.1. For each n, there exist positive numbers p,, q, (depending only on n) and C such that
In + Apll. < C. Here, C depends on n, w, 11, ||@l|w, ||Fll, [|R]lp,, and ||n + Agpllq, .

We start with a Sobolev-type of inequality proved in [2].

Lemma 4.1. Let n be the complex dimension of M. Then, for any € € (0, ﬁ), there exists a constant C that
depends on w and € such that

llull < C{lin + Afpll%;e_[lvgoulé + JJuli
&

M

>

1-(n+e
n-1l+e¢

_ 2n(l-¢)

n-1l+e¢*

where 8 = 2[1 +

Proof. The proof is given in [2]. For the reader’s convenience, we include the argument here. We have the
following Sobolev inequality:

2n
2n-1

I|u|2n/(2n—1) <C
M

[19ul + Jru
M M

Replacing u by u’% B in the above inequality, and by interpolation, we obtain




DE GRUYTER Remarks on a result of Chen-Cheng =— 9

2a %
[ < c|froups + , (16)
M M M
wherea =1 - ¢.
By the Cauchy-Schwarz inequality, we have
jul |
Vuf* = Z\/ by \/l—] < (n+ ) Vpul*.
Thus, using (16), we have
%” 20
[rae| <c|fioupe + | [u
M M
<c j|v uP(n + Bg) + j|u|’
a 2a
<(| J’|V¢u|2 J(n + A(p)ﬁ O
M M
Proof of Theorem 4.1. We let
u=ef2 |RFE + (n+Ag) + 1.
Then, by [1, equation (4.13)], we have
Apu 2 =C(n + A@)"tu + 2eF/2(YyF, V,A,F) - CIR|u - C. ()]
Multiplying (17) by u® and integrating by parts and using the fact that F is bounded, we have
2o i o < Cfn  dgy-iien  Cllmin + clue -2 E TAFNE g
M M M M M
In the above last term, we use the same idea as in the proof of Theorem 3.1 to obtain
- [ F, va, Fyuro}
M
1
= Jerr pyirog + e Ha,PIVFRWPG] + 3p [eFHao )T, T wy.
M M
Using the Cauchy-Schwarz inequality, for any & > 0, we have
| CEAN AR AN
M
< c£5lj(A¢F)2u2ng + 80I|(V¢F, Vi) P2 19)
M M
<

5lf(A¢F)2u2P + C80I|V¢u|2 w1,
M M

As a result, we have

- [er2w,F, G0, Py < Ceojw uPu + Ceg" + 1) [ (AgFY® + Cop [ 18, Flu,
M M M
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By choosing &, small enough, from (18), we have
p[Ivupur < i (n+ dgy =t + G IR + Cof @oFYa? + Cup [1agFlu?™. @0
M M M M M
Using equation (1), we have
|AoF| < |R| + |Tryn| < |R| + C(n + Ap)* L.
Therefore, from (20), we obtain
[mpuput < cif on + agyn + ¢, f @ + R,
M M M

Hence,

-2 it o p-1 2 < on-2 23,29 +1
p WP 2| < Clu?P™t [Vpul* < C|((n + Ag) + 1+ |R*)u®P*L.
M M M

1

Now, we fix an & € (0, el

). Let B = 2(1 + 6), where

6=1—(n+1)£
n-1+¢

as in Lemma 4.1. Then, we have

Hup*'%

2 P IR
<Cln + A¢||¥J"v¢up+z i C Hul”“i
B W v 1

< Cp?|in + Ag|re :

[+ agpm2 1+ IRy
M

On the other hand, let 2 < 6 < B and let 6* = (1 - 26™1)"L, Then, for any function H, by the Hélder
inequality, we have

[Ezet < -
M

2
0
J’u(zl’”)g} .

M

In particular, we have

2
]
J’u(2p+1)§]

[IRpwe+t < R
M M

and

[+ agym2ueet < jin + dg|fgd -
M

2
U]
Iu(2p+1)§’ .

M

Assuming |[R|ze* < C, [|n + AQl|an-2)* + ||n + A@lj.e < C, we have

=

2 1
< Cp? Hul’*i
B

2
6
This implies that for any p = % we have

2
lullp+1yp = (CPZ)ZP*1||U||(p+%)0-

Applying Moser’s iteration, one obtains
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l[ulleo = Cllufle-

On the other hand

0 0 _ 0-1
llulle = Cllullg = _[Iul" < Cljulle " llulh-
M

which implies that

lullo < Cllulh < CJ(%ER + (n + ) + 1),
M

Since
_[(n +Ap) w"=n
M
and
[oFiwp = - [Fa,F < [IFIGRI + o+ apy) < c,
M M M
we have

Jullo < C. O
Remark 1. Choosing € = ﬁ we obtain g, = 4n? - 4. On the other hand, Theorem 3.1 implies that a bound on
[|IR|n-1?an?-o) 8iVes a bound on ||n + A@||4n2-4. Therefore, we can show that C in the statement of Theorem 4.1

4(n-1)%n +1)
depends on 1, , ||@w, ||Fllo, ||R]|p,,» Where p, = —

One might hope to improve the estimate by lowering p,. However, we have not been able to improve the
bound yet.

Now, the proof of Theorem 1.3 is straightforward.

Proof of Theorem 1.3. Suppose that ¢ satisfies equation (1). Then, Theorems 1.2, 3.1, and 4.1 imply that there
exists p, such that

In + Aglle < C = C(n, w,n, |IR]]p,)-

This implies that eigenvalues of w, = w + J-1 03¢ are bounded from above by C. On the other hand, by
Theorem 1.2,||F||» < C. Therefore, eigenvalues of w, = w + J-1 8d¢ are bounded below by a positive constant
that only depends on n, w, 1, ||R||,, . Hence, the equation

Ay F = -R + tr,n

is uniformly elliptic. Therefore, DeGiorgi-Nash-Moser theorem implies that there exists a € (0, 1) such that
|IE|lce < C. This together with the C? bound on ¢, we obtain that ¢ is bounded in C>¢ [11].

Hence, the Carlderon-Zygmond estimate implies that F is bounded in W2P.. Now differentiating the
Monge-Ampere equation implies that ¢ is bounded in WP, O
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