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Abstract:We consider complex structures with totally real zero section of the tangent bundle. We assume that
the complex structure tensor is real-analytic along the fibers of the tangent bundle. This assumption is quite
natural in view of a well-known result by Bruhat and Whitney. We provide explicit integrability equations for
such complex structures in terms of the fiberwise Taylor expansion. In a particular geometric case considered
in the literature, we explicit much further the fiberwise Taylor expansion of the complex structure as well as
the integrability equations.
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1 Introduction and statement of the main result

Let ( )E π M, ,E be a smooth vector bundle over a manifold M . Let Ep be the fiber of E over a point ∈p M , and let
∈η Ep. We consider the transition map ( ) ≔ +τ v η vη acting over Ep, and we consider its differential

⟶d τ T T: ,η E E η0 ,0 ,p p

at the point 0. Composing d τη0
with the canonical isomorphism ≃E Tp E ,0p

, we obtain an isomorphism map

⟶T E T: .η p E η,p (1.1)

We denote by0M the zero section of E . Differentiating the identity = ∘πid 0M E M , we obtain � = ∘d π d 0T E p M0M p p,

.
This implies the decomposition

( )= ⊕T d T d π0 Ker .E p M M p E,0 , 0p p

We notice also the obvious equalities ( ) ( )= = ≃d π d τ T T E EKer η E η E η p p0 ,0p
, for any ∈η Ep. Now applying this to

=η 0p, using the previous decomposition and the canonical isomorphism ( ) ≃d T T0p M M p M p, ,
, we infer the

existence of the canonical isomorphism ≃ ⊕T T EE M p p,0 ,p
, which we rewrite as follows:

≃ ⊕∣T T E.E M M (1.2)

Definition 1. A real sub-manifold M of an almost complex manifold ( )X J, is called totally real if ( )∩ =T J T 0M p M p p, ,

for all ∈p M . A totally real sub-manifold M of an almost complex manifold ( )X J, is called maximally totally real
if � �=M Xdim dim .
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1.1 M -totally real almost complex structures over TM

We consider M included inside TM via the zero section. We know by the isomorphism (1.2) with =E TM , which
this embedding induces the canonical isomorphism ≃ ⊕∣T T TT M M MM

. The vector bundle ∣TT MM
is a complex one

with the canonical complex structure ( ) ( )⟼ −J u v v u: , ,

can acting on the fibers.
Any almost complex structure that is a continuous extension of J can in a neighborhood of M inside TM

makes M a maximally totally real sub-manifold of TM .
Over an arbitrary small neighborhood of M inside TM , the complex distribution TT

0,1

M
is horizontal with

respect to the natural projection ⟶π T M: M .
We remind that the data of a smooth complex horizontal distribution over TM coincide with the one of section

� ��( )∈ ⊗∞ ∗ ∗
A C T π T T, ,M M TM

such that � �⋅ = ∗dπ A π TM
.

For any complex vector field �( )∈ ∞ξ C M T, M , we will denote by abuse of notation ( ) ( )≡ ⋅ ∘A ξ A ξ π .
Section A evaluated at the point ∈η TM will be denoted by Aη.

We notice that we can write = +A α iβ, with

�( )∈ ⊗∞ ∗ ∗
α β C T π T T, , ,M M TM

such that �⋅ = ∗dπ α π TM
and =β T B

η η η, with ( ( ))∈ ∞ ∗B C T π T, EndM M . Section A determines an almost complex
structure J

A
over TM such that

� �( )( )= ⊂T A T T ,T J η η M π η T η, ,

0,1

, ,M A M

if and only if

� �( ) ( )( ) ( )∩ =A T A T 0.η M π η η M π η, ,
(1.3)

This condition is equivalent to the property:

( ) ( )=A ξ A ξ¯ ,η η1 2

(1.4)

implies = =ξ ξ 0
1 2

. Taking d πη in the equality (1.4), we infer =ξ ξ
1 2

. Thus, equality (1.4) is equivalent to
( )( )− =A A ξ 0

1
, and the previous property is equivalent to ( )− =A AKer 0, i.e.,

( ( ))∈ ∞ ∗B C T π T, GL .M M

We notice that with respect to the canonical complex structure of ∣TT MM
we have the equality ( ) ( )=u v ξ iξ, ,

0,1 ,
with ( )≔ − ∕ξ u iv 2. Then J

A
is an extension of this complex structure over an open neighborhood ⊆U TM of

M if and only if for any point ∈p M , we have =α d 0p M0p
and �=B T0p M p,

. We denote by

�( )∈ ⊗∞ ∗ ∗
T C T π T T, ,M M TM

the canonical section which at the point ∈η TM takes the value Tη.

Definition 2. Let M be a smooth manifold. An M -totally real almost complex structure over an open neighbor-
hood ⊆U TM of the image of the zero section 0M is a couple ( )α B, with

�( )∈ ⊗∞ ∗ ∗
α C U π T T, M TM

and

( ( ))∈ ∞ ∗B C U π T, GL ,M

such that �⋅ = ∗dπ α π TM
overU and such that =α d 0p M0p

, �=B T0p M p,
, for all ∈p M . With ≔ +A α iTB, the almost

complex structure J
A
associated to ( )α B, is the one which satisfies

� �( )( )= ⊂T A T T ,T J η η M π η T η, ,

0,1

, ,M A M

for all ∈ ⊆η U TM .
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Every almost complex smooth extension of the canonical complex structure J can of ∣TT MM
over a neighbor-

hood of M inside TM can be expressed, over a sufficiently small neighborhood ⊆U TM of M , as the almost
complex structure associated with a unique M -totally real almost complex structure over U .

We provide below an explicit formula for the almost complex structure J
A
. For this purpose, we notice first

that for any vector ∈ξ TT η,M
,

�

�

[ ( )]

[ ( )]

= − −

= + −

− −

− −

ξ A d π iB T α d π ξ

ξ A d π iB T α d π ξ

1

2

,

1

2

.

J η η η η T η η

J η η η η T η η

0,1 1 1

1,0 1 1

A TM

A TM

Indeed ∈ξ TJ T J η

0,1

, ,

0,1

A M A
, ∈ξ TJ T J η

1,0

, ,

1,0

A M A
, and = +ξ ξ ξJ J

1,0 0,1

A A
. We deduce the expression

�( )= − − +− −
J α B T α d π T B d π.
A η η η η T η η η η η

,

1 1

TM
(1.5)

This shows that for any α-horizontal vector ∈ξ TT η,M
, i.e., =ξ α d πξη η , we have

=J ξ T B d πξ .
A η η η η

,

In equivalent terms,

=J α v T B v,
A η η η η

,
(1.6)

for any ∈ ⊂η U TM and any ( )∈v TM π η,
. Moreover, (1.5) implies

= −∣
− −

J α B T .
A η d π η η η, Ker

1 1

η
(1.7)

A well-known theorem by Bruhat and Whitney [6] states that for any real-analytic manifold M there exist a
complex manifold ( )X J, and a real-analytic embedding of M in X such that as a sub-manifold of X , M is
maximally totally real. In addition, one can arrange that X is an open neighborhood ⊆U TM of the zero section
and =∣J J

M

can .
Moreover, Bruhat and Whitney [6] show that if X is a real-analytic manifold equipped with two different

real-analytic complex structures J
1

and J
2

, which contains a real analytic sub-manifold M , which is maximally
totally real with respect to both J

1

and J
2

, then there exist neighborhoods U
1
and U

2
of M inside X and a real-

analytic diffeomorphism ⟶κ U U:
1 2

, which is the identity on M and is a holomorphic mapping of ( )U J,
1

1

onto ( )U J,
2

2

.
In other words, the structure J constructed by Bruhat and Whitney [6] is unique up to complex

isomorphisms.
We state below our results on the integrability conditions for J .

1.2 The integrability equations for M -totally real almost complex structures

Let ( )E π M, ,E be a vector bundle over a manifold M . For an arbitrary section ( ( ))∈ ⊗∞ ∗ ∗
B C E π T E, E M , we

define the derivative along the fiber

( ( ))∈ ⊗ ⊗∞ ∗ ∗ ∗
DB C E π E T E, ,E M

by the formula

( ) ≔ ∈ ⊗
∣

+
∗

=
D B v

d

dt
B T E ,η η tv M p p,

t 0

for any ∈η v E, p. We denote by Alt
2
the alternating operator (without normalizing coefficient!), which acts on

the first two entries of a tensor. For any morphism ⟶A T E: M and any bilinear form × ⟶β E T E: M , we
define the contraction operation:
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( )¬ ≔ ∘A β β AAlt ,
2

where the composition operator ∘ act on the first entry of β. For a given covariant derivative operator ∇ acting
on the smooth sections of TM , we denote by ∇H the linear projection to the associated horizontal distribution.
(See Lemmas 14 and 16 and Definition 5 in subsection 9.1 of the Appendix for precise definitions and properties
of ∇H .)

Theorem 1. Let M be a smooth manifold and let J
A
with = +A α iTB be an M-totally real almost complex

structure over an open neighborhood ⊆U TM of the image of the zero section. Let also ∇ be a covariant derivative
operator acting on the smooth sections of TM . Then J

A
is integrable over U if and only if the complex section

( )≔ −− ∇S T H A1 satisfies the equation

( )( )¬ ∇ − ¬ + + ⋅ =∇ ∇ ∇H S S D S S τ R η 0,η
T π

η η η η
End ,M (1.8)

for any point ∈η U , where ( )∇ T πEnd ,M is the covariant derivative operator acting on the smooth sections of
( )∗π TEnd M induced by ∇ and where ∇τ and ∇R are, respectively, the torsion and curvature forms of ∇.

We notice that �=∣S iM TM
by the conditions = =∇

α H d 0p M0 0p p
and �=B T0p M p,

.
Notation for the statement of the main theorem.

For any ��( )∈ ⊗∗ ⊗
A T TEndM

p

M

, and for any �∈ ⊗∗ ⊗
θ T TM

q

M

, , the product operations of tensors
�

( )⋅ ¬ ∈ ⊗∗ ⊗ +
A θ A θ T T, M

p q

M

, are defined by

( )( ) ( ) ( )

( )( ) ( ( ) )∑

⋅ ≔ ⋅

¬ ≔ ⋅
=

A θ u u v v A u u θ v v

A θ u u v v θ v A u u v v

, …, , , …, , …, , …, ,

, …, , , …, , …, , …, , …, .

p q p q

p q

j

q

p j q

1 1 1 1

1 1

1

1 1

We will denote for notation simplicity ≔ ⋅ − ¬∇ ∇ ∇R θ R θ R θ. . We will denote by Circ the circular operator

( )( ) ( ) ( ) ( )≔ + +θ v v v θ v v v θ v v v θ v v vCirc , , , • , , , • , , , • , , , • ,
1 2 3 1 2 3 2 3 1 3 1 2

acting on the first three entries of any q-tensor θ, with ⩾q 3. We define also the permutation opera-
tion ( ) ( )≔θ v v θ v v, , • , , •

2 1 2 2 1
.

For any covariant derivative ∇ acting on the smooth sections of �TM , we define the operator

� �� � �( ) ( )
( )⊗ ⟶ ⊗ ⊗∇ ∞ ∗ ⊗ ∞ ∗ ∗ ⊗ −

d C M T T C M T T T: , , Λ ,M

k

M M M

k

M1

,
2

, 1

with ⩾k 1 as follows:

( ) ( ) ( )≔ ∇ − ∇∇
d A ξ ξ μ A ξ μ A ξ μ, , , , ,ξ ξ1 1 2 2 1

1 2

with ∈ξ ξ T, M1 2
and with ( )∈ ⊕ −

μ TM

k 1 . Moreover, for any

�

�

�

�

( )

( )

( )

( )

∈ ⊗

∈ ⊗

∞ ∗ ⊗ +

∞ ∗ ⊗ +

A C M T T

B C M T T

, ,

, ,

M

k

M

M

l

M

, 1

, 1

we define the exterior product

�� �( )
( )∧ ∈ ⊗ ⊗∞ ∗ ∗ ⊗ + −

A B C M T T T, Λ ,M M

k l

M1

2
, 1

as

( )( ) ( ( ) ) ( ( ) )∧ ≔ −A B ξ ξ η μ A ξ B ξ η μ A ξ B ξ η μ, , , , , , , , , ,
1 1 2 1 2 2 1

with ∈ξ ξ T, M1 2
, ∈ ⊕
η TM

l and ( )∈ ⊕ −
μ TM

k 1 . We denote by Sym
r r, … , s1

the symmetrizing operator (without normal-
izing coefficient!) acting on the entries r r,…, s1

of a multi-linear form. We use in this article the common
convention that a sum and a product running over an empty set is equal to 0 and 1, respectively.

With these notations, we can state our main theorem.
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Theorem 2. (Integrability in the fiberwise real analytic case) Let M be smooth manifold equipped with a torsion
free covariant derivative operator ∇ acting on the smooth sections of the tangent bundle TM , let ⊆U TM be an
open neighborhood of the image of the zero section with connected fibers, let J

A
be an M -totally real almost

complex structure over U, real-analytic along the fibers of U, and consider the fiberwise Taylor expansion at the
origin

( ) ( )∑− ⋅ = +− ∇

⩾
T H A ξ iξ S ξ η, ,η η

k

k
k1

1

with ∈η TM in a neighborhood of the image of the zero section, with ( )∈ξ TM π η,
arbitrary, with

�� �( )∈ ⊗ ⊗∞ ∗ ∗
S C M T S T T, ,k M

k
M M

with ( )≔ ∈× ⊕
η η Tk k

M π η

k

,
and let ∇S

1 be the complex covariant derivative operator acting on the smooth sections
of �TM defined by

( )∇ ≔ ∇ +η η S ξ η, .ξ

S

ξ 1

1

Then J
A
is integrable over U if and only if ��( )∈ ⊗∞ ∗

S C M S T T, M M1

2 , (i.e. ∇S
1 is torsion free), and for all ⩾k 2,

��

( )
( )

( )

( )

= ∇ +
+

+

∈ ⊗
=

− + − −

∞ + ∗

+

S
i

k
σ

i

k
β σ σ

σ C M S T T

β σ

1 !

Sym ,

, ,

Circ 0,

k
S

k k k k k

k
k

M M

k k

1
2, … , 1 1

2

1

1

1

where ≔σ 0
1

, ( ) ≔ ∇β σ R
1

0

S
1, ( ) ( )≔ − ∇ ∇β σ R

i
S

2
1

3
2

S

1

1 , and for all ⩾k 3,

( )
( )

( )

( )
( )

( ) ( ) ( ) ( )

( ) ( )

∑

∑ ∑

≔ +
+

≔
+

− ∇

+ ∧

−
∇

− + −

−
=

−
∇ − ∇

−
∇ − ∇

=

+

=

−
∇ + −

−

β σ
i

k
R σ

k k
θ σ

θ σ i
r

r
id R σ i id R

r id pS S

.

1

1 ! !

Sym ,

1 !

. 2

! .

k k k k k k

k k

r

k

k r
r

k S

r

k

p

r

k r
p r p

1 1
3, … , 2

1

1

3

1

1 1 1

2

2

4

1

2

2

1

1

1

S

S S S S

S

1

1 1 1

1

1

1

In more explicit terms,

= +S S σ ,
2 2

0

2

(1.9)

( ) [ ( ) ( ) ]≔ +∇ ∇S ξ ξ ξ
i

R ξ ξ ξ R ξ ξ ξ, ,

6

, , ,
2

0

1 2 3 1 2 3 1 3 2

S S
1 1 (1.10)

��( )∈ ⊗∞ ∗
σ C M S T T, ,M M2

3 (1.11)

( ) =β σCirc 0,
3

2
(1.12)

( ) ( )≔ +∇β σ
i

R σ θ σ
3

.

1

4!3!

Sym ,
3

2 2
3,4,5

3 2

S
1 (1.13)

( ) ( )≔ ∇ + ∧∇ ∇θ σ d R S S2 4!2 .

S
3 2 1 2 2 1 2

S S1

1

1 (1.14)

The assumption that the complex structure tensor is real-analytic along the fibers of the tangent bundle is
quite natural. Indeed if M is real analytic, then the M -totally real complex structure constructed by Bruhat and
Whitney [6] is also real analytic with respect to the real analytic structure of the tangent bundle induced by M .

In this article, we request from the readers very good knowledge of the geometric theory of linear
connections. Basics of such theory can be found in the Appendix.
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1.3 Application of the main integrability result

Over a Riemannian manifold ( )M g, , we denote by

� ( ) ( )∋ ⟼ ∈η t η T, Φ ,

g
t

g

M

the geodesic flow, where �� ⊂ ×Tg
M is an open neighborhood of { }×T 0M . Let ∇g be the Levi-Civita con-

nection of the metric g . We denote by Hg the liner projection to the associated horizontal distribution. We
state the following corollary of the main Theorem 2.

Corollary 1. Let ( )M g, be a smooth Riemannian manifold, let ⊆U TM be an open neighborhood of the image of
the zero section with connected fibers, let ≡J J

A
be an M-totally real almost complex structure over U, real

analytic along the fibers of U, and consider the fiberwise Taylor expansion at the origin

( ) ( )∑− ⋅ = +−

⩾
T H A ξ iξ S ξ η, ,η

g
η

k

k
k1

1

with ∈η TM in a neighborhood of the image of the zero section, with ( )∈ξ TM π η,
arbitrary, with

�� �( )∈ ⊗ ⊗∞ ∗ ∗
S C M T S T T, ,k M

k
M M

and with ( )≔ ∈× ⊕
η η Tk k

M π η

k

,
. Then statements (a) and (b) are equivalent.

(a) The almost complex structure J is integrable over U and for any ∈η U the smooth map ( )+ ⟼ψ t is s η: Φ
η t

g ,
defined in a neighborhood of �∈0 is J-holomorphic.

(b) The components Sk satisfy =S 0
1

,

( )
( )=

+ +S
i

k k
g

1 ! !

Sym Θ ,k k k
2, … , 1

for all ⩾k 2, with ( ) ≔g RΘ 2

g
2

and with

( ) ( ) ( ) ( ) ( )∑ ∑≔ − ∇ + ∧∇ −

= =

−
∇ −

−g i id R r id pS SΘ 2 ! ,k
k g g

r

k

p

r

k r
p r p1

3

2

4 2

2

1 1

g g

for all ⩾k 3, and the equations ( ) =+ gCircSym Θ 0
k k

3, … , 1

are satisfied for all ⩾k 4.

It has been 64 years since the existence of complex structures on Grauert Tubes was proven for the first
time by Bruhat–Whitney [6]. Still, up to now, the explicit form of the Taylor expansion has remained myster-
ious. This is finally clarified in the main Theorem 1.5 in [18], which is based on the statement of Corollary 1.
Indeed in the study by Pali and Salvy [18], Theorem 1.5, we obtain a rather simple and explicit global expres-
sion for the complex structure on Grauert tubes.

The expression in Theorem 1.5 in the study by Pali and Salvy [18] (see also Theorem 1.6 there for a more
general statement) is important for applications to analytic micro local analysis over manifolds. It allows
indeed an explicit global construction of the complex extension of a given global Fourier integral operator
defined on a real analytic manifold.

The expression in Theorem 1.5 in the study by Pali and Salvy [18] allows also to perform useful explicit
global intrinsic operator computations in the sense of Pali [17]. In more explicit terms, given a global intrinsic
section over the Grauert tube, an explicit formula for the complex structure such as the one in Theorem 1.5 in
[18], allows to determine if the section is holomorphic or not.

The proof of Corollary 1 will be given in the Section 6.2. In the case ( )M g, is a compact real analytic
Riemannian manifold, the complex structure in the statement of Corollary 1 exists thanks to the works of
Guillemin and Stenzel [10], Lempert [13], Lempert and Szöke [14,15], Szöke [20,21], as well as Bielawski [5].
Thus, in this case, the integrability conditions

( )≔ =+I gCircSym Θ 0k k k
3, … , 1

6  Nefton Pali



in the statement of Corollary 1 are satisfied for all ⩾k 4. We notice in particular that in the case =k 4, the
equation ( )≔ =I gCircSym Θ 0

4
3,4,5

4
, expands out to

[ ( ) ]∇ − ∧ =∇
d R R RCircSym 3 2

˜ ˜
0,

g g g g

3,4,5 1 2 1

g

(1.15)

with ≔R R˜
Sym

g g

2,3

. We will show in a quite general set-up that the previous equation is an identity. We
have indeed the following result, which shows the vanishing of I

4
.

Proposition 1. Let ∇ be a torsion free complex covariant derivative operator acting on the smooth sections of the
bundle �TM with curvature operator ( ) ( )⋅ ⋅ ⋅ ≡ ⋅ ⋅ ⋅∇ ∇R R, , , . Let ≔∇ ∇R R˜

Sym
2,3

. Then

[ ( ) ]∇ − ∧ =∇ ∇ ∇ ∇
d R R RCircSym 3 2

˜ ˜
0.

3,4,5 1 2 1
(1.16)

The proof will be provided in Section 7. In subsection 5.1 in the study by Pali and Salvy [18], we provide a
shorter proof of the vanishing of I

4
in Proposition 1 by using some more advanced combinatorial techniques.

In Section 5.2 in the study by Pali and Salvy [18], we show also the vanishing of I
5
. Using computer algebra (see

Sections 2 and 5 in the study by Pali and Salvy [19]), we can show the vanishing of Ik for =k 4,…, 7. In Section 5
in the study by Pali and Salvy [19], we use the explicit expression in Theorems 1.5 and 1.6 in the study by Pali
and Salvy [18] and we observe that in the case =k 7, the computer perform the computation in approximately
1 s, but we expect that the case =k 8 would take a computation of approximately 2 weeks. We feel confident at
this point to formulate the following conjecture.

Conjecture 1. Let M be a smooth manifold and let ∇ be a torsion free complex covariant derivative operator acting
on the smooth sections of the bundle�TM . Then the sequence of tensors �� �( )∈ ⊗ ⊗∞ ∗ ∗

S C M T S T T,k M
k

M M , ⩾k 2,
defined by the inductive rule

( )
≔

+ +
∇

S
i

k k1 ! !

Sym Θ ,k k k2, … , 1

with ≔∇ ∇RΘ 2
2

and with

( ) ( ) ( ) ( )∑ ∑≔ − ∇ + ∧∇ ∇ − ∇

= =

−
∇ −

−i id R r id pS SΘ 2 ! ,k
k

r

k

p

r

k r
p r p1

3

2

4 2

2

1 1

for all ⩾k 3, satisfies the identities

≔ =+
∇

I CircSym Θ 0,k k k3, … , 1

for all ⩾k 4.

A general mathematical proof for the vanishing of all the integrability conditions Ik is part of a long and
difficult work in progress. A corollary of the solution of the aforementioned conjecture and of the main
Theorem 2 will be the following striking result that allows canonical construction of maximal totally real
embeddings.

Corollary 2. (Canonical maximal totally real embeddings). Let M be a real analytic manifold and let ∇ be a
torsion free complex covariant derivative operator acting on the real analytic sections of the complexified
tangent bundle �TM . Then there exists an open neighborhood ⊆U TM of the image of the zero section with
connected fibers and a fiberwise real-analytic section S of ( )∗π TEnd M over U with fiberwise Taylor expansion at
the origin

( )∑⋅ =
⩾

S ξ S ξ η, ,η

k

k
k

2

for any ∈η U and any ( )∈ξ TM π η,
, with �� �( )∈ ⊗ ⊗∞ ∗ ∗

S C M T S T T,k M
k

M M for all ⩾k 2, (we denote by
)( )≔ ∈× ⊕

η η Tk k
M π η

k

,
given by the recursive formula

On maximal totally real embeddings  7



( )
≔

+ +
∇

S
i

k k1 ! !

Sym Θ ,k k k2, … , 1

with ≔∇ ∇RΘ 2
2

and

( ) ( ) ( ) ( )∑ ∑≔ − ∇ + ∧∇ ∇ − ∇

= =

−
∇ −

−i id R r id pS SΘ 2 ! ,k
k

r

k

p

r

k r
p r p1

3

2

4 2

2

1 1

for all ⩾k 3, such that J
A
with

�≔ − + −∇A iT H TS ,TM

is an M-totally real complex structure over U, which is real-analytic over U.

Indeed in the statement of the main Theorem 2, we set =σ 0k for all ⩾k 2 and we identify the torsion free
complex covariant derivative ∇S

1 with the arbitrary torsion free complex covariant derivative ∇ in the state-
ments of Corollary 2 and Conjecture 1. Then the integrability equations in the statement of the main Theorem 2
reduce to the identities =I 0k , for all ⩾k 4 in the statement of the Conjecture 1.

We notice that the notation ∇H in the aforementioned definition of the section A is slightly abusive. We
mean there by ∇H the restriction to TM of the horizontal map over �TM associated with the complex covariant
derivative operator ∇. We must observe here the obvious inclusion �� ⊂∣T TT T TM M M

.
The expression of Sk above can an should be replaced with the explicit global expression in the Theorems

1.5 and 1.6 in [18]. That expression shows that in the case ( )∇M , with smooth regularity we can assume weaker
conditions on the growth of the covariant derivatives of the curvature and still obtain convergence along the
fibers.

We obtain in this more general setting a canonical M -totally real complex structure overU which is real-
analytic along the fibers of U . This is sufficient for the applications to micro local analytic analysis over
manifolds.

We wish to point out that in the general setting of a torsion free complex covariant derivative operator ∇
acting on the sections of the complexified tangent bundle �TM there are no geodesics associated with ∇.
(Cauchy’s existence theorem does not apply).

Therefore there exist no geodesic flow associated with ∇ and the Jacobi field techniques of the authors
[5,10,13–15,20,21] do not apply.

We wish also to point out that in mathematics and in theoretical physics there are many important natural
complex differential operators that are defined via complex connections as above.

The set up of Corollary 1 is inspired by the articles [10,13–15,20,21]. The genesis of their approach will be
reminded in Sub-section 6.1 and is needed for the proof of Corollary 1.

The long series of articles due to Guillemin and Stenzel [10], Lempert [13], Lempert and Szöke [14,15]
Szöke [20,21], Burns [2,3], Burns et al. [4] as well as Aslam et al. [1] are inspired by the fundamental work of

Grauert [9].
Their existence results are needed in a crucial way in analytic micro-local analysis, in pluri-potential

theory (see the work by Zelditch [22]) as well as in Hamiltonian dynamics and in geometric quantization (see
the work by Morao and Nunes [16], Hall and Kirwin [11]).

2 General connections over vector bundles

2.1 Basic definitions

Definition 3. Let ( )E π M, ,E be a smooth vector bundle over a manifold M . A connection form over E is a
section ( )∈ ⊗∞ ∗

γ C E T T, E E such that ⋅ =dπ γ 0E and �=∣γ
dπ dπ

Ker
Ker

E E
.
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We will denote by γ
η
the connection form γ evaluated at the point ∈η E .

Lemma 1. For any connection ( )∈ ⊗∞ ∗
γ C E T T, E E the map

( )⟶∣d π γ T: Ker ,η E γ η M π ηKer ,
η E (2.1)

is an isomorphism for all ∈η E .

Proof. The assumption �=∣γ
dπ dπ

Ker
Ker

E E
implies �( )⋅ − =γ γ 0TE

. Thus �( )− ⊆γ γIm KerTE
. Then

�( )− =γ γIm KerTE
. Indeed if ( ) =γ u 0 then �( )= −u γ uTE

. On the other hand we notice that the condition
⋅ =dπ γ 0E implies �( )⋅ − =dπ γ dπE T EE

and thus

�( )⋅ − =∣d π γ dπ .η E γ T EKer
η E (2.2)

This equality shows that the map (2.1) is surjective. The injectivity follows from the fact that if ∈u v γ, Ker
η
and

( )− =d π u v 0η E then ( )− = − =u v γ u v 0 by the assumption �=∣γ
dπ dπ

Ker
Ker

E E
. □

We denote by ( )≔ ∣
−H d πη

γ
η E γKer

1

η
the horizontal map. We deduce the existence of a section

( )= ⊗∞ ∗ ∗
H C E π T T, ,

γ
E M E

such that �⋅ = ∗dπ HE
γ

π TE M
. (We notice that ( )∈ ⊗∞ ∗ ∗

dπ C E T π T,E E E M ). Composing both sides of (2.2) with Hη

γ we
infer

�= − ⋅γ H dπ ,T
γ

EE

and the smooth vector bundle decomposition = ⊕T dπ γKer KerE E .
The data of a connection form γ is equivalent with the data of a horizontal form H γ. The connection form

is called linear if the horizontal form H γ satisfies

�( ) ( ) ( )( ) ⋅ ⊕ = = ⋅+d sm H H H H d λ H, ,η η E η

γ

η

γ

η η

γ

λη

γ

η E η

γ
,

1 2
1 2 1 2

where ⊕ ⟶sm E E E:E is the sum bundle map where ∈η η η E, ,
1 2

with ( ) ( )=π η π ηE E
1 2

, and λ is a scalar.

Definition 4. The curvature form ( )∈ ⊗∞ ∗
θ C E T T, Λ

γ
E E

2 of a connection form γ is defined as

� �( ) [( ) ( ) ]≔ − − −θ ξ ξ γ γ ξ γ ξ, , ,

γ
T T1 2 1 2E E

for all ( )∈ ∞ξ ξ C E T, , E1 2
.

The definition is tensorial. Indeed if �( )∈ ∞f C E , then

� � � � � �[( ) ( ) ] [( ) ( ) ] [( ) ]( )− − = − − − − −γ fξ γ ξ f γ ξ γ ξ γ ξ f γ ξ, , . .T T T T T T1 2 1 2 2 1E E E E E E

The conclusion follows from the fact that �( )⋅ − =γ γ 0TE
. We notice that

( ( ) )∈ ⊗∞ ∗θ C E γ dπ, Λ Ker Ker ,

γ 2

and such element is uniquely determined by the curvature field Θ

γ defined as

( )( ) ( )≔ −
ξ ξ η T θ H ξ H ξΘ , , ,

γ
η η

γ

η

γ

η

γ
1 2

1

1 2

for all ( )∈ξ ξ T, M π η1 2 , E
. In the case γ is linear then

( ( ))∈ ⊗∞ ∗
C M T EΘ , Λ End ,

γ
M

2

is called the curvature operator. The terminology is consistent with the fact that if we denote by ∇γ the
covariant derivative associated with γ then the identity =∇R Θ

γ
γ

holds, thanks to Lemma A6 in the Appendix.
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Parallel transport. Given any horizontal form �( )∈ ⊗∞ ∗ ∗
α C E π T T, M E over a vector bundle E , the parallel

transport with respect to α is defined as follows. We consider a smooth curve ( )− ⟶c ε ε M: , and the section
(( ) )∈ − ∗σ C ε ε c E, ,

1 which satisfies the equation

( )= ∘ ⋅σ α σ c˙ ˙ ,

over ( )−ε ε, with ( ) ( )= ∈σ η E0 c 0
. We define the parallel transport map ( ) ( )⟶τ E E:c t

α
c c t, 0

, ( )∈ −t ε ε, along c

with respect to α as ( ) ( )=τ η σ tc t

α

,
.

We consider now a C1-vector field ξ over M and let φ
ξ t,

be the associated 1-parameter subgroup of
transformations of M . Let ⟶E EΦ :ξ t

α

,
be the parallel transport map along the flow lines of φ

ξ t,
. In equivalent

terms the map Φξ t

α

,
is determined by the ODE

( ) ( )= ∘ ⋅ ∘ ∘α ξ φ πΦ
˙

Φ ,ξ t

α

ξ t

α

ξ t E, , ,

with initial condition �≡Φξ

α
E,0
. We observe that by definition of parallel transport, the map Φξ t

α

,
satisfies

∘ = ∘π φ πΦE ξ t

α

ξ t E, ,

. This follows also from the equalities

( )∘ ⋅ = ∘ ∘ = ∘dπ ξ φ π φ πΦ Φ
˙

˙ .E ξ t

α

ξ t

α

ξ t E ξ t E, , , ,

Moreover the vector field ( )≔ ⋅ ∘α ξ πΞ

α
E over E satisfies = ∘Φ

˙
Ξ Φξ t

α
α

ξ t

α

, ,
. Indeed

( ) ( ) ( ) ( )∘ = ∘ ⋅ ∘ ∘ = ∘ ⋅ ∘ ∘α ξ π α ξ φ πΞ Φ Φ Φ Φ .

α
ξ t

α

ξ t

α
E ξ t

α

ξ t

α

ξ t E, , , , ,

We deduce that ⟼t Φξ t

α

,
is also a 1-parameter subgroup of transformations of E .

2.2 The geometric meaning of the curvature field

The following result provides a clear geometric meaning of the curvature field.

Lemma 2. Let ( )E π M, ,E be a smooth vector bundle over a manifold M and consider a horizontal form
�( )∈ ⊗∞ ∗ ∗

α C E π T T, M E over bundle E. Then the curvature field Θ

α associated with α satisfies

( )( ) ( ( ))=
∂

∂ ∂
∘ ∘ ∘−

∣
− −

= =
ξ ξ η T

t s
ηΘ , Φ Φ Φ Φ .

α
η ξ s

α

ξ t

α

ξ s

α

ξ t

α
1 2

1

2

, , , ,

t s 0

1 2 1 2

for any ( )∈ ∞ξ ξ C M T, , M1 2
such that [ ] ≡ξ ξ, 0

1 2
and for any ∈η E .

Proof. We observe first that if we have a family of transformations ( )Ψs s over a manifold with =Ψ id
0

and a
curve c then

( ) ( ) ( ) ( )= + = +
∣ =

d

ds
c c d c c cΨ Ψ

˙
Ψ ˙ Ψ

˙
˙ .s s 0 0 0 0 0 0 0

s 0

By applying the last equality to = −φΨs ξ s,
2

and ≔ ∘ ∘−c φ φ φs ξ t ξ s ξ t, , ,
1 2 1

, we infer

( ) ( )∘ ∘ ∘ = − + ∘ ∘
∣ − − ∣ −

= =

d

ds
φ φ φ φ ξ

d

ds
φ φ φ ,

ξ s ξ t ξ s ξ t ξ t ξ s ξ t, , , ,
2

, , ,

s s0

2 1 2 1

0

1 2 1

and thus,

[ ] ( )

( )

= ∘ ∘

= ∘ ∘ ∘

∣ ∣ −

∣ ∣ − −

= =

= =

ξ ξ
d

dt

d

ds
φ φ φ

d

dt

d

ds
φ φ φ φ

,

.

ξ t ξ s ξ t

ξ s ξ t ξ s ξ t

1 2
, , ,

, , , ,

t s

t s

0 0

1 2 1

0 0

2 1 2 1

In a similar way,

10  Nefton Pali



[ ] ( )= ∘ ∘ ∘
∣ ∣

− −
= =

d

dt

d

ds
Ξ , Ξ Φ Φ Φ Φ ,

α α

ξ s

α

ξ t

α

ξ s

α

ξ t

α

2 1 , , , ,

t s0 0

1 2 1 2

with ( )≔ ⋅ ∘α ξ πΞ j

α
j E , =j 1, 2. Let ∈η Ep and observe that

( )∘ ∘ ∘ ∈− − η EΦ Φ Φ Φ ,ξ s

α

ξ t

α

ξ s

α

ξ t

α
p, , , ,

1 2 1 2

for all parameters t s, , since ( )∘ ∘ ∘ =− −φ φ φ φ p p
ξ s ξ t ξ s ξ t, , , ,

1 2 1 2

thanks to the assumption [ ] ≡ξ ξ, 0
1 2

. We con-
clude the required geometric identity. □

2.3 Comparison of the curvature fields of two connections

We consider now two connection forms γ
j
, =j 1, 2 over E , and let ≔α Hj

γ
j be the corresponding horizontal

forms. The fact that ( )− =dπ α α 0E 1 2
implies that there exist a section

( ) ( ( ))≔ − ∈ ⊗− ∞ ∗ ∗
B T α α C E π T E, ,E M

1

1 2

which satisfies

= − ⋅γ γ TB dπ .E
1 2

We want to compare the curvature fields ≔Θ Θj
γ

j. We will denote by abuse of notation ( )≡ ⋅ ∘α ξ α ξ πj j E and
( )≡ ⋅ ∘Bξ B ξ πE for any ( )∈ ∞ξ C M T, M .

Lemma 3. In the aforementioned set up, the identity

( ) ( )( ) ([ ] [ ]) [ ]= − ¬ − − +−ξ ξ B DB ξ ξ T α ξ TBξ α ξ TBξ B ξ ξΘ , Θ , , , , ,
1 1 2 2 1 2

1

2 1 2 2 2 1 1 2
(2.3)

holds for any ( )∈ ∞ξ ξ C M T, , M1 2
.

Proof. We notice first the equalities

( ) ( )

[ ]

[ ] [ ]

( ) ([ ] [ ] [ ]) [ ]

=
= −
= − + ⋅
= − + + +

T ξ ξ θ α ξ α ξ

γ α ξ α ξ

γ α ξ α ξ TB dπ α ξ α ξ

T ξ ξ γ α ξ TBξ TBξ α ξ TBξ TBξ TB ξ ξ

Θ , ,

,

, ,

Θ , , , , , .

γ

E

1 1 2 1 1 1 2

1
1 1 1 2

2
1 1 1 2 1 1 1 2

2 1 2
2

2 1 2 1 2 2 1 2 1 2

1

In the last line, we use the well-known identity [ ] [ ]= ∘dπ α ξ α ξ ξ ξ π, ,E E1 1 1 2 1 2
, which follows from the fact that

= ∘dπ α ξ ξ πE j j E1
, =j 1, 2. Let now ΦTBξ t,

2

be the one-parameter subgroup of transformations of E associated
with the vertical vector fieldTBξ

2
. It satisfies ∘ =π πΦE TBξ t E,

2

. Using the standard expression of the Lie bracket

[ ] ( )= ∘ ∘
∣ ∣

−
= =

α ξ TBξ
d

dt

d

ds
, Φ Φ Φ ,ξ t

α

TBξ s ξ t

α

2 1 2 , , ,

t s0 0

1

2

2 1

2

we deduce that this vector field is vertical. In the same way, [ ]TBξ α ξ,
1 2 2

is vertical. It is obvious that the vector
field [ ]TBξ TBξ,

1 2
is also vertical. We infer the identity

( ) ( ) [ ] [ ] [ ] [ ]= − − − +T ξ ξ T ξ ξ TBξ TBξ α ξ TBξ TBξ α ξ TB ξ ξΘ , Θ , , , , , .
1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2

The required formula (2.3) follows from the identity

[ ] ( )( )= ¬TBξ TBξ T B DB ξ ξ, , ,
1 2 1 2

(2.4)

which we show now. We first remind the reader that for any vector spaceV , the canonical translation operator
( ) ( )⟶∞ ∞T C V V C V T: , , V defined as ( )( ) ≔Tξ v T ξv v is a Lie algebra isomorphism, where the Lie algebra

structure over ( )∞C V V, is defined by [ ] ≔ ⋅ − ⋅ξ η D η ξ D ξ η, v v v v v
. Indeed if we define the action of

( )∞C V V, over �( )∞C V , as follows:
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( )( ) ( ) [( ) ]( )≔ ⋅ = + =
∣ =

ξ f v D f ξ
d

dt
f v tξ Tξ f v. . ,v v v

t 0

then

( )( ) ( )( ) ( ) ( )⋅ ⋅ = ⋅ + = ⋅ = + ⋅ ⋅
∣ ∣

+ +
= =

ξ η f v
d

dt
η f v tξ

d

dt
D f η D f ξ η D f D η ξ, .v v tξ v tξ v v v v v v

2

t t

v v

0 0

The fact that the bilinear form D fv

2 is symmetric implies

[ ]⋅ ⋅ − ⋅ ⋅ = ⋅ξ η f η ξ f ξ η f, .

On the other hand, by definition,

[ ] [ ]

⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅
⋅ = ⋅

Tξ Tη f Tη Tξ f ξ η f η ξ f

ξ η f T ξ η f

,

, , .

We conclude the required identity [ ] [ ]=Tξ Tη T ξ η, , . We apply this remark to our setup. For any point ∈p M ,
we denote by ( ) ( )∈ ∞Bξ p C E E,p p the map ( )∈ ⟼ ∈η E B ξ p Ep η p and we denote by ( ) ( )∈ ∞TBξ p C E T,p Ep

the
section ( )∈ ⟼ ∈η E T B ξ p Tp η η E η,p

. Then for any ∈η Ep,

[ ] [ ( ) ( )]

[ ( ) ( )]

[ ( ( )) ( ) ( ( )) ( )]

=
=
= −

TBξ TBξ TBξ p TBξ p

T Bξ p Bξ p

T D B B ξ p ξ p D B B ξ p ξ p

, ,

,

,

η η

η η

η η η η η

1 2 1 2

1 2

1 2 2 1

which shows (2.4). □

We notice now that for any covariant derivative ∇ over E , the identity (A8) can be expressed as follows:

[ ] ( )= ∇∇ ∗ ∗
H ξ Tπ s Tπ s, ,E E ξ (2.5)

for any vector field ( )∈ ∞ξ C M T, M and any section ( )∈ ∞s C M E, . We need to show the following more general
formula.

Lemma 4. Let ( )E π M, ,E be a smooth vector bundle over a manifold M, and let ∇ be a covariant derivative
operator acting on the smooth sections of E. Then the equality holds

[ ] = ∇∇
∇H ξ Tσ T σ, ,

H ξ

πE (2.6)

for any vector field ( )∈ ∞ξ C M T, M and for any section ( )∈ ∞ ∗
σ C E π E, E .

We observe that (2.6) implies (2.5), since ( )∇ = ∇∗
∇ σ π s

H ξ

π

E ξ
E , thanks to the functorial property (A6).

Proof. To show the identity (2.6) we notice first that the assumption ( )∈ ∞ ∗
σ C E π E, E means that σ is a map

⟶σ E E: such that ∘ =π σ πE E . Then the one-parameter subgroup of transformations of E associated with
the vector field Tσ satisfies ( ) ( )= +η η tσ ηΦTσ t, . Moreover, with the notation in the proof of identity (A8),

[ ] ( )= ∘ ∘∇
∣ ∣

−
= =

H ξ Tσ
d

dt

d

ds
, Φ Φ Φ .ξ t Tσ s ξ t, , ,

t s0 0

The fact that −Φξ t,
is linear on the fibers of E implies

�[ ]∘ ∘ = + ∘ = + ⋅ ∘− − −sσ s σΦ Φ Φ Φ Φ Φ Φ Φ .ξ t s ξ t ξ t ξ t ξ t E ξ t ξ t, Σ, , , , , , ,

We infer

( )( ) ( )∘ ∘ = ⋅ ∘
∣

− −
=

d

ds
η T σ ηΦ Φ Φ Φ Φ ,ξ t Tσ s ξ t η ξ t ξ t, , , , ,

s 0

for any ∈η Ep. We observe that ( ) ( )∘ ∈σ η EΦξ t φ p,
ξ t,

. Indeed, using the property ∘ =π σ πE E , we deduce
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( ) ( ) ( )∘ ∘ = ∘ =π σ η π η φ pΦ Φ .E ξ t E ξ t ξ t, ,
,

We remind now that if ⟼ ∈t η E
t

is a smooth curve such that ( )≔c π ηt E t
, then

( )=− ∇
∣

−

=
T γ η

d

dt
τ η˙ ,η η c t t

1

0 ,

1

t
0

0

0

thanks to formula (A7). We apply the previous identity to the curve ( ) ( )≔ ∘ ∈η σ η EΦ
t ξ t φ p,

ξ t,
. We obtain

[ ( )] [ ( )] [ ]( )( ) ( )
∘ = ⋅ ∘ =− ∇

∣ ∣
−

− ∇

= =
T γ

d

dt
σ η

d

dt
σ η T H ξ Tσ ηΦ Φ Φ , .σ η σ η ξ t ξ t ξ t η

1

, , ,

1

t t0 0

Moreover,

[ ( )] ( ) ( )∘ = ⋅ = ⋅
∣

∇

=

d

dt
σ η d σ η d σ H ξ pΦ Φ

˙
.ξ t η ξ η η, ,0

t 0

We conclude the equality

( ) [ ]( )( ) ( ) ⋅ =− ∇ − ∇T γ d σ H ξ p T H ξ Tσ η, ,σ η σ η η η η

1 1

which represents the required formula (2.6). □

We can show now the following result.

Lemma 5. Let ( )E π M, ,E be a smooth vector bundle over a manifold M, and let ∇ and ∇TM be covariant derivative
operators acting, respectively, on the smooth sections of the bundles E and TM .

Then for any section ( ( ))∈ ⊗∞ ∗ ∗
B C E π T E, E M the curvature fieldΘ

α of the horizontal form ≔ +∇α H TB satisfies

= − ¬ ∇ − ¬ − +∇ ⊗ ∇ ∇∗
H B B DB Bτ RΘ ,

α T E π,M E
TM (2.7)

where ∇ ⊗∗
T E π,M E is the covariant derivative acting on the smooth sections of the bundle ( )⊗∗ ∗

π T EE M , induced by ∇ and
∇TM , where ∇τ

TM is the torsion form of ∇TM .

Proof. In the case = ∇α H
2

in the identity (2.3), we can apply the formula (2.6) to the sections ( )∈ ∞ ∗
Bξ C E π E,j E .

We obtain

( ) ( )( ) ( ) ( ) [ ]= − ¬ − ∇ + ∇ +∇
∇ ∇ξ ξ R B DB ξ ξ Bξ Bξ B ξ ξΘ , , , .

H ξ

π

H ξ

π

1 1 2 1 2 2 1 1 2

E E

1 2

By using functorial properties of the pull-back, we have (with no abuse of notation)

( ) ( ) ( )∇ ⋅ = ∇ ⋅ + ⋅∇ = ∇ ⋅ + ⋅ ∇∗ ⊗ ∗ ∗ ⊗ ∗ ∗
∇ ∇

∗

∇ ∇

∗
B π ξ B π ξ B π ξ B π ξ B π ξ .

H ξ

π

E H ξ

T E π

E H ξ

T π

E H ξ

T E π

E E ξ

T

2

,

2

,

2

,

2 2

E M E M E M E M

1 1 1 1
1

We conclude by (2.3) that if = = +∇α α H TB
1

, then the curvature field Θ

α of α satisfies the identity

( ) ( )( ) ( )= − ¬ − ∇ + ∇ −∇ ⊗ ⊗ ∇
∇

∗

∇

∗
ξ ξ R B DB ξ ξ Bξ Bξ Bτ ξ ξΘ , , , .

α

H ξ

T E π

H ξ

T E π

1 2 1 2

,

2

,

1 1 2

M E M E
TM

1 2

We infer the required formula (2.7). □

3 First reduction of the integrability equations

Proof of Theorem 1

Proof. Let γA be the connection form associated with the horizontal form A. Then the integrability of J
A
is

equivalent to the condition

[ ] =γ Aξ Aξ, 0,

A
1 2

(3.1)
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for all smooth complex vector fields ξ
1
, ξ

2
over M . (We remind here the use of the abusive notation

( )≡ ∘Aξ A ξ π .) We denote, respectively, by Θ

A and Θ

α the curvature fields of the horizontal distributions A

and α. The integrability condition (3.1) is equivalent to the condition ≡Θ 0

A . Then by applying the identity (2.3)
with =α A

1
, =α α

2
and separating real and imaginary parts, we deduce that the integrability of J

A
is equivalent

to the system

[ ] [ ] [ ]

⎧⎨⎩
+ ¬ =

= −
B DB

TB ξ ξ αξ TBξ αξ TBξ

Θ 0,

, , , .

α

1 2 1 2 2 1

(3.2)

Let ( ( ))∈ ∞ ∗C U π TΓ , End M such that = −∇α H T Γ. By using the formula (2.7) in the case =E TM and ∇ = ∇TM we
can write the previous equation of the system (3.2) as follows:

( )¬ ∇ − ¬ + + ¬ + =∇ ∇ ∇H D τ B DB RΓ Γ Γ Γ 0.

T πEnd ,M

We express the second equation of the system (3.2) as follows:

[ ] [ ] [ ] [ ] [ ]= − − +∇ ∇TB ξ ξ H ξ TBξ T ξ TBξ H ξ TBξ T ξ TBξ, , Γ , , Γ , .
1 2 1 2 1 2 2 1 2 1

By using formula (2.6), we infer

[ ] ( )

( ) ( ) ( ) ( )

( ) ( )= ∇ − ∇ + ∇ − ∇

− + + −
∇ ∇B ξ ξ Bξ Bξ B ξ ξ

DB ξ ξ D Bξ ξ DB ξ ξ D Bξ ξ

,

Γ Γ Γ Γ ,

H ξ

T π

H ξ

T π

ξ ξ1 2

End ,

2

End ,

1 2 1

1 2 2 1 2 1 1 2

M M

1 2

1 2

which can be expressed as follows:

( )¬ ∇ − ¬ − ¬ + =∇ ∇H B DB B D BτΓ Γ 0.

T πEnd ,M

We conclude that the system (3.2) is equivalent to the system

( )

( )

⎧
⎨
⎩

¬ ∇ − ¬ + + ¬ + =
¬ ∇ − ¬ − ¬ + =

∇ ∇ ∇

∇ ∇
H D τ B DB R

H B DB B D Bτ

Γ Γ Γ Γ 0,

Γ Γ 0.

T π

T π

End ,

End ,

M

M

(3.3)

It follows that, using the identification = +S iBΓ , the system (3.3) is equivalent to the complex equation
(1.8). □

Remark 1. We notice that in the case �( ) ( )= ∇ ∗α B H, , π TM
, i.e., in the case = ∇J J

A H
, the system (3.3) reduces to

⎧
⎨⎩

=
=

∇

∇
R

τ

0,

0.

In this way, we re-obtain the statement of Lemma 13.

Lemma 6. Under the assumptions of the Theorem 2, the M -totally real almost complex structure J
A
is integrable

over U if and only if

��( )∈ ⊗∞ ∗
S C M S T T, ,M M1

2

(i.e., ∇S
1 is torsion free),

= −∇R i S2 Alt ,
2 2

S
1 (3.4)

( ) ( )∑⎡

⎣⎢
+ ∧ + +

⎤

⎦⎥
=∇

=

−

− + +d S pS S i k S ξ ξ η1 Alt , , 0.k

p

k

p k p k
k

1

2

1

1 1 2 1 1 2

S
1 (3.5)

for all ⩾k 2 and for all ( )∈ξ ξ η T, , M π η1 2 ,
.

Proof. Let ( )≔ −− ∇S T H A1 . In the case the connection ∇ is torsion free, equation (1.8) reduces to

( )¬ ∇ − ¬ + =∇ ∇H S S DS R 0.

T πEnd ,M (3.6)

14  Nefton Pali



The identification � ( )⋅ ≡ξ S ξ η,k η k
k

,
shows that �� ( ) ( )∈ ⊗∗

T Tk η M π η M π η, , ,
, i.e.,

��� ( ( ))∈ ⊗∞ ∗ ∗
C T π T T,k M M M

and

�∑=
⩾

S .

k

k

0

(3.7)

We remind the reader of the formula

� � �( )
( )∇ ⋅ = ∇ ⋅ + ⋅∇∇ ∇ξ ξ ξ ,

H ξ

π
k H ξ

T π

k k ξ2

End ,

2 2

M

1 1

1

for any vector field ξ
1
, ξ

2
over M . On the other hand, by definition,

� �( ) ( )( )

[ ( ( ) ( ) )]

( ) ( )

( ) ( )

∇ ⋅ = ⋅

= ∘ ∘

∣
− ∇ ∇

− ∇
∣

∇

=

ξ T γ d ξ H ξ

T γ
d

dt
S ξ φ π η η, Φ .

H ξ

π
k η

S ξ η S ξ η
η k

S ξ η S ξ η
k ξ t ξ t

k

2

,

1

,

2 1

,

1

,

2
,

,

k
k

k
k

k
k

k
k

t

1 2 2

2 2

0

1
1

Let now η be the vector field over ( ( ))∘φ π ηIm
ξ ,•

1

defined by

( ( )) ( )∘ =φ π η ηη Φ .
ξ t ξ t

,
,

1
1

Then

�( ) [ ( )] ( ( ) ) ( )( ) ( )∇ ⋅ = ∇ = ∇ ∘ + ∇∣ ∣ ∣∇ ξ S ξ S ξ π η η S ξ ηη, , , ,

H ξ

π
k η ξ k

k
π η ξ k

k
k ξ π η

k
2 2 2 2

1

1 1 1

since ∇ =η 0ξ
1

. We conclude the identity

�( ) ( )
( )∇ ⋅ = ∇∣∇ ξ S ξ η, ,

H ξ

T π

k η ξ k
kEnd ,

2 2

M

1

1

( )∈ξ ξ T, M π η1 2 ,
. We infer the formula

�( )¬ ∇ =∇ ∇
H d S .

T π
k k

End ,

1

M (3.8)

We notice now the equalities

� ( ) [ ( ( ) )] ( ) ( )∑⋅ = + = =
∣ =

− − −

=
D v ξ

d

dt
S ξ η tv S ξ η v η kS ξ v η, , , , , , ,η k k

k

j

k

k
j k j

k
k

1

1 1

t 0

and

� � � �( ) ( ) ( ) ( )¬ = ⋅ − ⋅∣
− −D ξ ξ kS ξ ξ η kS ξ ξ η, , , , , .l k η k l η

k
k l η

k
1 2 2 , 1

1

1 , 2

1

We infer the equality

� �( ) ( ) ( )( )¬ = − ∧∣
+ −D ξ ξ k S S ξ ξ η, , , .l k η k l

k l
1 2 1 1 2

1 (3.9)

Let ⊂W U be any set containing the zero section of TM such that ∩W TM p, is a neighborhood of 0p for any
∈p M and such that the fiberwise expansion (3.7) converges over ∩W TM p, . The fact that by assumption
∩U TM p, is connected implies by the fiberwise real analyticity of S that S is a solution of (3.6) overU if and only

if it satisfies (3.6) over W .
By using (3.8), we can write the equation (3.6) under the form

� �( )∑ ∑− ¬ + =
⩾

∇

⩾

∇d S D R 0,

k

k

l p

l p

1

1

, 0

(3.10)

over W . We decompose the sum

On maximal totally real embeddings  15



�

�

�

� � � �

� � �

� � �

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

¬ = ¬

= ¬ + ¬

= ¬ + ¬

= − ∧ − + ∧

⩾ ⩾ ⩾

⩾ ⩾
+

⩾ =
− +

⩾
+

⩾ =
− +

⩾
+

D D

D i D

D i D

p S S i k S1 ,

l p

l p

l p

l p

l p

l p

k

T k

k p

k

k p p

k

T k

k p

k

p k p

k

k T

, 0 0, 1

, 1 0

1

1 1

1

0

1

1 1

1 1

0

1 1

M

M

M

thanks to the equality (3.9). If we denote by deg
η
the degree with respect to the fiber variable ( )∈η Eπ η , we have

�

( )

( )

= ∧ =
∧ =

=

∇
− +

+

∇

d S S S k

S k

R

deg deg ,

deg ,

deg 1.

η k η p k p

η k T

η

1 1 1

1 1 M

Thus, by homogeneity, equation (3.10) is equivalent to the countable system

�

�

�( ) ( ) ( )∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∧ =
+ ∧ + ∧ + =

⎡

⎣⎢
+ ∧ + + ∧

⎤

⎦⎥
=

∀ ⩾ ∀ ∈

∇ ∇

∇

=
− + +

S

d S S S iS R

d S p S S i k S ξ ξ η

k ξ ξ η T

0,

2 0,

1 , , 0,

2, , , .

T

T

k

p

k

p k p k T
k

M

1 1

1 1 1 1 1 2 1

1

1

1 1 1 1 1 2

1 2

M

M

M

(3.11)

The first equation in the system means ��( )∈ ⊗∞ ∗
S C M S T T, M M1

2 , i.e., the complex connection ∇S
1 is torsion

free. The second equation in system (3.11) rewrites as (3.4). We show now that the equation for ⩾k 2 in system
(3.11) rewrites as (3.5). Indeed using the formula

( ) ( ) ( ( )) ( ( ) )∑∇ = ∇ + −
=

− +θ v v θ v v ξ θ v v θ v v ξ v v v, …, , …, Γ , , …, , …, , Γ , , , …, ,ξ p ξ p p

j

p

j j j p
Γ

1 1 1

1

1 1 1

where ��( )∈ ⊗∞ ∗ ⊗
C M T TΓ , M M

, 2 , ��( )∈ ⊗∞ ∗ ⊗
θ C M T T, M

p

M

, and ∈ξ v T, k M , we infer

( ) ( ) ( ) ( ( )) ( ( ) )

( ( ) ) ( ( )) ( ( ) ) ( ( ) )

[ ]( )

= ∇ − ∇ + −
− − + +

= + ∧ + ∧

∇

− −

∇

d S ξ ξ η S ξ η S ξ η S ξ S ξ η S S ξ ξ η

kS ξ S ξ η η S ξ S ξ η S S ξ ξ η kS ξ S ξ η η

d S S S kS S ξ ξ η

, , , , , , , ,

, , , , , , , , , ,

, , ,

k
k

ξ k
k

ξ k
k

k
k

k
k

k
k

k
k

k
k

k
k

k k k
k

1 1 2 2 1 1 1 2 1 1 2

2 1 1

1

1 2 1 1 2 1 1 1 2

1

1 1 1 1 1 1 2

S
1

1 2

since S
1
is symmetric and Sk is symmetric in the last k variables. We conclude (3.5). □

Remark 2. In the case =S 0k , for all ⩾k 2, the previous system reduces to the equation

+ ∧ + =∇ ∇d S S S R 0.
1 1 1 1 1

(3.12)

The equation (3.12) means that the complex connection ∇S
1 acting on sections of �TM is flat. In the case

�= ∗B π TM
, the second equation in system (3.11) implies

+ ∧ + =∇ ∇d RΓ Γ Γ 0,
1 1 1 1 1

with ≔ SΓ
1 1

. This means that the real connection ∇Γ
1 is flat.

4 Second reduction of the integrability equations

In this section, we will prove the following result.
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Proposition 2. Under the assumptions of the Theorem 2, the M-totally real almost complex structure J
A
is

integrable over U if and only if

�

�

�

�

�

�

( )

( ) [ ( ) ( ) ]

( )

( )

( )

∈ ⊗ ∇
= +

≔ +

∈ ⊗

= ∇ + ∇ +

∈ ⊗

∞ ∗

∇ ∇

∞ ∗

∇

∞ ∗

S C M S T T i.e. is torsion free

S S σ

S ξ ξ ξ
i

R ξ ξ ξ R ξ ξ ξ

σ C M S T T

S
i

σ R σ

σ C M S T T

, , , ,

,

, ,

6

, , ,

, ,

3

1

4!3

Sym ,

, ,

M M
S

M M

S S

M M

1

2

2 2

0

2

2

0

1 2 3 1 2 3 1 3 2

2

3

3 2
2,3,4

2 3

3

4

S S

S

1

1 1

1 1

1

( ) ( ) ( )∇ ≔ ∇∇ ∇R ξ ξ ξ ξ R ξ ξ ξ, , , ,

S
ξ

S

2 1 2 3 4 1 3 4

S S

1

1

2

1
1 , for all ( )∈ξ ξ ξ ξ T, , , M π ξ1 2 3 4 ,

1

and for all ⩾k 3,

( ) ( )∑⎡

⎣⎢
+ ∧ + +

⎤

⎦⎥
=∇

=

−

− + +d S pS S i k S ξ ξ η1 Alt , , 0,k

p

k

p k p k
k

1

2

1

1 1 2 1 1 2

S
1

for all ( )∈ξ ξ η T, , M π η1 2 ,
.

We first remind the reader that for any complex connection ∇ acting over the sections of�TM its torsion ∇τ

satisfies the identity

�=∇ ∇τ d ,TM

where ∇d is the covariant exterior differentiation and � ( )∈ ⊗∞ ∗
C M T T,T M MM

. Then

�= ∧∇ ∇ ∇d τ R ,TM

and

�( )( ) ( ) ( ) ( )∧ = + +∇ ∇ ∇ ∇R ξ ξ ξ R ξ ξ ξ R ξ ξ ξ R ξ ξ ξ, , , , , .T 1 2 3 1 2 3 2 3 1 3 1 2M

We conclude that if a connection is torsion free then then its curvature operator satisfies the algebraic Bianchi
identity.

We denote by Alt p the alternating operator (without normalizing coefficients!) acting on the first ⩾p 2

entries of a tensor, counted from the left to the right. We notice the following very elementary fact.

Lemma 7. Let V be a vector space over a field � of characteristic zero. Then for any integer ⩾p 2, the sequence

⟶ ⟶ ⊗ ⟶ ⊗ ⟶ ⊗+ ∗ ∗ ∗ ∗ − ∗ ∗ − ∗S V V S V V S V V S V0 Λ Λ ,

p p p p1

Alt

2 1

Alt

3 2

2 3

is exact.

Proof. The equality

( )= ⊗ ⟶ ⊗+ ∗ ∗ ∗ ∗ − ∗S V V S V V S VKer Λ ,

p p p1

Alt

2 1

2

is obvious. We show now the equality

( ) ( )⊗ ⟶ ⊗ = ⊗ ⟶ ⊗∗ ∗ ∗ − ∗ ∗ − ∗ ∗ − ∗V S V V S V V S V V S VIm Λ Ker Λ Λ .

p p p p
Alt

2 1 2 1

Alt

3 2

2 3 (4.1)

We show first the inclusion ⊆ in (4.1). We notice the equality

( ) ( )⊗ ⟶ ⊗ = ⊗ ⟶ ⊗∗ − ∗ ∗ − ∗ ∗ − ∗ ∗ − ∗V S V V S V V S V V S VΛ Λ Λ Λ .

p p p p2 1

Alt

3 2 2 1

2Circ

3 2

3

Let now ≔β αAlt
2
, with ∈ ⊗∗ ∗α V S Vp . Then summing up the two equalities
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( ) ( ) ( )

( ) ( ) ( )

= −

− = − +
+ + +

+ + +

β v v v v v α v v v v v α v v v v v

β v v v v v α v v v v v α v v v v v

, ; , , …, ; , , , …, ; , , , …, ,

, ; , , …, ; , , , …, ;
°

, , , …, ,

p p p

p p p

1 2 3 4 1 1 2 3 4 1 2 1 3 4 1

1 3 2 4 1 1 3 2 4 1 3 1 2 4 1

we obtain

( ) ( )

( ) ( )

( )

−
= − +
= −

+ +

+ +

+

β v v v v v β v v v v v

α v v v v v α v v v v v

β v v v v v

, ; , , …, , ; , , …,

; , , , …, ; , , , …,

, ; , , …, ,

p p

p p

p

1 2 3 4 1 1 3 2 4 1

2 3 1 4 1 3 2 1 4 1

2 3 1 4 1

which rewrites as follows:

( ) ( ) ( )+ + =+ + +β v v v v v β v v v v v β v v v v v, ; , , …, , ; , , …, , ; , , …, 0,p p p1 2 3 4 1 2 3 1 4 1 3 1 2 4 1

i.e., =βCirc 0, which shows the inclusion ⊆ in (4.1). To show the reverse inclusion in (4.1), we consider
∈ ⊗∗ − ∗β V S VΛ

p2 1 with =βCirc 0 and we will prove that =β C αAltp 2
, with

≔ ∈ ⊗+
∗ ∗α β V S VSym ,

p

p

2, … , 1

and with ( )≔ ∕ +C p p 1 !p . Indeed

( )
( ) ( )∑

−
=+

=

+

+
p

α v v v β v v v v v
1

1 !

; , …, , ; , …, ˆ , …,p

j

p

j j p1 2 1

2

1

1 2 1

and

( )
( )( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( )

∑ ∑

∑

∑

−

=
−

−
−

= −

= +

+ +

+

+ +

=

+

+
=
≠

+

+

+
=

+

+

+
=

+

+

p
α v v v

p
α v v v

p
α v v v v

β v v v v v β v v v v v v

β v v v v β v v v v v v

β v v v v β v v v v v v v

1

1 !

Alt , ; …,

1

1 !

; , …,

1

1 !

; , ˆ , …,

, ; , …, ˆ , …, , ; , ˆ , …, ˆ , …,

, ; , …, , ; , , …, ˆ , …,

, ; , …, , ; , ˆ , , …, ˆ , …, .

p

p p

j

p

j j p

j

j

p

j j p

p

j

p

j j p

p

j

p

j j p

2 1 2 1

1 2 1 2 1 2 1

2

1

1 2 1

1

2

1

2 1 2 1

1 2 3 1

3

1

1 2 3 1

1 2 3 1

3

1

2 1 2 3 1

By using the circular identity =βCirc 0, we obtain

( )
( )( ) ( ) ( )∑

−
= −+ +

=

+

+
p

α v v v β v v v v β v v v v v v
1

1 !

Alt , ; …, 2 , ; , …, , ; , , …, ˆ , …, .p p

j

p

j j p2 1 2 1 1 2 3 1

3

1

2 1 3 1

This combined with the fact that ∈ ⊗∗ − ∗β V S VΛ

p2 1 implies

( )
( )( ) ( ) ( ) ( )

( ) ( )

−
= + −

= +

+ + +

+

p
α v v v β v v v v p β v v v v

p β v v v

1

1 !

Alt , ; …, 2 , ; , …, 1 , ; , …,

1 , ; …, ,

p p p

p

2 1 2 1 1 2 3 1 1 2 3 1

1 2 1

which shows the required identity. □

A direct consequence of the proof of Lemma 7 is the following fact.

Corollary 3. Let �� �( )∈ ⊗ ⊗∞ ∗ ∗
R C M T T T, Λ M M M

2 satisfying the algebraic Bianchi identity. Then a
tensor �� �( )∈ ⊗ ⊗∞ ∗ ∗

S C M T S T T, M M M
2 satisfies =R S3 Alt

2
if and only if = +S R σSym

2,3

, with
��( )∈ ⊗∞ ∗

σ C M S T T, M M
3 .
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We infer by Corollary 3 that equation (3.4) is satisfied by = +S S σ
2 2

0

2
, with

( ) [ ( ) ( ) ]= +∇ ∇S ξ ξ ξ
i

R ξ ξ ξ R ξ ξ ξ, ,

6

, , ,
2

0

1 2 3 1 2 3 1 3 2

S S
1 1 (4.2)

and with ��( )∈ ⊗∞ ∗
σ C M S T T, M M2

3 . We consider now equation (3.5) for =k 2, which writes as follows:

[ ]( )+ =∇
d S i S ξ ξ η3 Alt , , 0.

1 2 2 3 1 2

2

S
1 (4.3)

The fact that the tensor

+∇
d S i S3 Alt

1 2 2 3

S
1

is symmetric in the last two variables implies that equation (4.3) is equivalent to the equation

+ =∇
d S i S3 Alt 0,

1 2 2 3

S
1

which we can rewrite under the form

+ =∇
d S i S3 Alt

ˆ
0,

1 2

0

2 3

S
1 (4.4)

with

≔ − ∇S S
i

σˆ

3

.

S
3 3 2

1

Then by using expression (4.2), we can rewrite equation (4.4) in the explicit form

( ) ( ) ( ) ( )

[ ( ) ( )]

∇ + ∇ − ∇ − ∇

= − −

∇ ∇ ∇ ∇R ξ ξ ξ R ξ ξ ξ R ξ ξ ξ R ξ ξ ξ

S ξ ξ ξ ξ S ξ ξ ξ ξ

, , , ,

18
ˆ

, , ,
ˆ

, , , .

ξ

S

ξ

S

ξ

S

ξ

S

2 3 4 2 4 3 1 3 4 1 4 3

3 1 2 3 4 3 2 1 3 4

S S S S

1

1
1

1

1
1

2

1
1

2

1
1

(4.5)

We notice that the fact that the complex connection ∇S
1 is torsion free implies that the tensor ρ given by

( ) ( )≔ ∇ ∇ρ ξ ξ ξ ξ R ξ ξ ξ, , , ,ξ

S

1 2 3 4 2 3 4

S

1

1
1 satisfies the circular identity with respect to the first and last three entries.

Moreover, ρ is obviously skew-symmetric with respect to the variables ξ ξ,
2 3

.

Lemma 8. Let ρ be a four-linear form, which satisfies the circular identity with respect to the first and last three
entries and which is skew-symmetric with respect to the second and third variables. Then a four-linear form S,
which is symmetric with respect to the last three entries satisfies the equation

[ ]− =ρ SAlt 8Sym 0,
2

3,4
(4.6)

if and only if

= − + = +S ρ σ ρ σ2Sym 2Sym ,
2,3,4 2 2,3,4 3

with ( ) ( )≔ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ, , , , , ,
2

1 2 3 4 2 1 3 4
, with ( ) ( )≔ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ, , , , , ,

3
1 2 3 4 2 3 1 4

, for all ( )∈ξ ξ ξ ξ T, , , M π ξ1 2 3 4 ,
1

and with
σ a four-linear form which is symmetric with respect to all its entries.

Proof. We observe first that the assumptions on ρ imply =ρCircAlt Sym 0
2

3,4

. Indeed

( )( ) ( ) ( ) ( ) ( )= + − −ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξAlt Sym , , , , , , , , , , , , , , , ,
2

3,4
1 2 3 4 1 2 3 4 1 2 4 3 2 1 3 4 2 1 4 3

and

( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + − −
+ + − −
+ + − −

ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

CircAlt Sym , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , , ,

2
3,4

1 2 3 4

1 2 3 4 1 1 2 4 3 4 2 1 3 4 2 2 1 4 3 5

2 3 1 4 2 2 3 4 1 5 3 2 1 4 3 3 2 4 1 6

3 1 2 4 3 3 1 4 2 6 1 3 2 4 1 1 3 4 2 4

where we denote by ( )⋅ ⋅ ⋅ ⋅ρ , , , j the terms we group together. By using the assumption that ρ is skew-symmetric
with respect to the second and third variables, we infer

On maximal totally real embeddings  19



( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + + + +
+ + + +

ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

CircAlt Sym , , ,

2 , , , , , , , , , 2 , , , , , ,

, , , 2 , , , , , , , , , .

2
3,4

1 2 3 4

1 2 3 4 1 1 2 4 3 4 2 4 1 3 5 2 3 1 4 1 2 3 4 1 5

3 4 2 1 6 3 1 2 4 1 3 1 4 2 6 1 4 3 2 4

By using the circular assumptions on ρ, we infer

( )( ) ( ) ( ) ( )= − − − =ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξCircAlt Sym , , , , , , , , , , , , 0.
2

3,4
1 2 3 4 1 3 2 4 2 1 3 4 3 2 1 4

Then by the proof of Lemma 7 in the case =p 3, we infer that a four-linear form S , which is symmetric with
respect to the last three entries satisfies equation (4.6) if and only if

= +S ρ σSym Alt Sym ,
2,3,4

2
3,4

with σ any four-linear form, which is symmetric with respect to all its entries, satisfies (4.6). We write now

( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + − −
+ + − −
+ + − −
+ + − −
+ + − −
+ + − −

ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

Sym Alt Sym , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , , .

2,3,4
2

3,4
1 2 3 4

1 2 3 4 1 1 2 4 3 2 2 1 3 4 3 2 1 4 3 4

1 2 4 3 1 1 2 3 4 2 2 1 4 3 4 2 1 3 4 3

1 3 2 4 1 1 3 4 2 2 3 1 2 4 5 3 1 4 2 6

1 3 4 2 1 1 3 2 4 2 3 1 4 2 6 3 1 2 4 5

1 4 2 3 1 1 4 3 2 2 4 1 2 3 7 4 1 3 2 8

1 4 3 2 1 1 4 2 3 2 4 1 3 2 8 4 1 2 3 7

The fact that ρ is skew-symmetric with respect to the second and third variables implies that =ρSym 0
2,3,4

. We
infer

( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

= − − − −
− −

= + + +
+ +

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

ρ ξ ξ ξ ξ ρ ξ ξ ξ ξ

Sym Alt Sym , , , 2 , , , 2 , , , 2 , , , 2 , , ,

2 , , , 2 , , ,

2 , , , 2 , , , 2 , , , 2 , , ,

2 , , , 2 , , , ,

2,3,4
2

3,4
1 2 3 4 2 1 3 4 2 1 4 3 3 1 2 4 3 1 4 2

4 1 2 3 4 1 3 2

2 3 1 4 2 4 1 3 3 2 1 4 3 4 1 2

4 2 1 3 4 3 1 2

which shows the required expressions for S . □

By equation (4.5), we can apply Lemma 8 to the tensor ≔ ∇ ∇ρ RS
S

1

1. We infer the equation

( )= ∇ + ∇ +∇S R
i

σ σ
1

4!3

Sym

3

.

S S
3

2,3,4
2 2 3

S

1

1

1 (4.7)

We deduce that equation (4.4) is equivalent to equation (4.7). This concludes the proof of the Proposition 2
thanks to Lemma 6.

5 Third reduction of the integrability equations and proof of the
main theorem

In this section, we will prove the following result.

Lemma 9. Under the assumptions of the Theorem 2, the M-totally real almost complex structure J
A
is integrable

over U if and only if
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�

�

�

�

( )

( ) [ ( ) ( ) ]

( )

∈ ⊗ ∇
= +

≔ +

∈ ⊗

∞ ∗

∇ ∇

∞ ∗

S C M S T T i.e. is torsion free

S S σ

S ξ ξ ξ
i

R ξ ξ ξ R ξ ξ ξ

σ C M S T T

, , , ,

,

, ,

6

, , ,

, ,

M M
S

M M

1

2

2 2

0

2

2

0

1 2 3 1 2 3 1 3 2

2

3

S S

1

1 1

and for all ⩾k 3,

��

( )

( )

( )

( )

∑

= ∇ +
+

+

∈ ⊗

≔ ∇ +
+

+
⎛

⎝
⎜ ∧

⎞

⎠
⎟

≔ − ∇

=

− + −

∞ + ∗

∇
−

∇
+ −

+
=

−

− +

∇

S
i

k
σ

i

k
β σ

σ C M S T T

β
i

k
d σ

i

k
d β

k
pS S

β
i

R

β

1 !

Sym ,

, ,

1 !

Sym

1

!

Sym ,

3

,

Circ 0.

k
S

k k k k

k
k

M M

k

S
k k k

k

p

k

p k p

S

k

1
2, … , 1 1

1

1 1 1 2, … , 1 1

3, … , 2

2

1

1 1

2
2

S S

S

1

1

1

1

1

1

Proof.We show that the statement of proposition 2 is equivalent to the statement of Lemma 9. We show indeed
by induction on ⩾k 3 the following statement.

Statement 1. The tensors Sh, = +h k3,…, 1, satisfy the equations

( ) ( )∑⎡

⎣⎢
+ ∧ + +

⎤

⎦⎥
=∇

=

−

− + +d S pS S i h S ξ ξ η1 Alt , , 0,h

p

h

p h p h
h

1

2

1

1 1 2 1 1 2

S
1 (5.1)

for all =h k3,…, , for all ( )∈ξ ξ η T, , M π η1 2 ,
and

( )= ∇ + ∇ +∇S
i

σ R σ
3

1

4!3

Sym ,

S S
3 2

2,3,4
2 3

S

1 1

1

with ��( )∈ ⊗∞ ∗
σ C M S T T, M M3

4 , if and only if the tensors Sh satisfy for all = +h k3,…, 1, the identities

( )
= ∇ +

+
+− + −S

i

h
σ

i

h
β σ

1 !

Sym ,h
S

h h h h1
2, … , 1 1

1 (5.2)

with ��( )∈ ⊗∞ + ∗
σ C M S T T,h

h
M M

1 and where for all =r k3,…, ,

( )
∑≔ ∇ +

+
+

⎛

⎝
⎜ ∧

⎞

⎠
⎟∇

−
∇

+ − +
=

−

− +β
i

r
d σ

i

r
d β

r
pS S

1 !

Sym

1

!

Sym ,
r

S
r r r r

p

r

p r p1 1 1 2, … , 1 1 3, … , 2

2

1

1 1

S S
1

1

1

with ( )≔ − ∇ ∇β R
i

S

2
3

2

S

1

1 satisfies equation =βCirc 0
r

.

Statement 1 follows directly from the following fact.

Fact 1. Let Sh, for some =h k3,…, , be the tensor given by (5.2). Then the tensor +Sh 1
satisfies equation (5.1) if

and only if +Sh 1
satisfies identity (5.2), with h replaced by +h 1 and β

h
satisfies equation =βCirc 0

h
.

To show the fact 1 we observe first that (5.1) rewrites as follows:

( )∑+
⎛

⎝
⎜ ∧

⎞

⎠
⎟ + + =∇

+
=

−

− + +d S
h

pS S i h S
1

!

Sym 1 Alt 0.h h

p

h

p h p h1 3, … , 2

2

1

1 1 2 1

S
1
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By using expression (5.2) for Sh and the definition of β
h
, we can rewrite the previous identity as follows:

[ ( ) ]= − ∇ + + +β σ i h SAlt 1 .
h

S
h h2 1

1 (5.3)

By the proof of Lemma 7, we deduce =βCirc 0
h

and

( ) ( )−∇ − + = − ++ + + +σ i h S C β i h σ1 Sym 1 .

S
h h h h h h1 1

2, … , 2
1

1

Therefore, identity (5.3) is equivalent to =βCirc 0
h

, and +Sh 1
satisfies (5.2), with h replaced by +h 1. This

concludes the proof fact 1. We infer the required conclusion of Lemma 9. □

Proof of the main theorem

Proof. We show that the recursive definition of β
k
in the statement of Lemma 9 yields the formula

( )

( )
( ) ( )

( ) ( ) ( )

∑

∑ ∑

= ∇ +
+

≔
+
+

∇ +

+ + ∧

∇
− +

=

−
∇ − ∇ −

= =

−
∇ −

− +

β
i

k
d σ

k k
θ

θ
r

r
id σ id β

r id pS S

1

1 ! !

Sym ,

2 !

1

3!

1 ! ,

k

S
k k k

k

r

k

k r S
r

k

r

k

p

r

k r
p r p

1 1
3, … , 2

2

2

1 1

2

2

3 2

1

1 1 1

S

S S

S

1

1

1

1

1

1

(5.4)

for all ⩾k 3. We show (5.4) by induction on k . We notice first that the recursive definition of β
k
rewrites as

follows:

( )
∑= ∇ +

⎡

⎣⎢ +
+ ∧

⎤

⎦⎥
∇

− +
∇

−
=

−

− +β
i

k
d σ

i

k
d β

k
pS SSym

1 !

1

!

,
k

S
k k k

p

k

p k p1 1
3, … , 2 1 1

2

1

1 1

S S
1

1

1

and we write

( ) ( )
∑=

+
∇ + ⎡

⎣⎢ +
⎤
⎦⎥

+
⎡

⎣⎢ +
∧

⎤

⎦⎥
+

∇
+

∇
+

=
− +β

i

k
d σ

i

k
d β

k
pS S

1

Sym

2 !

, Sym

1

1 !

.
k

S
k k k k

p

k

p k p
1 1 3, … , 3 1 3, … , 3

2

1 2

S S
1

1

1

By using the inductive assumption (5.4), we infer the expressions

( ) ( )
( )

( ) ( )

( )
( ) ( ) ( ) ( ) ( )∑ ∑ ∑

+
=

+
∇ +

+ +

=
+
+

∇ + + + ∧

∇ ∇
− +

∇

∇

=

−
∇ + − ∇ −

= =

−
∇ + −

− +

i

k
d β

k k
id σ

k k k
id θ

id θ
r

r
id σ id β r id pS S

2 !

1

2 !

1

2 ! 1 ! !

Sym ,

2 !

1

3! 1 ! .

k

S
k k k

k

r

k

k r S
r

k

r

k

p

r

k r
p r p

1 1

2

1
4, … , 3 1

1

2

2

1

1

1

1

2

3 2

1

1

1

1 1

S S S

S S S S

1 1

1

1

1 1

1

1 1

This combined with the identity =+ + +kSym Sym !Sym
k k k3, … , 3 4, … , 3 3, … , 3

, yields

( )
( )

( ) ( )

( )
( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )

∑

∑ ∑

∑

=
+

∇ +
+

∇

+
+ +

+
+

∇

+
+ +

+
+ +

+ ∧

+
+

∧

+
∇

+
∇

−

+
=

−
∇ + −

+
∇ −

+
= =

−
∇ + −

− +

+
=

− +

β
i

k
d σ

k k
id σ

k k

r

r
id σ

k k
id β

k k
r id pS S

k
pS S

1

1

2 !

Sym

1

2 ! 1 !

Sym

2 !

1

3!

2 ! 1 !

Sym

1

2 ! 1 !

Sym 1 !

1

1 !

Sym .

k

S
k k

S
k

k

r

k

k r S
r

k

k

k

r

k

p

r

k r
p r p

k

p

k

p k p

1 1 3, … , 3 1

2

1

3, … , 3

2

2

1

1

3, … , 3 1

1

2

3, … , 3

3 2

1

1

1

1 1

3, … , 3

2

1 2

S S

S

S

S

1

1

1

1

1

1

1

1

Putting the terms together, we obtain (5.4) for +β
k 1

. Then the obvious identity ∇ = ∇∇
d Alt

1 2

2, combined with the
formula (5.5), allows to conclude the required expression of ( )≡ −β β σ

k k k 1
in the statement of the main theorem.
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(We perform the change of indices ′ ≔ +r r 1 in the above expression of θk .) This concludes the proof of the
main theorem. □

We remind first the following elementary and well-known fact.

Lemma 10. For any covariant derivative operator ∇ acting on the smooth sections of �TM and for any tensor
�( )∈ ⊗∞ ∗ ⊗

θ C X T T, M

q

M

, holds the identity

∇ = ⋅∇θ R θAlt .
2

2 (5.5)

6 The symplectic approach

6.1 General facts

Let M be a smooth manifold and let ( )∈ ∞ ∗ ∗∗θ C T T,M TM

be the canonical 1-form on the total space of the cotangent

bundle defined as ≔ ⋅ ∗θ λ d πλ λ TM
, for any ∈ ∗

λ TM . The canonical symplectic form over the total space ∗
TM is

defined as ≔ −dθΩ . Let now g be a Riemannmetric over M viewed as a vector bundle map ⟶ ∗
g T T: M M . We

define also the forms ≔ ∗θ g θg and ≔ = −∗g dθΩ Ω

g g over the total space of the tangent bundle. In explicit
terms ( )= ⋅θ g η d πη

g
η TM

, for all ∈η TM , i.e.,

( ) ( )( )= ⋅θ ξ g η d π ξ, ,η

g

π η η T
TM

M

for all ∈ξ TT η,M
. Let ∇g be the Levi-Civita connection, defined as

[ ( ) ( ) ⟨ ⟩ ] [ ]∇ ≔ ¬ + ¬ + +−η g ξ d gη η d gξ d ξ η ξ η2 , , ,ξ

g

g
1

for any ( )∈ ∞ξ η C M T, , M . Let also ( )∈ ⊗∞ ∗
γ C T T T,

g
M T T

M M
be the Levi-Civita 1-form, which is determined along

any section ( )∈ ∞η C M T, M , by the identity ⋅ = ∇γ dη T η
η

g
η

g .
For any curve ⟼ ∈η t η T:

t M , we define the covariant derivative

( )

∇
≔ ∈−η

dt
T γ η T˙ .

g

η η

g

t M π η
1

,

t t
t

We consider now two curves ⟼ ∈η t η T:
j j t M

,

, =j 1, 2, such that ( ) ( )= =π η π η xT t T t t
1, 2,M M

. Then

( ) ⎜ ⎟ ⎜ ⎟= ⎛
⎝
∇ ⎞

⎠
+ ⎛

⎝
∇ ⎞

⎠∣ ∣ ∣
d

dt
g η η g

η

dt
η g η

η

dt
, , , .

x t t x

g

t x t

g

1, 2,

1

2, 1,

2

t t t

With the previous notation hold the following well-known lemma (see also Klingenberg’s book [12] for a proof
using local coordinates).

Lemma 11. The formula

( ) ( ) ( )= −− −
ξ ξ g d π ξ T γ ξ g d π ξ T γ ξΩ , , , ,η

g

p η T η η

g

p η T η η

g
1 2 1

1

2 2

1

1M M

hold for any ( )∈ =η T p π η,M TM
and for any ∈ξ ξ T, T η1 2 ,M

.

Proof.With respect to a local coordinate trivialization of the tangent bundle, we can extend in a linear way the
vectors ξ

1
and ξ

2
in to vector fields Ξ

1
, Ξ

2
in a neighborhood of TM p, insideTM . In this way, [ ] =Ξ , Ξ 0

1 2
, and thus,

( ) ( ) ( )= −θ θΩ Ξ , Ξ Ξ . Ξ Ξ . Ξ

g g g
1 2 2 1 1 2

. We denote by η
j t,
, =j 1, 2 the corresponding flow lines starting from

η. Then

( ) [ ( ( ))] [ ( ( ))]( ) ( )= ⋅ − ⋅
∣ ∣= =

ξ ξ
d

dt
g η d π η

d

dt
g η d π ηΩ , , Ξ , Ξ .η

g

π η t η T t π η t η T t1 2
2,

1
2, 1,

2
1,

t

TM t t M

t

TM t t M

0

2,
2,

0

1,
1,
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We distinguish two cases.
• In the case when =d π ξ 0η T jM

for some j , say =j 1, then ( ) =d π ηΞ 0η T t1
2,t M

2,

and

( ) =
d

dt
d π ηΞ 0,η T t2

1,t M
1,

by the linear nature of the local extension. Then

( ) ( )= − −
ξ ξ g T γ ξ d π ξΩ , , .η

g

p η η

g
η T1 2

1

1 2M

The case =j 2 is quite similar.
• In the case when d π ξη T jM

, do not vanish for =j 1, 2, then the vector fields ≔ζ dπ Ξj T jM
are well defined

and [ ] =ζ ζ, 0
1 2

. Then

( ) ( ) ( ) ( )

( ) ( [ ]( )) ( )

( ) ( )= + ∇ − ∇ −

= + −

− −

− −

ξ ξ g T γ ξ d π ξ g η ζ ζ g T γ ξ d π ξ

g T γ ξ d π ξ g η ζ ζ p g T γ ξ d π ξ

Ω , , , ,

, , , , ,

η

g

p η η

g
η T p ζ p

g

ζ p

g

p η η

g
η T

p η η

g
η T p p η η

g
η T

1 2

1

2 1 1 2

1

1 2

1

2 1 1 2

1

1 2

M M

M M

2 1

which implies the required conclusion. □

We need to remind in detail also the following very well-known lemma [12].

Lemma 12. Let ∣ ∣≔ ⋅−ζ d2 Ω

g g
g

, 1 2 and let Φt

g be the corresponding one-parameter subgroup of transformations of
TM . Then for any ∈η TM , the curve ( )≔ ∘c π ηΦt T t

g

M
is the geodesic with initial speed =c η˙

0
and ( )=c η˙ Φt t

g .

Proof. For any ∈η TM and for any ∈ξ TT η,M
, let ⟼ ∈t η T

t M be the curve such that =η ξ˙
0

. Then

∣ ∣ [ ( )] ( )( )⋅ = =
∣

−

=
ξ

d

dt
g η η g η T γ ξ. , 2 , ,g π η t t p η η

g2 1

t

TM t
0

and thus,

( ) ( )= −
ζ ξ g η T γ ξΩ , , ,η

g

η

g

p η η

g1

by the definition of the vector field ζη

g . By using Lemma 11, we infer

( ) ( ) ( )− =− − −
g d π ζ T γ ξ g d π ξ T γ ζ g η T γ ξ, , , .

p η T η

g

η η

g

p η T η η

g

η

g

p η η

g1 1 1

M M
(6.1)

In the case =d π ξ 0η TM
, the identity (6.1) yields

( ) ( )=− −
g d π ζ T ξ g η T ξ, , ,

p η T η

g

η p η

1 1

M

and thus, =d π ζ ηη T η

g

M
. In the case =γ ξ 0

η

g , the identity (6.1) yields

( ) =−
g d π ξ T γ ζ, 0,

p η T η η

g

η

g1

M

and thus, =γ ζ 0

η

g

η

g . We deduce the formula

= ⋅ζ H η.η

g

η

g (6.2)

Thus, the flow line ( )≔η ηΦ
t t

g satisfies the identity

= ⋅η H η˙ .
t η

g

tt
(6.3)

We deduce

= ⋅ = ⋅ ⋅ =c d π η d π H η η˙ ˙ ,t η T t η T η

g

t tt M t M
t

and = ⋅c H c¨ ˙t c

g

t˙t
, which is the geodesic equation. □
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We provide now a proof of the following well-known result due to Lempert and Szöke [14]. See also,
Guillemin and Stenzel [10], Burns [2,3], and Burns et al. [4].

Corollary 4. Let ( )M g, be a smooth Riemannian manifold. A complex structure J over the total space of the
tangent bundle TM satisfies the conditions

=∣J J ,
M

can (6.4)

∣ ∣= ⋅ ⋅θ d J2 ,

g
g

2 (6.5)

if and only if for any ∈η TM , the smooth map ( )+ ⟼ψ t is s η: Φ
η t

g , defined in a neighborhood of �∈0 , is
J-holomorphic.

Proof.We define the Reeb vector field ≔ − θΞ Ω

g g, 1 . This vector field is independent of the metric g . Indeed by
Lemma 11, the identity

( ) ( ) ( )= −− −
g η d π ξ g d π T γ ξ g d π ξ T γ, Ξ , , Ξ ,

p η T p η T η η η

g

p η T η η

g
η

1 1

M M M
(6.6)

holds for any ∈ξ TT η,M
. Thus, if =d π ξ 0η TM

, we deduce the equality

( ) =−
g d π T ξΞ , 0,

p η T η η

1

M

and thus, =d π Ξ 0η T ηM
. Then the identity (6.6) reduces as follows:

( ) ( )= − −
g η d π ξ g d π ξ T, , Ξ ,

p η T p η T η η
1

M M

for any ∈ξ TT η,M
. We infer the formula

= − ⋅T ηΞ ,η η (6.7)

for all ∈η TM . We notice now that the identity (6.5) is equivalent to the identity

( ) ∣ ∣= ⋅ξ d JξΩ 2Ξ,

g
g

2

and is also equivalent to the identity ∣ ∣= − ⋅θ d .

g
J

c

g

2 Thus,

∣ ∣ ∣ ∣= ⋅ = ∂ ∂ ⋅dd iΩ ,

g
J

c

g J J g

2 2

thanks to the fact that J g is integrable. We infer that the symplectic form Ω

g is J -invariant. Thus,

( ) ∣ ∣= ⋅J Jξ d JξΩ 2 Ξ, ,

g
g

2

i.e.,

=J ζΞ .

g (6.8)

This combined with (6.7) and with (6.2) implies that (6.5) is equivalent to the identity

⋅ = ⋅J H η T η.
η η

g
η (6.9)

We show now that the later combined with (6.4) is equivalent to the J -holomorphy of the maps ψ
η
. For this

purpose, we observe that the differential of such maps is given by

�( ) ( ) ( )( )
⎛
⎝

∂
∂

+
∂
∂

⎞
⎠ = ++d ψ a

t
b

s
ad s η bT ηΦ

˙
Φ .t is η T t

g

s η t

g

0 ΦM t

g
0 0

0 0
0

0

But

( ) ( ) ( )
( )

= ∘ = ⋅η ζ η H ηΦ
˙

Φ Φ ,t

g
g

t

g

η

g

t

g

Φt

g
0

0

0

0

thanks to (6.2). Then by using the property (A5) of the linear connection ∇g , we infer
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( ) ( )
( ) ( )

⎛
⎝

∂
∂

+
∂
∂

⎞
⎠ = + ⋅+d ψ a

t
b

s
aH bT ηΦ .t is η s η

g

s η t

g

Φ
Φ

t

g
t

g
0 0

0
0

0
0

0

(6.10)

The smooth map ψ
η
is J -holomorphic if and only if

⎛
⎝−

∂
∂

+
∂
∂

⎞
⎠ = ⎛

⎝
∂
∂

+
∂
∂

⎞
⎠+ +d ψ b

t
a

s
Jd ψ a

t
b

s
,t is η t is η0 0 0 0

thus, if and only if

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )− + ⋅ = + ⋅bH aT η J aH bT ηΦ Φ .

s η

g

s η t

g

s η

g

s η t

g

Φ
Φ

Φ
Φ

t

g
t

g

t

g
t

g

0
0

0
0

0

0
0

0
0

0

For ≠s 0
0

, this is equivalent to (6.9). For =s 0
0

, this is equivalent to (6.4). We deduce the required conclu-
sion. □

The condition (6.4) implies that J is an M -totally real complex structure. We can provide now the proof of
Corollary 1.

6.2 Proof of Corollary 1

Proof. If we write = +A α iTB and = −α H T Γ

g , then

( )≔ − = +− ∇S T H A iBΓ .

1

We set = +S iBΓk k k . From the proof of Corollary 4, we know that in the case J is integrable overU , the curveψ
η

is J -holomorphic if and only if hold (6.9). The later rewrites as follows:

⋅ = − ⋅H η J T η.η

g

η η

By using (1.7), we infer that the previous identity is equivalent to

⋅ = ⋅−
H η α B η.η

g
η η

1 (6.11)

Taking d πη on both sides of (6.11), we deduce = ⋅−
η B ηη

1 . Therefore, (6.11) is equivalent to the system

⎧
⎨
⎩

⋅ =
⋅ = ⋅

B η η

H η α η

,

.

η

η

g
η

(6.12)

Then the system (6.12) rewrites as

( )

( )

∑

∑

⎧

⎨
⎪

⎩⎪

=

=
⩾

+

⩾

+

B η

η

0,

Γ 0.

k

k
k

k

k
k

1

1

1

1

and thus as ( ) =+S η 0k
k 1 for all ⩾k 1. We remind now that, according to Theorem 2, the integrability of the

structure J implies the condition ��( )∈ ⊗∞ ∗
S C M S T T, M M1

2 . We infer =S 0
1

. We notice that, with the notation
of the statement of Theorem 2, the equation =βCirc 0

k
holds for all ⩾k 1. This combined with the identity

[ ] =+Circ,Sym 0,
k2, … , 2

implies

=+ βCircSym 0,
k k2, … , 2

(6.13)

for all ⩾k 1. So if we apply the Circ operator to both sides of the definition of S
2
in the statement of Theorem 2,

we infer = =S σ σCirc Circ 3
2 2 2

. If we evaluate this equality to η3, we infer ( ) ( )=S η σ η
2

3

2

3 , which implies =σ 0
2

.
We show now by induction that =σ 0k for all ⩾k 2. Indeed by the inductive assumption,
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( )
=

+
++ + +S

i

k
β σ

2 !

Sym .k k k k1
2, … , 2

1

By applying the Circ operator to both sides of this identity and using the equation (6.13), we infer
= =+ + +S σ σCirc Circ 3k k k1 1 1

, which evaluated at +ηk 2 gives ( ) ( )=+
+

+
+S η σ ηk

k
k

k
1

2

1

2 . We deduce =+σ 0k 1
. By using

the identity

( )= −+ + +kSym Sym 1 ! Sym ,
k k k2, … , 1 3, … , 1 2, … , 1

(6.14)

we infer from the statement of Theorem 2 and with the notation there

( )
=

+ + −S
i

k k
θ

1 ! !

Sym ,k k k
2, … , 1

1

for ⩾k 2, with ≔θ R2

g
1

and

( ) ( ) ( ) ( )∑ ∑≔ − ∇ + ∧∇ −

=

+

=

−
∇ + −

−θ i id R r id pS S2 ! ,k
k g g

r

k

p

r

k r
p r p1

2

2

4

1

2

2

1

1

1

g g

for all ⩾k 2. Moreover, we observe that the equation =βCirc 0
k

, ⩾k 3 rewrites as

=+ θCircSym 0.
k k

3, … , 2

If we set ( ) ≔ −g θΘk k 1
, for all ⩾k 2, we obtain the required expansion.

On the other hand, if the expansion in the statement of the lemma under consideration hold, then J is
integrable thanks to Theorem 2 and =SCirc 0k for all ⩾k 2, ( =S 0

1
). Indeed for =k 2, 3, this equality follows

from the identities ( ) =gCircΘ 0k and

[ ] =+Circ,Sym 0.
k2, … , 1

(6.15)

For ⩾k 4, we use the identities (6.15) and (6.14) and the integrability equations satisfied by the metric g . We
deduce ( ) =+S η 0k

k 1 , for all ⩾k 1, which is equivalent to (6.11) and so to the fact that the curves ψ
η
are

J -holomorphic. □

7 Proof of the proposition 1

Proof. We expand first the term

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )( ) ( )( )

∇ = ∇ ∇ − ∇ ∇
= ∇ − ∇
= ∇ + ∇
= ∇ + ∇

+ +

∇ ∇ ∇ ∇

∇ ∇

∇ ∇

∇ ∇

∇ ∇ ∇ ∇

d R ξ ξ ξ ξ ξ R ξ ξ ξ ξ R ξ ξ ξ ξ

R ξ ξ ξ ξ ξ R ξ ξ ξ ξ ξ

R ξ ξ ξ ξ ξ R ξ ξ ξ ξ ξ

R ξ ξ ξ ξ ξ R ξ ξ ξ ξ ξ

R R ξ ξ ξ ξ ξ R R ξ ξ ξ ξ ξ

, , , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

. , , , , . , , , , ,

ξ ξ1 2 1 2 3 4 5 2 2 3 4 5 2 1 3 4 5

2

1 3 2 4 5

2

2 3 1 4 5

2

1 3 2 4 5

2

2 3 4 1 5

2

3 1 2 4 5

2

3 2 4 1 5

1 3 2 4 5 2 3 4 1 5

1 2

thanks to formula (5.5). By using the differential Bianchi identity, we infer

( ) ( ) ( ) ( )( ) ( )( )∇ = −∇ + ⋅ + ⋅∇ ∇ ∇ ∇ ∇ ∇ ∇d R ξ ξ ξ ξ ξ R ξ ξ ξ ξ ξ R R ξ ξ ξ ξ ξ R R ξ ξ ξ ξ ξ, , , , , , , , , , , , , , , , .
1 2 1 2 3 4 5

2

3 4 1 2 5 1 3 2 4 5 2 3 4 1 5

To simplify the notation in the computations that will follow we will use from now on the identification

( ) ( )≡θ ξ ξ ξ ξ ξ θ, , , , 12345 ,
1 2 3 4 5

for any tensor θ. We expand now the term

( )∇∇ ∇d RCircSym .
3,4,5 1 2

We let

( ) ( )≔ ∇ ∇θ R12345 34125 ,

2
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and we observe the identities

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )

= ∇ + ∇ + ∇

+ ∇ + ∇ + ∇
= ∇ + ∇ + ∇

+ ∇ + ∇ + ∇
= ∇ + ∇ + ∇

+ ∇ + ∇ + ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

θ R R R

R R R

θ R R R

R R R

θ R R R

R R R

Sym 12345 34125 35124 43125

45123 53124 54123 ,

Sym 23145 14235 15234 41235

45231 51234 54231 ,

Sym 31245 24315 25314 42315

45312 52314 54312 .

3,4,5

2 2 2

2 2 2

3,4,5

2 2 2

2 2 2

3,4,5

2 2 2

2 2 2

Summing up, we obtain

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= ∇ + ∇ + ∇

+ ∇ + ∇ + ∇
+ ∇ + ∇ + ∇
+ ∇ + ∇ + ∇
+ ∇ + ∇ + ∇
+ ∇ + ∇ + ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇

θ R R R

R R R

R R R

R R R

R R R

R R R

CircSym 12345 34125 14235 24315

35124 15234 25314

43125 41235 42315

45123 45231 45312

53124 51234 52314

54123 54231 54312 ,

3,4,5

2 2 2

2 2 2

2

1

2

1

2

1

2

2

2

2

2

2

2

3

2

3

2

3

2

4

2

4

2

4

where we denote by ( )∇ ⋅⋅ ⋅ ⋅ ⋅∇R j
2 the terms that summed up together equal zero thanks to the differential

Bianchi identity for =j 1, 3 and thanks to the algebraic Bianchi identity for =j 2, 4. By using formula (5.5),
we infer

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

= ∇ + ∇ + ∇

+ ∇ + ∇ + ∇
+ + +
+ + +

∇ ∇ ∇

∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇

θ R R R

R R R

R R R R R R

R R R R R R

CircSym 12345 43125 41235 42315

53124 51234 52314

. 34125 . 14235 . 24315

. 35124 . 15234 . 25314 ,

3,4,5

2

1

2

1

2

1

2

2

2

2

2

2

where as mentioned earlier we denote by ( )∇ ⋅⋅ ⋅ ⋅ ⋅∇R j
2 the terms that summed up together equal zero thanks to

the differential Bianchi identity. We deduce the expression

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

= + +

+ + +

∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇

θ R R R R R R

R R R R R R

CircSym 12345 . 34125 . 14235 . 24315

. 35124 . 15234 . 25314 .

3,4,5 (7.1)

We set now for notation simplicity ≔ ∇ ∇ρ R R. , and let

( ) ( ) ( )≔ +ρ ρΘ 12345 13245 23415 .

We observe that, by definition, the tensor

�� � �( )∈ ⊗ ⊗ ⊗∞ ∗ ∗ ∗
ρ C M T T T T, Λ Λ ,M M M M

2 2

satisfies the circular identity with respect to its last three entries. We expand now the term

CircSym Θ.
3,4,5

We observe the identities

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= + + + + +
+ + + + + +
ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

Sym Θ 12345 13245 23415 13254 23514 14235 24315

14253 24513 15234 25314 15243 25413 ,

3,4,5

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= + + + + +
+ + + + + +
ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

Sym Θ 23145 21345 31425 21354 31524 24315 34125

24351 34521 25314 35124 25341 35421 ,

3,4,5

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= + + + + +
+ + + + + +
ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

Sym Θ 31245 32145 12435 32154 12534 34125 14235

34152 14532 35124 15234 35142 15432 .

3,4,5
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Summing up we obtain

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +
+ + + + + +

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

CircSym Θ 12345 13245 23415 21345 31425 32145 12435

13254 23514 21354 31524 32154 12534

14235 24315 24315 34125 34125 14235

14253 24513 24351 34521 34152 14532

15234 25314 25314 35124 35124 15234

15243 25413 25341 35421 35142 15432 ,

3,4,5
1 2 3 1 2 3

4 5 6 4 5 6

7 8 8 9 9 7

7 8 8 9 9 7

10 11 11 12 12 10

10 11 11 12 12 10

where we denote by ( )⋅ ⋅ ⋅ ⋅ ⋅ρ j the terms that we sum up together using the symmetries of ρ. We obtain

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= + + + + +
+ + + + + +

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

CircSym Θ 12345 2 13245 2 23415 2 12435 2 13254 2 23514 2 12534

3 14235 3 24315 3 34125 3 15234 3 25314 3 35124 .

3,4,5

We conclude the expression

[ ( ) ]( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

∇ = + + + + +
+ + + + + +

∇ ∇d R ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

CircSym 12345 2 13245 2 23415 2 12435 2 13254 2 23514 2 12534

2 14235 2 24315 2 34125 2 15234 2 25314 2 35124 .

3,4,5 1 2 (7.2)

We expand now the term

( )∧∇ ∇
R RCircSym
˜ ˜

.
3,4,5

1

From now on, we will denote for notation simplicity ( ) ( )≡ ∇R123 123 and

[ ] ( ) ( )≔ +123 123 132 .

We observe the identities

[ ( )]( ) [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

[ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

∧ = − + − + −
+ − + − + −

∇ ∇
R RSym
˜ ˜

12345 1 234 5 2 134 5 1 235 4 2 135 4 1 243 5 2 143 5

1 245 3 2 145 3 1 253 4 2 153 4 1 254 3 2 154 3 ,

3,4,5
1

[ ( )]( ) [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

[ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

∧ = − + − + −
+ − + − + −

∇ ∇
R RSym
˜ ˜

23145 2 314 5 3 214 5 2 315 4 3 215 4 2 341 5 3 241 5

2 345 1 3 245 1 2 351 4 3 251 4 2 354 1 3 254 1 ,

3,4,5
1

[ ( )]( ) [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

[ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

∧ = − + − + −
+ − + − + −

∇ ∇
R RSym
˜ ˜

31245 3 124 5 1 324 5 3 125 4 1 325 4 3 142 5 1 342 5

3 145 2 1 345 2 3 152 4 1 352 4 3 154 2 1 354 2 .

3,4,5
1

Summing up, using the symmetries of [ ]⋯ and ( )⋯ , we obtain

[ ( )]( ) [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ]

[ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ] [ [ ] ]

∧ = + + + + +
+ − + − + −

∇ ∇
R RCircSym
˜ ˜

12345 6 1 234 5 6 2 314 5 6 3 124 5 6 1 235 4 6 2 315 4 6 3 125 4

2 1 245 3 2 2 145 3 2 2 345 1 2 3 245 1 2 3 145 2 2 1 345 2 .

3,4,5
1

1 2 3 1 2 3

We combine now the terms [ [ ] ]⋅ ⋯ ⋅ j for each =j 1, 2, 3, and we explicit and simplify them by using the
algebraic Bianchi identity. We obtain

[ ( )]( ) [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ]

[ ( ) ] ( [ ]) ( [ ]) ( [ ])

∧ = + + + +
+ + + +

∇ ∇
R RCircSym
˜ ˜

12345 6 1 234 5 6 2 314 5 6 3 124 5 6 1 235 4 6 2 315 4

6 3 125 4 6 13 245 6 32 145 6 21 345 .

3,4,5
1

By expanding further, we obtain the complete expansion:

[ ( )]( ) ( ( ) ) ( ( )) ( ( ) ) ( ( ))

( ( ) ) ( ( )) ( ( ) ) ( ( ))

( ( ) ) ( ( )) ( ( ) ) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))

∧ = + + +
+ + + +
+ + + + + +
+ + + +

∇ ∇
R RCircSym
˜ ˜

12345 6 1 234 5 6 15 234 6 2 314 5 6 25 314

6 3 124 5 6 35 124 6 1 235 4 6 14 235

6 2 315 4 6 24 315 6 3 125 4 6 34 125 6 13 245 6 13 254

6 32 145 6 32 154 6 21 345 6 21 354 .

3,4,5
1

By expanding the terms ρ present in the expression (7.2), we obtain the complete expansion of the term
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{ [ ( ) ]}( )∇ − ∧∇ ∇ ∇ ∇
d R R RCircSym 3 2

˜ ˜
12345 ,

3,4,5 1 2 1

given by

{ [ ( ) ]}( )

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( )) (( ) ) ( ( ) ) ( ( ))

( ( ) ) ( ( )) ( ( ) ) ( ( ))

( ( ) ) ( ( )) ( ( ) ) ( ( ))

( ( ) ) ( ( )) ( ( ) ) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))

∇ − ∧
= − − −

+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
+ − − −
− − − −
− − − −
− − − − − −
− − − −

∇ ∇ ∇ ∇
d R R RCircSym 3 2

˜ ˜
12345

6 13 245 6 132 45 6 2 134 5 6 24 135

6 23 415 6 234 15 6 4 231 5 6 41 235

6 12 435 6 124 35 6 4 123 5 6 43 125

6 13 254 6 132 54 6 2 135 4 6 25 134

6 23 514 6 235 14 6 5 231 4 6 51 234

6 12 534 6 125 34 6 5 123 4 6 53 124

6 14 235 6 142 35 6 2 143 5 6 23 145

6 24 315 6 243 15 6 3 241 5 6 31 245

6 34 125 6 341 25 6 1 342 5 6 12 345

6 15 234 6 152 34 6 2 153 4 6 23 154

6 25 314 6 253 14 6 3 251 4 6 31 254

6 35 124 6 351 24 6 1 352 4 6 12 354

12 1 234 5 12 15 234 12 2 314 5 12 25 314

12 3 124 5 12 35 124 12 1 235 4 12 14 235

12 2 315 4 12 24 315 12 3 125 4 12 34 125 12 13 245 12 13 254

12 32 145 12 32 154 12 21 345 12 21 354 ,

3,4,5 1 2 1

1 2 3 4

5 6 2 7

8 9 2 10

11 12 13 14

15 16 12 17

18 19 12 20

7 9 3 5

4 6 9 1

10 3 6 8

17 19 13 15

14 16 19 11

20 13 16 18

6 17 3 14

9 20 16 7

13 4 19 10 1 11

5 15 8 18

where as mentioned earlier we denote by ( )⋅ ⋅ ⋅ ⋅ ⋅ j the terms that we sum up together using the symmetries of the
curvature tensor ∇R . All the terms summed up together cancel up. This is obvious for all the sub indexes j with
the exception of =j 3, 6, 9, 13, 16, 19 for which me must provide the detail of the computation. Indeed for =j 3,
we have

(( ) ) ( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

− − − −
= + −
= − −
=

6 341 25 6 2 134 5 6 2 143 5 12 2 314 5

6 2 341 5 6 2 413 5 6 2 314 5

6 2 134 5 6 2 314 5

0.

For =j 6, we have

( ( ) ) (( ) ) (( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

− − − −
= + −
= − −
=

12 1 234 5 6 234 15 6 243 15 6 1 342 5

6 1 243 5 6 1 432 5 6 1 234 5

6 1 324 5 6 1 234 5

0.

For =j 9, we have

(( ) ) (( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

− − − −
= + −
= − −
=

6 124 35 6 142 35 6 3 241 5 12 3 124 5

6 3 142 5 6 3 421 5 6 3 124 5

6 3 214 5 6 3 124 5

0.

For =j 13, we have

(( ) ) ( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

− − − −
= + −
= − −
=

6 351 24 6 2 135 4 6 2 153 4 12 2 315 4

6 2 351 4 6 2 513 4 6 2 315 4

6 2 135 4 6 2 315 4

0.

For =j 16, we have
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( ( ) ) (( ) ) (( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

− − − −
= + −
= − −
=

12 1 235 4 6 235 14 6 253 14 6 1 352 4

6 1 253 4 6 1 532 4 6 1 235 4

6 1 325 4 6 1 235 4

0.

For =j 19, we have

(( ) ) (( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

− − − −
= + −
= − −
=

6 125 34 6 152 34 6 3 251 4 12 3 125 4

6 3 152 4 6 3 521 4 6 3 125 4

6 3 215 4 6 3 125 4

0.

We infer the required identity (1.16) in the statement of Proposition 1. □

8 The almost complex structure associated with a connection over
the tangent bundle

This section is not needed for the proof of the results in the article. We include it to clarify the integrability of
an M -totally real almost complex structure over TM associated with the horizontal distribution of a linear
connection. We include it also to remind and to prove in modern terms a well-known result due to
Dombrowsky [7].

It is well-known [7] that we can construct an M -totally real almost complex structure overTM by using the
horizontal distribution � ⊂ TM associated with a linear connection ∇ acting on the sections of TM . Indeed, in
this case, we set ≔α Hη η and � ( )≔Bη T π η,M

, where ⟼η Hη is the horizontal map associated with � . We will
denote

�
≔J J

A
. If we define for any ∈η TM p, , the vertical projection ⟶T TVert :η T η T η, ,M M p,

as follows:

�≔ − H d πVert ,η T η ηTM η,

where ⟶π T M: M is the canonical projection, then

�
≔ − +−

J H T T d πVert .
η η η η η η

,

1

If we decompose any vector �∈ξ TT η,M
in its horizontal and vertical parts = +ξ ξ ξh v with ( )≔ξ ξVert

v
η , then

we have the expressions

�

�

�

( )

( )

= − +

= −

=

−

−

J ξ H T ξ T d πξ

J ξ H T ξ

J ξ T d πξ

,

,

.

η η η
v

η η
h

η

h
η η

v

η

v
η η

h

,

1

,

1

,

We infer

�
( ) [ ]

[ ( )]

= − + +

= + + +

−
ξ η ξ iH T ξ ξ iT d πξ

ξ H μ iT d πξ μ

1

2

1

2

,

J
h

η η
v v

η η
h

h
η η η

h

0,1 1

with ≔ − −
μ iT ξη

v1 . We notice also the identity

�
�

( )= +T H iT T
1

2

,T J η η η M p, ,

0,1

,M
(8.1)

for any any ∈η TX p, . The distribution
�

TT J,

0,1

M
is horizontal, but the associated map does not satisfies condition

(A5) of linear connections thanks to the identity (A4). Therefore, this distribution does not identify a linear
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connection. However, its integrability implies that the vector bundle TM is flat. Indeed, we have the following
well-known lemma due to Dombrowsky [7].

Lemma 13. The torsion form �τ J of the almost complex structure
�

J satisfies at the point ∈η TM in the
directions

�
∈V V T, T J η1 2 , ,

0,1

M
the identity

� ( )( ) [ ( ) ( ) ] [ ( ) ( ) ]= − + + −∇ ∇ ∇ ∇τ V V η H τ v v iR v v η T iτ v v R v v η8 , , , , , ,

J
η η1 2 1 2 1 2 1 2 1 2

where ≔ ∇∇R 2 is the complex linear extension of the curvature tensor of ∇, where ∇τ is the torsion of the
complex connection ∇ and where ≔v d πVj η j , =j 1, 2. In particular,

�
J is a complex structure if and only if the

linear connection ∇ is flat and torsion free.

Proof. Let ξj be vector field local extensions of vj such that [ ] ( ) =ξ ξ π η, 0
1 2

. Then

( )≔ +H iT ξΞ

1

2

,j j

are local vector field extensions of Vj. We expand the bracket

[ ]( ) ([ ] [ ] [ ] [ ])( )

[ ] [ ( ) ] [ ]

= + + −
= − + ∇ − ∇∇

η Hξ Hξ i Hξ Tξ i Tξ Hξ Tξ Tξ η

H ξ ξ T R v v η iT ξ ξ

4 Ξ , Ξ , , , ,

, , .η η η ξ ξ

1 2 1 2 1 2 1 2 1 2

1 2 1 2 2 1
1 2

The last equality follows from to the computation at the end of the proof of Lemma A6 and thanks to the
identity (A8) in the Appendix. (We notice that [ ] ≡Tξ Tξ, 0

1 2
, since the vector fields Tξ

1
are tangent constant

along the fibers.) Thanks to the assumption [ ] ( ) =ξ ξ π η, 0
1 2

, we infer the equality

[ ]( ) [ ( ) ( ) ]= −∇ ∇η T iτ v v R v v η4 Ξ , Ξ , , .η1 2 1 2 1 2

The required formula follows from the identity

�
( ) [ ]= + + −−

ξ η ξ iH T ξ ξ iT d πξ
1

2

.J
h

η η
v v

η η
h1,0 1

The fact that that the distribution
�

TT J,

1,0

M
is horizontal implies that � ( )( )τ V V η,

J
1 2

vanishes for allVj if and only if
the quantity

( ) ( )+∇ ∇τ v v iR v v η, , ,
1 2 1 2

vanishes for all vj. In particular, for real vectors vj, this implies that ∇R and ∇τ vanish at the point ( )π η . □

We observe that a connection overTM is flat and torsion free if and only if there exist local parallel frames
with vanishing Lie brackets.
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A Appendix
In this Appendix, we provide some well-known basic facts about the geometric theory of linear connections
needed for the reading of the article [8]. We strongly recommend its reading even to experts.

A.1 The horizontal distribution associated with a linear connection

We start with the following fact.

Lemma A1. Let ∇ be a linear connection acting on sections of a vector bundle E over a manifold M. Then the
linear map

( ) ( )∋ ⟼ ≔ − ∇ ∈T ξ H ξ d σ ξ T σ TM p η p η ξ E η, ,

is independent of the sections σ such that ( ) =σ p η.

Proof. Let ( )= =e ek k

r

1
be a local frame of E over an open set ⊂U M . We consider the local expression = ⋅σ e f

with �( )∈f C U ,

r1 . Let �( ( ))∈ ⊗∞ ∗
×A C U T, MatrixM r r be the connection form of ∇ with respect to the local

frame e, i.e., ∇ = ⋅e e A. Then ( )∇ = ⊗ + ⋅σ e df A f . If we denote by �× ⟶ ∣θ U E:e
r

U , then the differential of
this map at the point ( ( ))p f p, provides an isomorphism

�( ) ( )⊕ ⟶d θ T T: .p f p e U p
r

E σ p, , ,

With respect to it, the equality hold

[ ( )] ( )( ) ⊕ =d θ ξ d f ξ d σ ξ .p f p e p p,

We observe now the linear identity � �( ) ( )⋅ =∣ ⊕ ∣ ⊕dτ d θ d θσ p p e p f p e,0 0 , 0

r r. We infer

� �( ) { } ( )⋅ =∣ × ∣ ⊕T θ d θ ,σ p e p p f p e, 0

r r (A1)

and

[ ( ) ( ( ) ( ) ( ))] [ ( ( ) ( ) ( ))]

[ ( ( ) ( ) ( ))]

( ) ( )

( ) ( )

⋅ + ⋅ = ⊕ + ⋅
∇ = ⊕ + ⋅

T e p d f ξ A ξ f p d θ d f ξ A ξ f p

T σ d θ d f ξ A ξ f p

0 ,

0 .

σ p p p f p e p

σ p ξ p f p e p

,

,

Thus,

( ) [ ( ( ) ( ))]( ) ( )= ⊕ − ⋅H ξ d θ ξ A ξ f p ,σ p p f p e,

i.e., if = ⋅η e h, then

( ) [ ( ( ) )]= ⊕ − ⋅H ξ d θ ξ A ξ h ,η p h e,

which shows the required conclusion. □

Let ⟶π E M:E be the projection map and notice the equality =d π TKer η E E η,p
, for any ∈η Ep. The identity

∘ =π σ idE M implies

( )( ) ∘ =d π d σ ξ ξ .σ p E p

We deduce the identity ( )∘ =d π H ξ ξη E η . We define the horizontal distribution � ⊂ TE associated with ∇ as
follows:

� ( )( )≔ ⊂H T T .η η M π η E η, ,E

We notice now that the tangent bundle of the vector bundle ⊕E E is given by the fibers

{( ) ∣ ( ) ( )}( ) = ∈ ⊕ =⊕T v v T T d π v d π v, ,E E η η E η E η η E η E, , 1 2 , , 1 2
1 2 1 2 1 2
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and that the differential of the sum bundle map ⊕ ⟶sm E E E:E satisfies

( )( ) ( )( ) = ++
− −

d sm v v T T v T v, ,η η E η η η η, 1 2

1

1

1

2
1 2 1 2

1 2

for any ( ) ∈ ⊕v v T T, E η E η1 2 , ,
1 2

such that ( ) ( )= =d π v d π v 0η E η E1 2
1 2

. We infer that for any sections σj of E such that
( ) =σ p ηj j

, =j 1, 2, the equalities

( ) ( )( ) ( )

( )( ( ) ( ))

( )( ( ) ( ) )

( )

( )

= + − ∇ +
= − ∇ − ∇
= − ∇ − ∇

+ +

+ +

H ξ d σ σ ξ T σ σ

d sm d σ ξ d σ ξ T σ T σ

d sm d σ ξ T σ d σ ξ T σ

,

,

η η p η η ξ

η η E p p η η ξ η η ξ

η η E p η ξ p η ξ

1 2 1 2

, 1 2 1 2

, 1 1 2 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

hold. We conclude that

( ) ( )( ( ) ( ))( )=+H ξ d sm H ξ H ξ, .η η η η E η η,
1 2 1 2 1 2

(A2)

Lemma A2. For any section ( )∈σ C M E,

1 and for any function �( )∈u C M ,

1 , the identity holds

�( ) ( ) [ ( ) ]( ) ( )= ⊗ + ⋅d uσ d u T σ p d u p d σ ,p p uσ p σ p E p

for any point ∈p M .

Proof. With the notation in the proof of Lemma A1

( )( ) [ ( )( )]

{ [ ( ) ( ) ( ) ( )]}

[ ( ) ( )] [ ( ) ( )]

( ( ) ( )) ( ( ) )( )

( )

( )

( ) ( )

( )

= ⊕
= ⊕ +
= ⊕ + ⊕
= +

d uσ ξ d θ ξ d uf ξ

d θ ξ d u ξ f p u p d f ξ

d θ d u ξ f p d θ ξ u p d f ξ

T θ p d u ξ f p d u p σ ξ

0

, ,

p p uf p e p

p uf p e p p

p uf p e p p uf p e p

uσ p e p p

,

,

, ,

thanks to (A1). Using the identity

�( ) ( )( )= ⋅d λσ d λ d σ ,p σ p E p (A3)

for any �∈λ , we conclude

�( )( ) ( ) ( ) [ ( ) ] ( )( ) ( )= + ⋅d uσ ξ d u ξ T σ p d u p d σ ξ .□p p uσ p σ p E p

We observe also the elementary identity

�( )⋅ =d λ T λT ,η E η λη (A4)

for all ∈η E . We show now the identity

�( )= ⋅H d λ H ,λη η E η (A5)

for all ∈η E . Indeed, let σ be a section such that ( ) =σ p η. By using (A3) and (A4), we obtain the equalities

�

�

�

( ) ( )

( )

( ) [ ]

( )

( )

( )

= − ∇
= ⋅ − ∇
= ⋅ − ∇
= ⋅

H d λσ T λσ

d λ d σ λT σ

d λ d σ T σ

d λ H .

λη p λη

σ p E p λη

σ p E p η

η E η

The property (A5) implies in particular =H d 0p M0p
, where 0M is the zero section of TM .

Definition A1. A distribution � ⊂ TE is called horizontal if the map

�� ( )⟶∣d π T: ,η E η M π η,η E

is an isomorphism for all ∈η E .
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Lemma A3. Any horizontal distribution � ⊂ TE , which satisfies conditions (A2) and (A5) with �( )≔ ∣
−H d πη η E

1

η
,

determines a connection ∇ over E with associated horizontal distribution � .

Proof. The connection ∇ is defined by the formula

[ ]( )( ) ( )∇ = ⋅ −−
σ T d σ H ξ ,ξ σ p p σ p

1

for any ∈ξ TM p, . The definition is well posed because

[ ]( )( ) ( )− ∈d σ H ξ T ,p σ p E σ p,p

which follows from the identity

[ ]( )( ) ( )⋅ − =d π d σ H ξ 0.σ p E p σ p

It is obvious that the additive property of ∇ is equivalent to the condition (A2). We observe now that with the
previous definition, the covariant Leibniz property

( ) ( ) ( ) ( )∇ = + ∇uσ d u ξ σ p u p σξ p ξ

is equivalent to the identity

( )( ) ( ) { ( ) ( ) ( ) [ ( ) ( )]}( ) ( ) ( ) ( )− = + ⋅ −−
d uσ ξ H ξ T d u ξ σ p u p T d σ ξ H ξ .p uσ p uσ p p σ p p σ p

1

We develop the right-hand side using (A4). We infer that the previous identity is equivalent to the fol-
lowing one:

�( )( ) ( ) ( ) ( ) [ ( ) ] [ ( ) ( )]( ) ( ) ( ) ( )− = + ⋅ −d uσ ξ H ξ d u ξ T σ p d u p d σ ξ H ξ .p uσ p p uσ p σ p E p σ p

The later hold true thanks to Lemma A2 and Assumption (A5). □

The data of a smooth horizontal distribution over E coincides with the one of section

( )∈ ⊗∞ ∗ ∗
H C E π T T, E M E

such that �⋅ = ∗dπ HE π TE E
. (We notice that ( )∈ ⊗∞ ∗ ∗

dπ C E T π T,E E E M .) Such type of section determines a connec-
tion if and only if it satisfies the identity (A5).

For any vector ∈ TΞ E η, , we denote by

� ( ) ( )≔ − ∘γ H d πΞ Ξ Ξ ,

η η η E

its vertical component with respect to the horizontal distribution � . In particular,

� ( ) [ ( )]
( ) ( )⋅ = ∇γ d σ ξ T σ p .

σ p p σ p ξ

A.2 The induced connection

Let ⟶ψ N M: be a smooth map. We define the vector bundle ≔ ×∗ψ E N Eψ over N . In explicit terms

{( ) ∣ ( ) ( )}= ∈ × =∗ψ E y η N E ψ y π η, ,E

and the projection over N is given by the restriction of the projection to the first factor. We will denote by
⟶∗ψ E EΨ : the restriction of the projection to the second factor. The sections of ∗ψ E are identified with the

maps ⟶σ N E: such that ∘ =π σ ψE . In this way, if s is a section of E , then the section ≔ ∘∗ψ s s ψ is a
section of ∗ψ E . More in general if α is a section of ⊗∗

T EΛ

p
M , we define the section ∈ ⊗∗ ∗ ∗ψ α T ψ EΛ

p
N as follows:

( )( ) ( )( ) ( )≔ ∘ ⋅∗ψ α y α ψ y d ψΛ .

p
y

We provide a generalization of Lemma (A2).
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Lemma A4. For any section ( )∈ ∗σ C N ψ E,

1 and for any function �( )∈u C N ,

1 , the identity holds

�( ) ( ) [ ( ) ]( ) ( )= ⊗ + ⋅d uσ d u T σ p d u p d σ ,p p uσ p σ p E p

for any point ∈p N .

Proof. A local frame e of E induces a local frame ∗ψ e of ∗ψ E over the open set ( )−ψ U1 . Then = ⋅∗σ ψ e f with
�( ( ) )∈ −f C ψ U ,

r1 1 . We denote by �× ⟶ ∣θ U E:e
r

U the trivialization map induced by the local frame e of E .
Then the differential of this map at the point ( ( ) ( ))ψ p f p, provides an isomorphism

�( ) ( ) ( ) ( )⊕ ⟶d θ T T:ψ p f p e U ψ p
r

E σ p, , ,

and

( ) [ ( ) ( )]( ) ( )= ⊕d σ ξ d θ d ψ ξ d f ξ .p ψ p uf p e p p,

For any ∈ξ TN p, , we have

( )( ) [ ( ) ( )( )]

{ ( ) [ ( ) ( ) ( ) ( )]}

[ ( ) ( )] [ ( ) ( ) ( )]

( ( ) ( ) ( )) ( ( ) )( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

= ⊕
= ⊕ +
= ⊕ + ⊕
= ⋅ +

d uσ ξ d θ d ψ ξ d uf ξ

d θ d ψ ξ d u ξ f p u p d f ξ

d θ d u ξ f p d θ d ψ ξ u p d f ξ

T θ ψ ξ d u ξ f p d u p σ ξ

0

, ,

p ψ p uf p e p p

ψ p uf p e p p p

ψ p uf p e p ψ p uf p e p p

uσ p e p p

,

,

, ,

thanks to (A1). Using the equality

�( ) ( )( )= ⋅d λσ d λ d σ ,p σ p E p

for any �∈λ , we conclude the required identity

�( )( ) ( ) ( ) [ ( ) ] ( )( ) ( )= + ⋅d uσ ξ d u ξ T σ p d u p d σ ξ .p p uσ p σ p E p □

The induced connection ∇ψ over ∗ψ E is defined by the formula

� ( ) [ ( ) ( )]( ) ( ) ( ) ( )∇ ≔ = −− −
σ T γ d σ ξ T d σ ξ H d ψ ξ ,ξ

ψ

σ p σ p p σ p p σ p p
1 1

for any ∈ξ TN p, . It is obvious that the additive property of ∇ψ follows from the condition (A2). We show now
that ∇ψ satisfies the Leibniz property

( ) ( ) ( ) ( )∇ = + ∇uσ d u ξ σ p u p σ .ξ

ψ

p ξ

ψ

Indeed using Lemma A4 and the identity (A5), we have

�

�

� �

�

�

�

�

�

( ) ( )( )

[ ( ) ( ) [ ( ) ] ( )]

( ) ( ) [ [ ( ) ] ( ) ( )]

( ) ( ) [ [ ( ) ] ( ) [ ( ) ] ( )]

( ) ( ) [ [ ( ) ] ( )]

( ) ( ) [ ( ) ( )]

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

∇ =

= +

= + −

= + −

= +

= +

= + ∇

−

−

−

−

−

−

uσ T γ d uσ ξ

T γ d u ξ T σ p d u p d σ ξ

d u ξ σ p T d u p d σ ξ H d ψ ξ

d u ξ σ p T d u p d σ ξ d u p H d ψ ξ

d u ξ σ p T d u p γ d σ ξ

d u ξ σ p T u p γ d σ ξ

d u ξ σ p u p σ .

ξ

ψ

uσ p uσ p p

uσ p uσ p p uσ p σ p E p

p uσ p σ p E p uσ p p

p uσ p σ p E p σ p E σ p p

p uσ p σ p E σ p p

p uσ p σ p p

p ξ

ψ

1

1

1

1

1

1

We observe also that for any ( )∈ ∞s C M E, and ∈ξ TN p, , we have the equalities

�( ) ( ) ( ( )) ( )( ) ( ) ( )∇ = ⋅ = ∇ ⋅∗
∘

−
∘ψ s T γ d s d ψ ξ s ψ p d ψ ξ ,ξ

ψ

s ψ p s ψ p ψ p p p
1

and in other terms, the functorial formula
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( ) ( )∇ = ∇∗ ∗ψ s ψ s ,

ψ (A6)

holds.

A.2.1 The induced connection (second approach)
We observe that the tangent space of ∗ψ E at the point ( )y η, is given by the equality

{( ) ∣ ( ) ( )}( ) = ∈ ⊕ =∗T ξ θ T T d ψ ξ d π θ, .ψ E y η N y E η y η E, , , ,

Given any horizontal distribution ( )∈ ⊗∞ ∗ ∗
H C E π T T, E M E over E , we define the horizontal distribution

( )≔ ∈ ⊗∗ ∞ ∗ ∗ ∗
∗ ∗H H C ψ E π T TΨ , .

ψ

ψ E N ψ E

In explicit terms

�( ) = ⊕ ⋅H H d ψ.y η

ψ

T η y, N y,

If H satisfies the identities (A2) and (A5), then so does H ψ. This follows indeed from the identities

�

� � �

( ) ( )

( ) ( )

( ) ( )

( )

= ⊕
= ⊕

∗

∗

d sm d sm

d λ d λ

,

.

y η η ψ E T η η E

y η ψ E T η E

, , ,

,

N y

N y

1 2
,

1 2

,

By definition of H ψ, we infer that the induced connection ∇ψ over ∗ψ E satisfies the formula

[ ( ) ( )]( ) ( )∇ = ⋅ − ⋅−
σ T d σ ξ H d ψ ξ ,ξ

ψ

σ y y σ y y
1

for any ∈ξ TN y, .
The local frame e induces a local frame ≔ ∘η e ψ of ∗ψ E over ( )−ψ U1 . We compute the local connection Aψ

form of ∇ψ with respect to such frame. We notice that ( )∇ = ⋅ = ⋅∗ ∗η ψ e A η ψ Aψ by the previous remark. We
infer the equality = ∗A ψ Aψ .

A.2.2 Parallel transport
We consider a smooth curve ( )− ⟶γ ε ε M: , and a section (( ) )∈ − ∗σ C ε ε γ E, ,

1 , which satisfies the equation

∇ =σ 0,d

dt

γ

over ( )−ε ε, with ( ) ( )= ∈σ η E0 γ 0
. If we write ( ) ( ( )) ( )= ⋅σ t e γ t f t , then

( ( )) [ ( ) ( ( )) ( )]∇ = ⋅ + ⋅σ e γ t f t A γ t f t˙
˙ .d

dt

γ

We infer that the parallel transport map ( ) ( )⟶τ E E:γ t γ γ t, 0
, ( )∈ −t ε ε, given by ( ) ( )=τ η σ tγ t, , is linear. We

show the following fact.

Lemma A5. For any smooth curve ( )− ⟶γ ε ε M: , and for any section (( ) )∈ − ∗σ C ε ε γ E, ,

1 , the identity

( ) [ ( )]∇ = ⋅
∣

−

=
σ

d

dt
τ σ t0d

dt

γ

γ t,

1

t 0

(A7)

holds.

Proof. We notice first that the term ( )⋅−
τ σ tγ t,

1 is given by the intrinsic identities

( ( )) ( )

( ) ( )

( ( )) ( ) ( )

+ ⋅ =

=
⋅ = ⋅−

du

ds
A γ s u s

u t f t

e γ u τ σ t

˙ 0,

,

0 0 .

t

t

t

t γ t,

1
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Integrating the first equation we infer

( ) ( ) ( ( )) ( )∫− = − ⋅u t u A γ s u s ds0 ˙ .t t

t

t

0

Using the second equation, we obtain

( ) ( ) ( ( )) ( )∫− = − ⋅f t u A γ s u s ds0 ˙ .t

t

t

0

Deriving with respect to the variable t, we obtain

( ) ( ) ( ( )) ( ) ( ) ( ( )) ( )= + ⋅ = + ⋅
d

dt
u f t A γ t u t f t A γ t f t0

˙
˙

˙
˙ .t t

Evaluating at =t 0 and multiplying both sides with ( ( ))e γ 0 , we infer the required conclusion. □

We consider now a C1-vector field ξ over M and let φ
ξ t,

be the associated one-parameter subgroup of
transformations of M . Let ⟶E EΦ :ξ t, be the parallel transport map along the flow lines of φ

ξ t,
. It is obvious

by definition, that the map Φξ t, satisfies ∘ = ∘π φ πΦE ξ t ξ t E,
,

.

The vector field ≔Ξ Φ
˙

ξ ,0
over E satisfies the equality ( ) ( )=η H ξΞ η , for any ∈η E . This is a direct

consequence of the definition of the induced connection along the flow lines of ξ .
To any section ( )∈σ C M E,

1 we can associate a C1-vector field Σ over E defined as ( ) [ ( )]≔ ∘η T σ π ηΣ η E .
Let Φ tΣ,

be the associated one-parameter subgroup of transformations of E . In explicit terms, it satisfies

( ) ( )= + ∘η η tσ π ηΦ .t EΣ,

Then

[ ] ( )= ∘ ∘
∣ ∣

−
= =

d

dt

d

ds
Ξ, Σ Φ Φ Φ .ξ t s ξ t, Σ, ,

t s0 0

The fact that the map −Φξ t,
is linear on the fibers implies

�

�

[ ]∘ ∘ = + ∘ ∘
= + ⋅ ∘ ∘
= + ⋅ ∘ ∘

− −

−

−

sσ π

s σ π

s σ φ π

Φ Φ Φ Φ Φ Φ

Φ Φ

Φ .

ξ t s ξ t ξ t ξ t E ξ t

E ξ t E ξ t

E ξ t ξ t E

, Σ, , , , ,

, ,

,
,

Thus, for any ∈η Ep holds

( ) ( )∘ ∘ = + ⋅ ∘ ∈− −η η s σ φ p EΦ Φ Φ Φ .ξ t s ξ t ξ t ξ t p, Σ, , ,
,

We conclude

[ ]( ) [ ( )] [ ( )]= ⋅ ∘ = ∇
∣

−
=

η
d

dt
T σ φ p T σ pΞ, Σ Φ ,η ξ t ξ t η ξ,

,

t 0

i.e., for any ∈η E , the equality holds

[ ]( ) [( ) ( )]= ∇ ∘η T σ π ηΞ, Σ .η ξ E (A8)

Iterating twice, we deduce the identity

[ [ ]]( ) [( ) ( )]= ∇ ∇ ∘η T σ π ηΞ , Ξ , Σ .η ξ ξ E1 2
1 2

(A9)

Moreover, the fact that by (A8) the vector fields [ ]Ξ , Σj , =j 1, 2 are tangent to the fibers of E and constant along
them implies

[[ ] [ ]] =Ξ , Σ , Ξ , Σ 0.
1 2

(A10)
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A.3 The geometric meaning of the curvature tensor

Lemma A6. Let ≔ ∇R 2 be the curvature tensor of the connection ∇. Then for any vector fields ξ ξ,
1 2

over M and
for any ∈η E , the identity holds

([ ]( )) [ ( ) ]=∇
γ η T R ξ ξ ηΞ , Ξ , .

η η1 2 2 1

Proof. Let σ be a local section of E such that ( ) =σ p η. By definition of horizontal lift Ξ of a vector field ξ , we
have

( ) [ ( )] ( ) [( ) ( )]= ∘ − ∇ ∘η dσ ξ π η T σ π ηΞ .E η ξ E

We infer by (A8), the identity

[ ( )] [ ]∘ = +dσ ξ π Ξ Ξ, Σ .E

We infer [ ]= +∗σ ξ Ξ Ξ, Σ over σIm . Thus,

[ ] [ ] [ ] [ [ ]] [[ ] ]= = + +∗ ∗ ∗σ ξ ξ σ ξ σ ξ, , Ξ , Ξ Ξ , Ξ , Σ Ξ , Σ , Ξ ,
1 2 1 2 1 2 1 2 1 2

thanks to (A10). We rewrite the previous equality as

[ ] [ [ ]] [ [ ]] [ ]= − − ∗σ ξ ξΞ , Ξ Ξ , Ξ , Σ Ξ , Ξ , Σ , .
1 2 2 1 1 2 2 1

By using (A9), we deduce

[ ]( ) [( )( )] ([ ])

[( )( )] ([ ])

[ ( ) ( )] ([ ])

[ ]

= ∇ ∇ − ∇ ∇ −
= ∇ ∇ − ∇ ∇ − ∇ −
= +

η T σ σ p d σ ξ ξ

T σ σ σ p H ξ ξ

T R ξ ξ σ p H ξ ξ

Ξ , Ξ ,

,

, , .

η ξ ξ ξ ξ p

η ξ ξ ξ ξ ξ ξ η

η η

1 2 2 1

, 2 1

2 1 1 2

2 1 1 2

2 1 1 2 2 1

We infer the required conclusion. □
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